test_util/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! This crate defines a collection of useful utilities for testing rust code.
use std::sync::Mutex;
/// Asserts that the first argument is strictly less than the second.
#[macro_export]
macro_rules! assert_lt {
($x:expr, $y:expr) => {
assert!(
$x < $y,
"assertion `{} < {}` failed; actual: {:?} is not less than {:?}",
stringify!($x),
stringify!($y),
$x,
$y
);
};
}
/// Asserts that the first argument is less than or equal to the second.
#[macro_export]
macro_rules! assert_leq {
($x:expr, $y:expr) => {
assert!(
$x <= $y,
"assertion `{} <= {}` failed; actual: {:?} is not less than or equal to {:?}",
stringify!($x),
stringify!($y),
$x,
$y
);
};
}
/// Asserts that the first argument is strictly greater than the second.
#[macro_export]
macro_rules! assert_gt {
($x:expr, $y:expr) => {
assert!(
$x > $y,
"assertion `{} > {}` failed; actual: {:?} is not greater than {:?}",
stringify!($x),
stringify!($y),
$x,
$y
);
};
}
/// Asserts that the first argument is greater than or equal to the second.
#[macro_export]
macro_rules! assert_geq {
($x:expr, $y:expr) => {
assert!(
$x >= $y,
"assertion `{} >= {}` failed; actual: {:?} is not greater than or equal to {:?}",
stringify!($x),
stringify!($y),
$x,
$y
);
};
}
/// Asserts that `x` and `y` are within `delta` of one another.
///
/// `x` and `y` must be of a common type that supports both subtraction and negation. (Note that it
/// would be natural to define this macro using `abs()`, but when attempting to do so, the compiler
/// fails to apply its inference rule for under-constrained types. See
/// [https://github.com/rust-lang/reference/issues/104].)
#[macro_export]
macro_rules! assert_near {
($x: expr, $y: expr, $delta: expr) => {
let difference = $x - $y;
assert!(
(-$delta..=$delta).contains(&difference),
"assertion `{} is near {} (within delta {})` failed; actual: |{:?} - {:?}| > {:?}",
stringify!($x),
stringify!($y),
stringify!($delta),
$x,
$y,
$delta
);
};
}
/// A mutually exclusive counter that is not shareable, but can be defined statically for the
/// duration of a test. This simplifies the implementation of a simple test-global counter,
/// avoiding the complexity of alternatives like std::sync::atomic objects that are typically
/// wrapped in Arc()s, cloned, and require non-intuitive memory management options.
///
/// # Example
///
/// ```
/// use test_util::Counter;
/// use lazy_static::lazy_static;
///
/// #[test]
/// async fn my_test() {
/// lazy_static! {
/// static ref CALL_COUNT: Counter = Counter::new(0);
/// }
///
/// let handler = || {
/// // some async callback
/// // ...
/// CALL_COUNT.inc();
/// };
/// handler();
/// // ...
/// CALL_COUNT.inc();
///
/// assert_eq!(CALL_COUNT.get(), 2);
/// }
/// ```
///
/// *Important:* Since inc() and get() obtain separate Mutex lock()s to access the underlying
/// counter value, it is very possible that a separate thread, if also mutating the same counter,
/// may increment the value between the first thread's calls to inc() and get(), in which case,
/// the two threads could get() the same value (the result after both calls to inc()). If get()
/// is used to, for example, print the values after each call to inc(), the resulting values might
/// include duplicate intermediate counter values, with some numbers skipped, but the final value
/// after all threads complete will be the exact number of all calls to inc() (offset by the
/// initial value).
///
/// To provide slightly more consistent results, inc() returns the new value after incrementing
/// the counter, obtaining the value while the lock is held. This way, each incremental value will
/// be returned to the calling threads; *however* the threads could still receive the values out of
/// order.
///
/// Consider, thread 1 calls inc() starting at count 0. A value of 1 is returned, but before thread
/// 1 receives the new value, it might be interrupted by thread 2. Thread 2 increments the counter
/// from 1 to 2, return the new value 2, and (let's say, for example) prints the value "2". Thread 1
/// then resumes, and prints "1".
///
/// Specifically, the Counter guarantees that each invocation of inc() will return a value that is
/// 1 greater than the previous value returned by inc() (or 1 greater than the `initial` value, if
/// it is the first invocation). Call get() after completing all invocations of inc() to get the
/// total number of times inc() was called (offset by the initial value).
pub struct Counter {
count: Mutex<usize>,
}
impl Counter {
/// Initializes a new counter to the given value.
pub fn new(initial: usize) -> Self {
Counter { count: Mutex::new(initial) }
}
/// Increments the counter by one and returns the new value.
pub fn inc(&self) -> usize {
let mut count = self.count.lock().unwrap();
*count += 1;
*count
}
/// Returns the current value of the counter.
pub fn get(&self) -> usize {
*self.count.lock().unwrap()
}
}
impl std::fmt::Debug for Counter {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Counter").field("count", &self.get()).finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use lazy_static::lazy_static;
use std::collections::BTreeSet;
use std::sync::mpsc;
use std::sync::mpsc::{Receiver, Sender};
use std::thread;
#[derive(Debug, PartialEq, PartialOrd)]
struct NotDisplay {
x: i32,
}
impl core::ops::Sub for NotDisplay {
type Output = Self;
fn sub(self, other: Self) -> Self {
NotDisplay { x: self.x - other.x }
}
}
impl core::ops::Neg for NotDisplay {
type Output = Self;
fn neg(self) -> Self {
NotDisplay { x: -self.x }
}
}
#[test]
fn test_assert_lt_passes() {
assert_lt!(1, 2);
assert_lt!(1u8, 2u8);
assert_lt!(1u16, 2u16);
assert_lt!(1u32, 2u32);
assert_lt!(1u64, 2u64);
assert_lt!(-1, 3);
assert_lt!(-1i8, 3i8);
assert_lt!(-1i16, 3i16);
assert_lt!(-1i32, 3i32);
assert_lt!(-1i64, 3i64);
assert_lt!(-2.0, 7.0);
assert_lt!(-2.0f32, 7.0f32);
assert_lt!(-2.0f64, 7.0f64);
assert_lt!('a', 'b');
assert_lt!(NotDisplay { x: 1 }, NotDisplay { x: 2 });
}
#[test]
#[should_panic(expected = "assertion `a < b` failed; actual: 2 is not less than 2")]
fn test_assert_lt_fails_a_equals_b() {
let a = 2;
let b = 2;
assert_lt!(a, b);
}
#[test]
#[should_panic(expected = "assertion `a < b` failed; actual: 5 is not less than 2")]
fn test_assert_lt_fails_a_greater_than_b() {
let a = 5;
let b = 2;
assert_lt!(a, b);
}
#[test]
fn test_assert_leq_passes() {
assert_leq!(1, 2);
assert_leq!(2, 2);
assert_leq!(-2.0, 3.0);
assert_leq!(3.0, 3.0);
assert_leq!('a', 'b');
assert_leq!('b', 'b');
assert_leq!(NotDisplay { x: 1 }, NotDisplay { x: 2 });
assert_leq!(NotDisplay { x: 2 }, NotDisplay { x: 2 });
}
#[test]
#[should_panic(
expected = "assertion `a <= b` failed; actual: 3 is not less than or equal to 2"
)]
fn test_assert_leq_fails() {
let a = 3;
let b = 2;
assert_leq!(a, b);
}
#[test]
fn test_assert_gt_passes() {
assert_gt!(2, 1);
assert_gt!(2u8, 1u8);
assert_gt!(2u16, 1u16);
assert_gt!(2u32, 1u32);
assert_gt!(2u64, 1u64);
assert_gt!(3, -1);
assert_gt!(3i8, -1i8);
assert_gt!(3i16, -1i16);
assert_gt!(3i32, -1i32);
assert_gt!(3i64, -1i64);
assert_gt!(7.0, -2.0);
assert_gt!(7.0f32, -2.0f32);
assert_gt!(7.0f64, -2.0f64);
assert_gt!('b', 'a');
assert_gt!(NotDisplay { x: 2 }, NotDisplay { x: 1 });
}
#[test]
#[should_panic(expected = "assertion `a > b` failed; actual: 2 is not greater than 2")]
fn test_assert_gt_fails_a_equals_b() {
let a = 2;
let b = 2;
assert_gt!(a, b);
}
#[test]
#[should_panic(expected = "assertion `a > b` failed; actual: -1 is not greater than 2")]
fn test_assert_gt_fails_a_less_than_b() {
let a = -1;
let b = 2;
assert_gt!(a, b);
}
#[test]
fn test_assert_geq_passes() {
assert_geq!(2, 1);
assert_geq!(2, 2);
assert_geq!(3.0, -2.0);
assert_geq!(3.0, 3.0);
assert_geq!('b', 'a');
assert_geq!('b', 'b');
assert_geq!(NotDisplay { x: 2 }, NotDisplay { x: 1 });
assert_geq!(NotDisplay { x: 2 }, NotDisplay { x: 2 });
}
#[test]
#[should_panic(
expected = "assertion `a >= b` failed; actual: 2 is not greater than or equal to 3"
)]
fn test_assert_geq_fails() {
let a = 2;
let b = 3;
assert_geq!(a, b);
}
#[test]
fn test_assert_near_passes() {
// Test both possible orderings and equality with literals.
assert_near!(1.0001, 1.0, 0.01);
assert_near!(1.0, 1.0001, 0.01);
assert_near!(1.0, 1.0, 0.0);
// Ensure the macro operates on all other expected input types.
assert_near!(1.0001f32, 1.0f32, 0.01f32);
assert_near!(1.0001f64, 1.0f64, 0.01f64);
assert_near!(7, 5, 2);
assert_near!(7i8, 5i8, 2i8);
assert_near!(7i16, 5i16, 2i16);
assert_near!(7i32, 5i32, 2i32);
assert_near!(7i64, 5i64, 2i64);
assert_near!(NotDisplay { x: 7 }, NotDisplay { x: 5 }, NotDisplay { x: 2 });
}
#[test]
#[should_panic]
fn test_assert_near_fails() {
assert_near!(1.00001, 1.0, 1e-8);
}
// Test error message with integers so display is predictable.
#[test]
#[should_panic(
expected = "assertion `a is near b (within delta d)` failed; actual: |3 - 5| > 1"
)]
fn test_assert_near_fails_with_message() {
let a = 3;
let b = 5;
let d = 1;
assert_near!(a, b, d);
}
#[test]
fn test_inc() {
lazy_static! {
static ref CALL_COUNT: Counter = Counter::new(0);
}
CALL_COUNT.inc();
assert_eq!(CALL_COUNT.get(), 1);
}
#[test]
fn test_incs_from_10() {
lazy_static! {
static ref CALL_COUNT: Counter = Counter::new(10);
}
CALL_COUNT.inc();
CALL_COUNT.inc();
CALL_COUNT.inc();
assert_eq!(CALL_COUNT.get(), 13);
}
#[test]
fn async_counts() {
lazy_static! {
static ref CALL_COUNT: Counter = Counter::new(0);
}
let (tx, rx): (Sender<usize>, Receiver<usize>) = mpsc::channel();
let mut children = Vec::new();
static NTHREADS: usize = 10;
for _ in 0..NTHREADS {
let thread_tx = tx.clone();
let child = thread::spawn(move || {
let new_value = CALL_COUNT.inc();
thread_tx.send(new_value).unwrap();
println!("Sent: {} (OK if out of order)", new_value);
});
children.push(child);
}
let mut ordered_ids: BTreeSet<usize> = BTreeSet::new();
for _ in 0..NTHREADS {
let received_id = rx.recv().unwrap();
println!("Received: {} (OK if in yet a different order)", received_id);
ordered_ids.insert(received_id);
}
// Wait for the threads to complete any remaining work
for child in children {
child.join().expect("child thread panicked");
}
// All threads should have incremented the count by 1 each.
assert_eq!(CALL_COUNT.get(), NTHREADS);
// All contiguous incremental values should have been received, though possibly not in
// order. The BTreeSet will return them in order so the complete set can be verified.
let mut expected_id: usize = 1;
for id in ordered_ids.iter() {
assert_eq!(*id, expected_id);
expected_id += 1;
}
}
#[test]
fn debug_format_counter() {
let counter = Counter::new(0);
assert_eq!(format!("{:?}", counter), "Counter { count: 0 }");
}
}