test_util/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! This crate defines a collection of useful utilities for testing rust code.

use std::sync::Mutex;

/// Asserts that the first argument is strictly less than the second.
#[macro_export]
macro_rules! assert_lt {
    ($x:expr, $y:expr) => {
        assert!(
            $x < $y,
            "assertion `{} < {}` failed; actual: {:?} is not less than {:?}",
            stringify!($x),
            stringify!($y),
            $x,
            $y
        );
    };
}

/// Asserts that the first argument is less than or equal to the second.
#[macro_export]
macro_rules! assert_leq {
    ($x:expr, $y:expr) => {
        assert!(
            $x <= $y,
            "assertion `{} <= {}` failed; actual: {:?} is not less than or equal to {:?}",
            stringify!($x),
            stringify!($y),
            $x,
            $y
        );
    };
}

/// Asserts that the first argument is strictly greater than the second.
#[macro_export]
macro_rules! assert_gt {
    ($x:expr, $y:expr) => {
        assert!(
            $x > $y,
            "assertion `{} > {}` failed; actual: {:?} is not greater than {:?}",
            stringify!($x),
            stringify!($y),
            $x,
            $y
        );
    };
}

/// Asserts that the first argument is greater than or equal to the second.
#[macro_export]
macro_rules! assert_geq {
    ($x:expr, $y:expr) => {
        assert!(
            $x >= $y,
            "assertion `{} >= {}` failed; actual: {:?} is not greater than or equal to {:?}",
            stringify!($x),
            stringify!($y),
            $x,
            $y
        );
    };
}

/// Asserts that `x` and `y` are within `delta` of one another.
///
/// `x` and `y` must be of a common type that supports both subtraction and negation. (Note that it
/// would be natural to define this macro using `abs()`, but when attempting to do so, the compiler
/// fails to apply its inference rule for under-constrained types. See
/// [https://github.com/rust-lang/reference/issues/104].)
#[macro_export]
macro_rules! assert_near {
    ($x: expr, $y: expr, $delta: expr) => {
        let difference = $x - $y;
        assert!(
            (-$delta..=$delta).contains(&difference),
            "assertion `{} is near {} (within delta {})` failed; actual: |{:?} - {:?}| > {:?}",
            stringify!($x),
            stringify!($y),
            stringify!($delta),
            $x,
            $y,
            $delta
        );
    };
}

/// A mutually exclusive counter that is not shareable, but can be defined statically for the
/// duration of a test. This simplifies the implementation of a simple test-global counter,
/// avoiding the complexity of alternatives like std::sync::atomic objects that are typically
/// wrapped in Arc()s, cloned, and require non-intuitive memory management options.
///
/// # Example
///
/// ```
///    use test_util::Counter;
///    use lazy_static::lazy_static;
///
///    #[test]
///    async fn my_test() {
///        lazy_static! {
///            static ref CALL_COUNT: Counter = Counter::new(0);
///        }
///
///        let handler = || {
///            // some async callback
///            // ...
///            CALL_COUNT.inc();
///        };
///        handler();
///        // ...
///        CALL_COUNT.inc();
///
///        assert_eq!(CALL_COUNT.get(), 2);
///    }
/// ```
///
/// *Important:* Since inc() and get() obtain separate Mutex lock()s to access the underlying
/// counter value, it is very possible that a separate thread, if also mutating the same counter,
/// may increment the value between the first thread's calls to inc() and get(), in which case,
/// the two threads could get() the same value (the result after both calls to inc()). If get()
/// is used to, for example, print the values after each call to inc(), the resulting values might
/// include duplicate intermediate counter values, with some numbers skipped, but the final value
/// after all threads complete will be the exact number of all calls to inc() (offset by the
/// initial value).
///
/// To provide slightly more consistent results, inc() returns the new value after incrementing
/// the counter, obtaining the value while the lock is held. This way, each incremental value will
/// be returned to the calling threads; *however* the threads could still receive the values out of
/// order.
///
/// Consider, thread 1 calls inc() starting at count 0. A value of 1 is returned, but before thread
/// 1 receives the new value, it might be interrupted by thread 2. Thread 2 increments the counter
/// from 1 to 2, return the new value 2, and (let's say, for example) prints the value "2". Thread 1
/// then resumes, and prints "1".
///
/// Specifically, the Counter guarantees that each invocation of inc() will return a value that is
/// 1 greater than the previous value returned by inc() (or 1 greater than the `initial` value, if
/// it is the first invocation). Call get() after completing all invocations of inc() to get the
/// total number of times inc() was called (offset by the initial value).
pub struct Counter {
    count: Mutex<usize>,
}

impl Counter {
    /// Initializes a new counter to the given value.
    pub fn new(initial: usize) -> Self {
        Counter { count: Mutex::new(initial) }
    }

    /// Increments the counter by one and returns the new value.
    pub fn inc(&self) -> usize {
        let mut count = self.count.lock().unwrap();
        *count += 1;
        *count
    }

    /// Returns the current value of the counter.
    pub fn get(&self) -> usize {
        *self.count.lock().unwrap()
    }
}

impl std::fmt::Debug for Counter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Counter").field("count", &self.get()).finish()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use lazy_static::lazy_static;
    use std::collections::BTreeSet;
    use std::sync::mpsc;
    use std::sync::mpsc::{Receiver, Sender};
    use std::thread;

    #[derive(Debug, PartialEq, PartialOrd)]
    struct NotDisplay {
        x: i32,
    }

    impl core::ops::Sub for NotDisplay {
        type Output = Self;

        fn sub(self, other: Self) -> Self {
            NotDisplay { x: self.x - other.x }
        }
    }

    impl core::ops::Neg for NotDisplay {
        type Output = Self;

        fn neg(self) -> Self {
            NotDisplay { x: -self.x }
        }
    }

    #[test]
    fn test_assert_lt_passes() {
        assert_lt!(1, 2);
        assert_lt!(1u8, 2u8);
        assert_lt!(1u16, 2u16);
        assert_lt!(1u32, 2u32);
        assert_lt!(1u64, 2u64);
        assert_lt!(-1, 3);
        assert_lt!(-1i8, 3i8);
        assert_lt!(-1i16, 3i16);
        assert_lt!(-1i32, 3i32);
        assert_lt!(-1i64, 3i64);
        assert_lt!(-2.0, 7.0);
        assert_lt!(-2.0f32, 7.0f32);
        assert_lt!(-2.0f64, 7.0f64);
        assert_lt!('a', 'b');
        assert_lt!(NotDisplay { x: 1 }, NotDisplay { x: 2 });
    }

    #[test]
    #[should_panic(expected = "assertion `a < b` failed; actual: 2 is not less than 2")]
    fn test_assert_lt_fails_a_equals_b() {
        let a = 2;
        let b = 2;
        assert_lt!(a, b);
    }

    #[test]
    #[should_panic(expected = "assertion `a < b` failed; actual: 5 is not less than 2")]
    fn test_assert_lt_fails_a_greater_than_b() {
        let a = 5;
        let b = 2;
        assert_lt!(a, b);
    }

    #[test]
    fn test_assert_leq_passes() {
        assert_leq!(1, 2);
        assert_leq!(2, 2);
        assert_leq!(-2.0, 3.0);
        assert_leq!(3.0, 3.0);
        assert_leq!('a', 'b');
        assert_leq!('b', 'b');
        assert_leq!(NotDisplay { x: 1 }, NotDisplay { x: 2 });
        assert_leq!(NotDisplay { x: 2 }, NotDisplay { x: 2 });
    }

    #[test]
    #[should_panic(
        expected = "assertion `a <= b` failed; actual: 3 is not less than or equal to 2"
    )]
    fn test_assert_leq_fails() {
        let a = 3;
        let b = 2;
        assert_leq!(a, b);
    }

    #[test]
    fn test_assert_gt_passes() {
        assert_gt!(2, 1);
        assert_gt!(2u8, 1u8);
        assert_gt!(2u16, 1u16);
        assert_gt!(2u32, 1u32);
        assert_gt!(2u64, 1u64);
        assert_gt!(3, -1);
        assert_gt!(3i8, -1i8);
        assert_gt!(3i16, -1i16);
        assert_gt!(3i32, -1i32);
        assert_gt!(3i64, -1i64);
        assert_gt!(7.0, -2.0);
        assert_gt!(7.0f32, -2.0f32);
        assert_gt!(7.0f64, -2.0f64);
        assert_gt!('b', 'a');
        assert_gt!(NotDisplay { x: 2 }, NotDisplay { x: 1 });
    }

    #[test]
    #[should_panic(expected = "assertion `a > b` failed; actual: 2 is not greater than 2")]
    fn test_assert_gt_fails_a_equals_b() {
        let a = 2;
        let b = 2;
        assert_gt!(a, b);
    }

    #[test]
    #[should_panic(expected = "assertion `a > b` failed; actual: -1 is not greater than 2")]
    fn test_assert_gt_fails_a_less_than_b() {
        let a = -1;
        let b = 2;
        assert_gt!(a, b);
    }

    #[test]
    fn test_assert_geq_passes() {
        assert_geq!(2, 1);
        assert_geq!(2, 2);
        assert_geq!(3.0, -2.0);
        assert_geq!(3.0, 3.0);
        assert_geq!('b', 'a');
        assert_geq!('b', 'b');
        assert_geq!(NotDisplay { x: 2 }, NotDisplay { x: 1 });
        assert_geq!(NotDisplay { x: 2 }, NotDisplay { x: 2 });
    }

    #[test]
    #[should_panic(
        expected = "assertion `a >= b` failed; actual: 2 is not greater than or equal to 3"
    )]
    fn test_assert_geq_fails() {
        let a = 2;
        let b = 3;
        assert_geq!(a, b);
    }

    #[test]
    fn test_assert_near_passes() {
        // Test both possible orderings and equality with literals.
        assert_near!(1.0001, 1.0, 0.01);
        assert_near!(1.0, 1.0001, 0.01);
        assert_near!(1.0, 1.0, 0.0);

        // Ensure the macro operates on all other expected input types.
        assert_near!(1.0001f32, 1.0f32, 0.01f32);
        assert_near!(1.0001f64, 1.0f64, 0.01f64);
        assert_near!(7, 5, 2);
        assert_near!(7i8, 5i8, 2i8);
        assert_near!(7i16, 5i16, 2i16);
        assert_near!(7i32, 5i32, 2i32);
        assert_near!(7i64, 5i64, 2i64);

        assert_near!(NotDisplay { x: 7 }, NotDisplay { x: 5 }, NotDisplay { x: 2 });
    }

    #[test]
    #[should_panic]
    fn test_assert_near_fails() {
        assert_near!(1.00001, 1.0, 1e-8);
    }

    // Test error message with integers so display is predictable.
    #[test]
    #[should_panic(
        expected = "assertion `a is near b (within delta d)` failed; actual: |3 - 5| > 1"
    )]
    fn test_assert_near_fails_with_message() {
        let a = 3;
        let b = 5;
        let d = 1;
        assert_near!(a, b, d);
    }

    #[test]
    fn test_inc() {
        lazy_static! {
            static ref CALL_COUNT: Counter = Counter::new(0);
        }

        CALL_COUNT.inc();

        assert_eq!(CALL_COUNT.get(), 1);
    }

    #[test]
    fn test_incs_from_10() {
        lazy_static! {
            static ref CALL_COUNT: Counter = Counter::new(10);
        }

        CALL_COUNT.inc();
        CALL_COUNT.inc();
        CALL_COUNT.inc();

        assert_eq!(CALL_COUNT.get(), 13);
    }

    #[test]
    fn async_counts() {
        lazy_static! {
            static ref CALL_COUNT: Counter = Counter::new(0);
        }

        let (tx, rx): (Sender<usize>, Receiver<usize>) = mpsc::channel();
        let mut children = Vec::new();

        static NTHREADS: usize = 10;

        for _ in 0..NTHREADS {
            let thread_tx = tx.clone();
            let child = thread::spawn(move || {
                let new_value = CALL_COUNT.inc();
                thread_tx.send(new_value).unwrap();
                println!("Sent: {} (OK if out of order)", new_value);
            });

            children.push(child);
        }

        let mut ordered_ids: BTreeSet<usize> = BTreeSet::new();
        for _ in 0..NTHREADS {
            let received_id = rx.recv().unwrap();
            println!("Received: {} (OK if in yet a different order)", received_id);
            ordered_ids.insert(received_id);
        }

        // Wait for the threads to complete any remaining work
        for child in children {
            child.join().expect("child thread panicked");
        }

        // All threads should have incremented the count by 1 each.
        assert_eq!(CALL_COUNT.get(), NTHREADS);

        // All contiguous incremental values should have been received, though possibly not in
        // order. The BTreeSet will return them in order so the complete set can be verified.
        let mut expected_id: usize = 1;
        for id in ordered_ids.iter() {
            assert_eq!(*id, expected_id);
            expected_id += 1;
        }
    }

    #[test]
    fn debug_format_counter() {
        let counter = Counter::new(0);
        assert_eq!(format!("{:?}", counter), "Counter { count: 0 }");
    }
}