rand/distributions/
uniform.rs

1// Copyright 2018-2020 Developers of the Rand project.
2// Copyright 2017 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! A distribution uniformly sampling numbers within a given range.
11//!
12//! [`Uniform`] is the standard distribution to sample uniformly from a range;
13//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
14//! standard die. [`Rng::gen_range`] supports any type supported by
15//! [`Uniform`].
16//!
17//! This distribution is provided with support for several primitive types
18//! (all integer and floating-point types) as well as [`std::time::Duration`],
19//! and supports extension to user-defined types via a type-specific *back-end*
20//! implementation.
21//!
22//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
23//! back-ends supporting sampling from primitive integer and floating-point
24//! ranges as well as from [`std::time::Duration`]; these types do not normally
25//! need to be used directly (unless implementing a derived back-end).
26//!
27//! # Example usage
28//!
29//! ```
30//! use rand::{Rng, thread_rng};
31//! use rand::distributions::Uniform;
32//!
33//! let mut rng = thread_rng();
34//! let side = Uniform::new(-10.0, 10.0);
35//!
36//! // sample between 1 and 10 points
37//! for _ in 0..rng.gen_range(1..=10) {
38//!     // sample a point from the square with sides -10 - 10 in two dimensions
39//!     let (x, y) = (rng.sample(side), rng.sample(side));
40//!     println!("Point: {}, {}", x, y);
41//! }
42//! ```
43//!
44//! # Extending `Uniform` to support a custom type
45//!
46//! To extend [`Uniform`] to support your own types, write a back-end which
47//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
48//! helper trait to "register" your back-end. See the `MyF32` example below.
49//!
50//! At a minimum, the back-end needs to store any parameters needed for sampling
51//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
52//! Those methods should include an assert to check the range is valid (i.e.
53//! `low < high`). The example below merely wraps another back-end.
54//!
55//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
56//! type SampleBorrow<X> in order to support passing in values by reference or
57//! by value. In the implementation of these functions, you can choose to
58//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
59//! to copy or clone the value, whatever is appropriate for your type.
60//!
61//! ```
62//! use rand::prelude::*;
63//! use rand::distributions::uniform::{Uniform, SampleUniform,
64//!         UniformSampler, UniformFloat, SampleBorrow};
65//!
66//! struct MyF32(f32);
67//!
68//! #[derive(Clone, Copy, Debug)]
69//! struct UniformMyF32(UniformFloat<f32>);
70//!
71//! impl UniformSampler for UniformMyF32 {
72//!     type X = MyF32;
73//!     fn new<B1, B2>(low: B1, high: B2) -> Self
74//!         where B1: SampleBorrow<Self::X> + Sized,
75//!               B2: SampleBorrow<Self::X> + Sized
76//!     {
77//!         UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0))
78//!     }
79//!     fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
80//!         where B1: SampleBorrow<Self::X> + Sized,
81//!               B2: SampleBorrow<Self::X> + Sized
82//!     {
83//!         UniformSampler::new(low, high)
84//!     }
85//!     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
86//!         MyF32(self.0.sample(rng))
87//!     }
88//! }
89//!
90//! impl SampleUniform for MyF32 {
91//!     type Sampler = UniformMyF32;
92//! }
93//!
94//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
95//! let uniform = Uniform::new(low, high);
96//! let x = uniform.sample(&mut thread_rng());
97//! ```
98//!
99//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
100//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
101//! [`UniformInt`]: crate::distributions::uniform::UniformInt
102//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
103//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
104//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow
105
106#[cfg(not(feature = "std"))] use core::time::Duration;
107#[cfg(feature = "std")] use std::time::Duration;
108use core::ops::{Range, RangeInclusive};
109
110use crate::distributions::float::IntoFloat;
111use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply};
112use crate::distributions::Distribution;
113use crate::{Rng, RngCore};
114
115#[cfg(not(feature = "std"))]
116#[allow(unused_imports)] // rustc doesn't detect that this is actually used
117use crate::distributions::utils::Float;
118
119#[cfg(feature = "simd_support")] use packed_simd::*;
120
121#[cfg(feature = "serde1")]
122use serde::{Serialize, Deserialize};
123
124/// Sample values uniformly between two bounds.
125///
126/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
127/// distribution sampling from the given range; these functions may do extra
128/// work up front to make sampling of multiple values faster. If only one sample
129/// from the range is required, [`Rng::gen_range`] can be more efficient.
130///
131/// When sampling from a constant range, many calculations can happen at
132/// compile-time and all methods should be fast; for floating-point ranges and
133/// the full range of integer types this should have comparable performance to
134/// the `Standard` distribution.
135///
136/// Steps are taken to avoid bias which might be present in naive
137/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
138/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
139/// values. Further, the implementations here give more weight to the high-bits
140/// generated by the RNG than the low bits, since with some RNGs the low-bits
141/// are of lower quality than the high bits.
142///
143/// Implementations must sample in `[low, high)` range for
144/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must
145/// be taken to ensure that rounding never results values `< low` or `>= high`.
146///
147/// # Example
148///
149/// ```
150/// use rand::distributions::{Distribution, Uniform};
151///
152/// let between = Uniform::from(10..10000);
153/// let mut rng = rand::thread_rng();
154/// let mut sum = 0;
155/// for _ in 0..1000 {
156///     sum += between.sample(&mut rng);
157/// }
158/// println!("{}", sum);
159/// ```
160///
161/// For a single sample, [`Rng::gen_range`] may be prefered:
162///
163/// ```
164/// use rand::Rng;
165///
166/// let mut rng = rand::thread_rng();
167/// println!("{}", rng.gen_range(0..10));
168/// ```
169///
170/// [`new`]: Uniform::new
171/// [`new_inclusive`]: Uniform::new_inclusive
172/// [`Rng::gen_range`]: Rng::gen_range
173#[derive(Clone, Copy, Debug)]
174#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
175pub struct Uniform<X: SampleUniform>(X::Sampler);
176
177impl<X: SampleUniform> Uniform<X> {
178    /// Create a new `Uniform` instance which samples uniformly from the half
179    /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
180    pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
181    where
182        B1: SampleBorrow<X> + Sized,
183        B2: SampleBorrow<X> + Sized,
184    {
185        Uniform(X::Sampler::new(low, high))
186    }
187
188    /// Create a new `Uniform` instance which samples uniformly from the closed
189    /// range `[low, high]` (inclusive). Panics if `low > high`.
190    pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
191    where
192        B1: SampleBorrow<X> + Sized,
193        B2: SampleBorrow<X> + Sized,
194    {
195        Uniform(X::Sampler::new_inclusive(low, high))
196    }
197}
198
199impl<X: SampleUniform> Distribution<X> for Uniform<X> {
200    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
201        self.0.sample(rng)
202    }
203}
204
205/// Helper trait for creating objects using the correct implementation of
206/// [`UniformSampler`] for the sampling type.
207///
208/// See the [module documentation] on how to implement [`Uniform`] range
209/// sampling for a custom type.
210///
211/// [module documentation]: crate::distributions::uniform
212pub trait SampleUniform: Sized {
213    /// The `UniformSampler` implementation supporting type `X`.
214    type Sampler: UniformSampler<X = Self>;
215}
216
217/// Helper trait handling actual uniform sampling.
218///
219/// See the [module documentation] on how to implement [`Uniform`] range
220/// sampling for a custom type.
221///
222/// Implementation of [`sample_single`] is optional, and is only useful when
223/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
224///
225/// [module documentation]: crate::distributions::uniform
226/// [`sample_single`]: UniformSampler::sample_single
227pub trait UniformSampler: Sized {
228    /// The type sampled by this implementation.
229    type X;
230
231    /// Construct self, with inclusive lower bound and exclusive upper bound
232    /// `[low, high)`.
233    ///
234    /// Usually users should not call this directly but instead use
235    /// `Uniform::new`, which asserts that `low < high` before calling this.
236    fn new<B1, B2>(low: B1, high: B2) -> Self
237    where
238        B1: SampleBorrow<Self::X> + Sized,
239        B2: SampleBorrow<Self::X> + Sized;
240
241    /// Construct self, with inclusive bounds `[low, high]`.
242    ///
243    /// Usually users should not call this directly but instead use
244    /// `Uniform::new_inclusive`, which asserts that `low <= high` before
245    /// calling this.
246    fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
247    where
248        B1: SampleBorrow<Self::X> + Sized,
249        B2: SampleBorrow<Self::X> + Sized;
250
251    /// Sample a value.
252    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
253
254    /// Sample a single value uniformly from a range with inclusive lower bound
255    /// and exclusive upper bound `[low, high)`.
256    ///
257    /// By default this is implemented using
258    /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
259    /// more optimal implementations for single usage may be provided via this
260    /// method (which is the case for integers and floats).
261    /// Results may not be identical.
262    ///
263    /// Note that to use this method in a generic context, the type needs to be
264    /// retrieved via `SampleUniform::Sampler` as follows:
265    /// ```
266    /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}};
267    /// # #[allow(unused)]
268    /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
269    ///     let mut rng = thread_rng();
270    ///     <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng)
271    /// }
272    /// ```
273    fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X
274    where
275        B1: SampleBorrow<Self::X> + Sized,
276        B2: SampleBorrow<Self::X> + Sized,
277    {
278        let uniform: Self = UniformSampler::new(low, high);
279        uniform.sample(rng)
280    }
281
282    /// Sample a single value uniformly from a range with inclusive lower bound
283    /// and inclusive upper bound `[low, high]`.
284    ///
285    /// By default this is implemented using
286    /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
287    /// some types more optimal implementations for single usage may be provided
288    /// via this method.
289    /// Results may not be identical.
290    fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
291        -> Self::X
292        where B1: SampleBorrow<Self::X> + Sized,
293              B2: SampleBorrow<Self::X> + Sized
294    {
295        let uniform: Self = UniformSampler::new_inclusive(low, high);
296        uniform.sample(rng)
297    }
298}
299
300impl<X: SampleUniform> From<Range<X>> for Uniform<X> {
301    fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
302        Uniform::new(r.start, r.end)
303    }
304}
305
306impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> {
307    fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
308        Uniform::new_inclusive(r.start(), r.end())
309    }
310}
311
312
313/// Helper trait similar to [`Borrow`] but implemented
314/// only for SampleUniform and references to SampleUniform in
315/// order to resolve ambiguity issues.
316///
317/// [`Borrow`]: std::borrow::Borrow
318pub trait SampleBorrow<Borrowed> {
319    /// Immutably borrows from an owned value. See [`Borrow::borrow`]
320    ///
321    /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
322    fn borrow(&self) -> &Borrowed;
323}
324impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
325where Borrowed: SampleUniform
326{
327    #[inline(always)]
328    fn borrow(&self) -> &Borrowed {
329        self
330    }
331}
332impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed
333where Borrowed: SampleUniform
334{
335    #[inline(always)]
336    fn borrow(&self) -> &Borrowed {
337        *self
338    }
339}
340
341/// Range that supports generating a single sample efficiently.
342///
343/// Any type implementing this trait can be used to specify the sampled range
344/// for `Rng::gen_range`.
345pub trait SampleRange<T> {
346    /// Generate a sample from the given range.
347    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T;
348
349    /// Check whether the range is empty.
350    fn is_empty(&self) -> bool;
351}
352
353impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
354    #[inline]
355    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
356        T::Sampler::sample_single(self.start, self.end, rng)
357    }
358
359    #[inline]
360    fn is_empty(&self) -> bool {
361        !(self.start < self.end)
362    }
363}
364
365impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
366    #[inline]
367    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
368        T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
369    }
370
371    #[inline]
372    fn is_empty(&self) -> bool {
373        !(self.start() <= self.end())
374    }
375}
376
377
378////////////////////////////////////////////////////////////////////////////////
379
380// What follows are all back-ends.
381
382
383/// The back-end implementing [`UniformSampler`] for integer types.
384///
385/// Unless you are implementing [`UniformSampler`] for your own type, this type
386/// should not be used directly, use [`Uniform`] instead.
387///
388/// # Implementation notes
389///
390/// For simplicity, we use the same generic struct `UniformInt<X>` for all
391/// integer types `X`. This gives us only one field type, `X`; to store unsigned
392/// values of this size, we take use the fact that these conversions are no-ops.
393///
394/// For a closed range, the number of possible numbers we should generate is
395/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
396/// our sample space, `zone`, is a multiple of `range`; other values must be
397/// rejected (by replacing with a new random sample).
398///
399/// As a special case, we use `range = 0` to represent the full range of the
400/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
401///
402/// The optimum `zone` is the largest product of `range` which fits in our
403/// (unsigned) target type. We calculate this by calculating how many numbers we
404/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
405/// product of `range` will suffice, thus in `sample_single` we multiply by a
406/// power of 2 via bit-shifting (faster but may cause more rejections).
407///
408/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
409/// use `u32` for our `zone` and samples (because it's not slower and because
410/// it reduces the chance of having to reject a sample). In this case we cannot
411/// store `zone` in the target type since it is too large, however we know
412/// `ints_to_reject < range <= $unsigned::MAX`.
413///
414/// An alternative to using a modulus is widening multiply: After a widening
415/// multiply by `range`, the result is in the high word. Then comparing the low
416/// word against `zone` makes sure our distribution is uniform.
417#[derive(Clone, Copy, Debug)]
418#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
419pub struct UniformInt<X> {
420    low: X,
421    range: X,
422    z: X, // either ints_to_reject or zone depending on implementation
423}
424
425macro_rules! uniform_int_impl {
426    ($ty:ty, $unsigned:ident, $u_large:ident) => {
427        impl SampleUniform for $ty {
428            type Sampler = UniformInt<$ty>;
429        }
430
431        impl UniformSampler for UniformInt<$ty> {
432            // We play free and fast with unsigned vs signed here
433            // (when $ty is signed), but that's fine, since the
434            // contract of this macro is for $ty and $unsigned to be
435            // "bit-equal", so casting between them is a no-op.
436
437            type X = $ty;
438
439            #[inline] // if the range is constant, this helps LLVM to do the
440                      // calculations at compile-time.
441            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
442            where
443                B1: SampleBorrow<Self::X> + Sized,
444                B2: SampleBorrow<Self::X> + Sized,
445            {
446                let low = *low_b.borrow();
447                let high = *high_b.borrow();
448                assert!(low < high, "Uniform::new called with `low >= high`");
449                UniformSampler::new_inclusive(low, high - 1)
450            }
451
452            #[inline] // if the range is constant, this helps LLVM to do the
453                      // calculations at compile-time.
454            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
455            where
456                B1: SampleBorrow<Self::X> + Sized,
457                B2: SampleBorrow<Self::X> + Sized,
458            {
459                let low = *low_b.borrow();
460                let high = *high_b.borrow();
461                assert!(
462                    low <= high,
463                    "Uniform::new_inclusive called with `low > high`"
464                );
465                let unsigned_max = ::core::$u_large::MAX;
466
467                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
468                let ints_to_reject = if range > 0 {
469                    let range = $u_large::from(range);
470                    (unsigned_max - range + 1) % range
471                } else {
472                    0
473                };
474
475                UniformInt {
476                    low,
477                    // These are really $unsigned values, but store as $ty:
478                    range: range as $ty,
479                    z: ints_to_reject as $unsigned as $ty,
480                }
481            }
482
483            #[inline]
484            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
485                let range = self.range as $unsigned as $u_large;
486                if range > 0 {
487                    let unsigned_max = ::core::$u_large::MAX;
488                    let zone = unsigned_max - (self.z as $unsigned as $u_large);
489                    loop {
490                        let v: $u_large = rng.gen();
491                        let (hi, lo) = v.wmul(range);
492                        if lo <= zone {
493                            return self.low.wrapping_add(hi as $ty);
494                        }
495                    }
496                } else {
497                    // Sample from the entire integer range.
498                    rng.gen()
499                }
500            }
501
502            #[inline]
503            fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
504            where
505                B1: SampleBorrow<Self::X> + Sized,
506                B2: SampleBorrow<Self::X> + Sized,
507            {
508                let low = *low_b.borrow();
509                let high = *high_b.borrow();
510                assert!(low < high, "UniformSampler::sample_single: low >= high");
511                Self::sample_single_inclusive(low, high - 1, rng)
512            }
513
514            #[inline]
515            fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
516            where
517                B1: SampleBorrow<Self::X> + Sized,
518                B2: SampleBorrow<Self::X> + Sized,
519            {
520                let low = *low_b.borrow();
521                let high = *high_b.borrow();
522                assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high");
523                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large;
524                // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX,
525                // and any integer will do.
526                if range == 0 {
527                    return rng.gen();
528                }
529
530                let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
531                    // Using a modulus is faster than the approximation for
532                    // i8 and i16. I suppose we trade the cost of one
533                    // modulus for near-perfect branch prediction.
534                    let unsigned_max: $u_large = ::core::$u_large::MAX;
535                    let ints_to_reject = (unsigned_max - range + 1) % range;
536                    unsigned_max - ints_to_reject
537                } else {
538                    // conservative but fast approximation. `- 1` is necessary to allow the
539                    // same comparison without bias.
540                    (range << range.leading_zeros()).wrapping_sub(1)
541                };
542
543                loop {
544                    let v: $u_large = rng.gen();
545                    let (hi, lo) = v.wmul(range);
546                    if lo <= zone {
547                        return low.wrapping_add(hi as $ty);
548                    }
549                }
550            }
551        }
552    };
553}
554
555uniform_int_impl! { i8, u8, u32 }
556uniform_int_impl! { i16, u16, u32 }
557uniform_int_impl! { i32, u32, u32 }
558uniform_int_impl! { i64, u64, u64 }
559#[cfg(not(target_os = "emscripten"))]
560uniform_int_impl! { i128, u128, u128 }
561uniform_int_impl! { isize, usize, usize }
562uniform_int_impl! { u8, u8, u32 }
563uniform_int_impl! { u16, u16, u32 }
564uniform_int_impl! { u32, u32, u32 }
565uniform_int_impl! { u64, u64, u64 }
566uniform_int_impl! { usize, usize, usize }
567#[cfg(not(target_os = "emscripten"))]
568uniform_int_impl! { u128, u128, u128 }
569
570#[cfg(feature = "simd_support")]
571macro_rules! uniform_simd_int_impl {
572    ($ty:ident, $unsigned:ident, $u_scalar:ident) => {
573        // The "pick the largest zone that can fit in an `u32`" optimization
574        // is less useful here. Multiple lanes complicate things, we don't
575        // know the PRNG's minimal output size, and casting to a larger vector
576        // is generally a bad idea for SIMD performance. The user can still
577        // implement it manually.
578
579        // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
580        //       perhaps `impl SampleUniform for $u_scalar`?
581        impl SampleUniform for $ty {
582            type Sampler = UniformInt<$ty>;
583        }
584
585        impl UniformSampler for UniformInt<$ty> {
586            type X = $ty;
587
588            #[inline] // if the range is constant, this helps LLVM to do the
589                      // calculations at compile-time.
590            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
591                where B1: SampleBorrow<Self::X> + Sized,
592                      B2: SampleBorrow<Self::X> + Sized
593            {
594                let low = *low_b.borrow();
595                let high = *high_b.borrow();
596                assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
597                UniformSampler::new_inclusive(low, high - 1)
598            }
599
600            #[inline] // if the range is constant, this helps LLVM to do the
601                      // calculations at compile-time.
602            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
603                where B1: SampleBorrow<Self::X> + Sized,
604                      B2: SampleBorrow<Self::X> + Sized
605            {
606                let low = *low_b.borrow();
607                let high = *high_b.borrow();
608                assert!(low.le(high).all(),
609                        "Uniform::new_inclusive called with `low > high`");
610                let unsigned_max = ::core::$u_scalar::MAX;
611
612                // NOTE: these may need to be replaced with explicitly
613                // wrapping operations if `packed_simd` changes
614                let range: $unsigned = ((high - low) + 1).cast();
615                // `% 0` will panic at runtime.
616                let not_full_range = range.gt($unsigned::splat(0));
617                // replacing 0 with `unsigned_max` allows a faster `select`
618                // with bitwise OR
619                let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
620                // wrapping addition
621                let ints_to_reject = (unsigned_max - range + 1) % modulo;
622                // When `range` is 0, `lo` of `v.wmul(range)` will always be
623                // zero which means only one sample is needed.
624                let zone = unsigned_max - ints_to_reject;
625
626                UniformInt {
627                    low,
628                    // These are really $unsigned values, but store as $ty:
629                    range: range.cast(),
630                    z: zone.cast(),
631                }
632            }
633
634            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
635                let range: $unsigned = self.range.cast();
636                let zone: $unsigned = self.z.cast();
637
638                // This might seem very slow, generating a whole new
639                // SIMD vector for every sample rejection. For most uses
640                // though, the chance of rejection is small and provides good
641                // general performance. With multiple lanes, that chance is
642                // multiplied. To mitigate this, we replace only the lanes of
643                // the vector which fail, iteratively reducing the chance of
644                // rejection. The replacement method does however add a little
645                // overhead. Benchmarking or calculating probabilities might
646                // reveal contexts where this replacement method is slower.
647                let mut v: $unsigned = rng.gen();
648                loop {
649                    let (hi, lo) = v.wmul(range);
650                    let mask = lo.le(zone);
651                    if mask.all() {
652                        let hi: $ty = hi.cast();
653                        // wrapping addition
654                        let result = self.low + hi;
655                        // `select` here compiles to a blend operation
656                        // When `range.eq(0).none()` the compare and blend
657                        // operations are avoided.
658                        let v: $ty = v.cast();
659                        return range.gt($unsigned::splat(0)).select(result, v);
660                    }
661                    // Replace only the failing lanes
662                    v = mask.select(v, rng.gen());
663                }
664            }
665        }
666    };
667
668    // bulk implementation
669    ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
670        $(
671            uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
672            uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
673        )+
674    };
675}
676
677#[cfg(feature = "simd_support")]
678uniform_simd_int_impl! {
679    (u64x2, i64x2),
680    (u64x4, i64x4),
681    (u64x8, i64x8),
682    u64
683}
684
685#[cfg(feature = "simd_support")]
686uniform_simd_int_impl! {
687    (u32x2, i32x2),
688    (u32x4, i32x4),
689    (u32x8, i32x8),
690    (u32x16, i32x16),
691    u32
692}
693
694#[cfg(feature = "simd_support")]
695uniform_simd_int_impl! {
696    (u16x2, i16x2),
697    (u16x4, i16x4),
698    (u16x8, i16x8),
699    (u16x16, i16x16),
700    (u16x32, i16x32),
701    u16
702}
703
704#[cfg(feature = "simd_support")]
705uniform_simd_int_impl! {
706    (u8x2, i8x2),
707    (u8x4, i8x4),
708    (u8x8, i8x8),
709    (u8x16, i8x16),
710    (u8x32, i8x32),
711    (u8x64, i8x64),
712    u8
713}
714
715impl SampleUniform for char {
716    type Sampler = UniformChar;
717}
718
719/// The back-end implementing [`UniformSampler`] for `char`.
720///
721/// Unless you are implementing [`UniformSampler`] for your own type, this type
722/// should not be used directly, use [`Uniform`] instead.
723///
724/// This differs from integer range sampling since the range `0xD800..=0xDFFF`
725/// are used for surrogate pairs in UCS and UTF-16, and consequently are not
726/// valid Unicode code points. We must therefore avoid sampling values in this
727/// range.
728#[derive(Clone, Copy, Debug)]
729#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
730pub struct UniformChar {
731    sampler: UniformInt<u32>,
732}
733
734/// UTF-16 surrogate range start
735const CHAR_SURROGATE_START: u32 = 0xD800;
736/// UTF-16 surrogate range size
737const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START;
738
739/// Convert `char` to compressed `u32`
740fn char_to_comp_u32(c: char) -> u32 {
741    match c as u32 {
742        c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN,
743        c => c,
744    }
745}
746
747impl UniformSampler for UniformChar {
748    type X = char;
749
750    #[inline] // if the range is constant, this helps LLVM to do the
751              // calculations at compile-time.
752    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
753    where
754        B1: SampleBorrow<Self::X> + Sized,
755        B2: SampleBorrow<Self::X> + Sized,
756    {
757        let low = char_to_comp_u32(*low_b.borrow());
758        let high = char_to_comp_u32(*high_b.borrow());
759        let sampler = UniformInt::<u32>::new(low, high);
760        UniformChar { sampler }
761    }
762
763    #[inline] // if the range is constant, this helps LLVM to do the
764              // calculations at compile-time.
765    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
766    where
767        B1: SampleBorrow<Self::X> + Sized,
768        B2: SampleBorrow<Self::X> + Sized,
769    {
770        let low = char_to_comp_u32(*low_b.borrow());
771        let high = char_to_comp_u32(*high_b.borrow());
772        let sampler = UniformInt::<u32>::new_inclusive(low, high);
773        UniformChar { sampler }
774    }
775
776    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
777        let mut x = self.sampler.sample(rng);
778        if x >= CHAR_SURROGATE_START {
779            x += CHAR_SURROGATE_LEN;
780        }
781        // SAFETY: x must not be in surrogate range or greater than char::MAX.
782        // This relies on range constructors which accept char arguments.
783        // Validity of input char values is assumed.
784        unsafe { core::char::from_u32_unchecked(x) }
785    }
786}
787
788/// The back-end implementing [`UniformSampler`] for floating-point types.
789///
790/// Unless you are implementing [`UniformSampler`] for your own type, this type
791/// should not be used directly, use [`Uniform`] instead.
792///
793/// # Implementation notes
794///
795/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
796/// `UniformFloat` implementation converts the output of an PRNG itself. This
797/// way one or two steps can be optimized out.
798///
799/// The floats are first converted to a value in the `[1, 2)` interval using a
800/// transmute-based method, and then mapped to the expected range with a
801/// multiply and addition. Values produced this way have what equals 23 bits of
802/// random digits for an `f32`, and 52 for an `f64`.
803///
804/// [`new`]: UniformSampler::new
805/// [`new_inclusive`]: UniformSampler::new_inclusive
806/// [`Standard`]: crate::distributions::Standard
807#[derive(Clone, Copy, Debug)]
808#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
809pub struct UniformFloat<X> {
810    low: X,
811    scale: X,
812}
813
814macro_rules! uniform_float_impl {
815    ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
816        impl SampleUniform for $ty {
817            type Sampler = UniformFloat<$ty>;
818        }
819
820        impl UniformSampler for UniformFloat<$ty> {
821            type X = $ty;
822
823            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
824            where
825                B1: SampleBorrow<Self::X> + Sized,
826                B2: SampleBorrow<Self::X> + Sized,
827            {
828                let low = *low_b.borrow();
829                let high = *high_b.borrow();
830                debug_assert!(
831                    low.all_finite(),
832                    "Uniform::new called with `low` non-finite."
833                );
834                debug_assert!(
835                    high.all_finite(),
836                    "Uniform::new called with `high` non-finite."
837                );
838                assert!(low.all_lt(high), "Uniform::new called with `low >= high`");
839                let max_rand = <$ty>::splat(
840                    (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
841                );
842
843                let mut scale = high - low;
844                assert!(scale.all_finite(), "Uniform::new: range overflow");
845
846                loop {
847                    let mask = (scale * max_rand + low).ge_mask(high);
848                    if mask.none() {
849                        break;
850                    }
851                    scale = scale.decrease_masked(mask);
852                }
853
854                debug_assert!(<$ty>::splat(0.0).all_le(scale));
855
856                UniformFloat { low, scale }
857            }
858
859            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
860            where
861                B1: SampleBorrow<Self::X> + Sized,
862                B2: SampleBorrow<Self::X> + Sized,
863            {
864                let low = *low_b.borrow();
865                let high = *high_b.borrow();
866                debug_assert!(
867                    low.all_finite(),
868                    "Uniform::new_inclusive called with `low` non-finite."
869                );
870                debug_assert!(
871                    high.all_finite(),
872                    "Uniform::new_inclusive called with `high` non-finite."
873                );
874                assert!(
875                    low.all_le(high),
876                    "Uniform::new_inclusive called with `low > high`"
877                );
878                let max_rand = <$ty>::splat(
879                    (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
880                );
881
882                let mut scale = (high - low) / max_rand;
883                assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow");
884
885                loop {
886                    let mask = (scale * max_rand + low).gt_mask(high);
887                    if mask.none() {
888                        break;
889                    }
890                    scale = scale.decrease_masked(mask);
891                }
892
893                debug_assert!(<$ty>::splat(0.0).all_le(scale));
894
895                UniformFloat { low, scale }
896            }
897
898            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
899                // Generate a value in the range [1, 2)
900                let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
901
902                // Get a value in the range [0, 1) in order to avoid
903                // overflowing into infinity when multiplying with scale
904                let value0_1 = value1_2 - 1.0;
905
906                // We don't use `f64::mul_add`, because it is not available with
907                // `no_std`. Furthermore, it is slower for some targets (but
908                // faster for others). However, the order of multiplication and
909                // addition is important, because on some platforms (e.g. ARM)
910                // it will be optimized to a single (non-FMA) instruction.
911                value0_1 * self.scale + self.low
912            }
913
914            #[inline]
915            fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
916            where
917                B1: SampleBorrow<Self::X> + Sized,
918                B2: SampleBorrow<Self::X> + Sized,
919            {
920                let low = *low_b.borrow();
921                let high = *high_b.borrow();
922                debug_assert!(
923                    low.all_finite(),
924                    "UniformSampler::sample_single called with `low` non-finite."
925                );
926                debug_assert!(
927                    high.all_finite(),
928                    "UniformSampler::sample_single called with `high` non-finite."
929                );
930                assert!(
931                    low.all_lt(high),
932                    "UniformSampler::sample_single: low >= high"
933                );
934                let mut scale = high - low;
935                assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow");
936
937                loop {
938                    // Generate a value in the range [1, 2)
939                    let value1_2 =
940                        (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
941
942                    // Get a value in the range [0, 1) in order to avoid
943                    // overflowing into infinity when multiplying with scale
944                    let value0_1 = value1_2 - 1.0;
945
946                    // Doing multiply before addition allows some architectures
947                    // to use a single instruction.
948                    let res = value0_1 * scale + low;
949
950                    debug_assert!(low.all_le(res) || !scale.all_finite());
951                    if res.all_lt(high) {
952                        return res;
953                    }
954
955                    // This handles a number of edge cases.
956                    // * `low` or `high` is NaN. In this case `scale` and
957                    //   `res` are going to end up as NaN.
958                    // * `low` is negative infinity and `high` is finite.
959                    //   `scale` is going to be infinite and `res` will be
960                    //   NaN.
961                    // * `high` is positive infinity and `low` is finite.
962                    //   `scale` is going to be infinite and `res` will
963                    //   be infinite or NaN (if value0_1 is 0).
964                    // * `low` is negative infinity and `high` is positive
965                    //   infinity. `scale` will be infinite and `res` will
966                    //   be NaN.
967                    // * `low` and `high` are finite, but `high - low`
968                    //   overflows to infinite. `scale` will be infinite
969                    //   and `res` will be infinite or NaN (if value0_1 is 0).
970                    // So if `high` or `low` are non-finite, we are guaranteed
971                    // to fail the `res < high` check above and end up here.
972                    //
973                    // While we technically should check for non-finite `low`
974                    // and `high` before entering the loop, by doing the checks
975                    // here instead, we allow the common case to avoid these
976                    // checks. But we are still guaranteed that if `low` or
977                    // `high` are non-finite we'll end up here and can do the
978                    // appropriate checks.
979                    //
980                    // Likewise `high - low` overflowing to infinity is also
981                    // rare, so handle it here after the common case.
982                    let mask = !scale.finite_mask();
983                    if mask.any() {
984                        assert!(
985                            low.all_finite() && high.all_finite(),
986                            "Uniform::sample_single: low and high must be finite"
987                        );
988                        scale = scale.decrease_masked(mask);
989                    }
990                }
991            }
992        }
993    };
994}
995
996uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
997uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }
998
999#[cfg(feature = "simd_support")]
1000uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
1001#[cfg(feature = "simd_support")]
1002uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
1003#[cfg(feature = "simd_support")]
1004uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
1005#[cfg(feature = "simd_support")]
1006uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }
1007
1008#[cfg(feature = "simd_support")]
1009uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
1010#[cfg(feature = "simd_support")]
1011uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
1012#[cfg(feature = "simd_support")]
1013uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
1014
1015
1016/// The back-end implementing [`UniformSampler`] for `Duration`.
1017///
1018/// Unless you are implementing [`UniformSampler`] for your own types, this type
1019/// should not be used directly, use [`Uniform`] instead.
1020#[derive(Clone, Copy, Debug)]
1021#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
1022pub struct UniformDuration {
1023    mode: UniformDurationMode,
1024    offset: u32,
1025}
1026
1027#[derive(Debug, Copy, Clone)]
1028#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
1029enum UniformDurationMode {
1030    Small {
1031        secs: u64,
1032        nanos: Uniform<u32>,
1033    },
1034    Medium {
1035        nanos: Uniform<u64>,
1036    },
1037    Large {
1038        max_secs: u64,
1039        max_nanos: u32,
1040        secs: Uniform<u64>,
1041    },
1042}
1043
1044impl SampleUniform for Duration {
1045    type Sampler = UniformDuration;
1046}
1047
1048impl UniformSampler for UniformDuration {
1049    type X = Duration;
1050
1051    #[inline]
1052    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
1053    where
1054        B1: SampleBorrow<Self::X> + Sized,
1055        B2: SampleBorrow<Self::X> + Sized,
1056    {
1057        let low = *low_b.borrow();
1058        let high = *high_b.borrow();
1059        assert!(low < high, "Uniform::new called with `low >= high`");
1060        UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
1061    }
1062
1063    #[inline]
1064    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
1065    where
1066        B1: SampleBorrow<Self::X> + Sized,
1067        B2: SampleBorrow<Self::X> + Sized,
1068    {
1069        let low = *low_b.borrow();
1070        let high = *high_b.borrow();
1071        assert!(
1072            low <= high,
1073            "Uniform::new_inclusive called with `low > high`"
1074        );
1075
1076        let low_s = low.as_secs();
1077        let low_n = low.subsec_nanos();
1078        let mut high_s = high.as_secs();
1079        let mut high_n = high.subsec_nanos();
1080
1081        if high_n < low_n {
1082            high_s -= 1;
1083            high_n += 1_000_000_000;
1084        }
1085
1086        let mode = if low_s == high_s {
1087            UniformDurationMode::Small {
1088                secs: low_s,
1089                nanos: Uniform::new_inclusive(low_n, high_n),
1090            }
1091        } else {
1092            let max = high_s
1093                .checked_mul(1_000_000_000)
1094                .and_then(|n| n.checked_add(u64::from(high_n)));
1095
1096            if let Some(higher_bound) = max {
1097                let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
1098                UniformDurationMode::Medium {
1099                    nanos: Uniform::new_inclusive(lower_bound, higher_bound),
1100                }
1101            } else {
1102                // An offset is applied to simplify generation of nanoseconds
1103                let max_nanos = high_n - low_n;
1104                UniformDurationMode::Large {
1105                    max_secs: high_s,
1106                    max_nanos,
1107                    secs: Uniform::new_inclusive(low_s, high_s),
1108                }
1109            }
1110        };
1111        UniformDuration {
1112            mode,
1113            offset: low_n,
1114        }
1115    }
1116
1117    #[inline]
1118    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
1119        match self.mode {
1120            UniformDurationMode::Small { secs, nanos } => {
1121                let n = nanos.sample(rng);
1122                Duration::new(secs, n)
1123            }
1124            UniformDurationMode::Medium { nanos } => {
1125                let nanos = nanos.sample(rng);
1126                Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
1127            }
1128            UniformDurationMode::Large {
1129                max_secs,
1130                max_nanos,
1131                secs,
1132            } => {
1133                // constant folding means this is at least as fast as `Rng::sample(Range)`
1134                let nano_range = Uniform::new(0, 1_000_000_000);
1135                loop {
1136                    let s = secs.sample(rng);
1137                    let n = nano_range.sample(rng);
1138                    if !(s == max_secs && n > max_nanos) {
1139                        let sum = n + self.offset;
1140                        break Duration::new(s, sum);
1141                    }
1142                }
1143            }
1144        }
1145    }
1146}
1147
1148#[cfg(test)]
1149mod tests {
1150    use super::*;
1151    use crate::rngs::mock::StepRng;
1152
1153    #[test]
1154    #[cfg(feature = "serde1")]
1155    fn test_serialization_uniform_duration() {
1156        let distr = UniformDuration::new(std::time::Duration::from_secs(10), std::time::Duration::from_secs(60));
1157        let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap();
1158        assert_eq!(
1159            distr.offset, de_distr.offset
1160        );
1161        match (distr.mode, de_distr.mode) {
1162            (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => {
1163                assert_eq!(a_secs, secs);
1164
1165                assert_eq!(a_nanos.0.low, nanos.0.low);
1166                assert_eq!(a_nanos.0.range, nanos.0.range);
1167                assert_eq!(a_nanos.0.z, nanos.0.z);
1168            }
1169            (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => {
1170                assert_eq!(a_nanos.0.low, nanos.0.low);
1171                assert_eq!(a_nanos.0.range, nanos.0.range);
1172                assert_eq!(a_nanos.0.z, nanos.0.z);
1173            }
1174            (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => {
1175                assert_eq!(a_max_secs, max_secs);
1176                assert_eq!(a_max_nanos, max_nanos);
1177
1178                assert_eq!(a_secs.0.low, secs.0.low);
1179                assert_eq!(a_secs.0.range, secs.0.range);
1180                assert_eq!(a_secs.0.z, secs.0.z);
1181            }
1182            _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly")
1183        }
1184    }
1185    
1186    #[test]
1187    #[cfg(feature = "serde1")]
1188    fn test_uniform_serialization() {
1189        let unit_box: Uniform<i32>  = Uniform::new(-1, 1);
1190        let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
1191
1192        assert_eq!(unit_box.0.low, de_unit_box.0.low);
1193        assert_eq!(unit_box.0.range, de_unit_box.0.range);
1194        assert_eq!(unit_box.0.z, de_unit_box.0.z);
1195
1196        let unit_box: Uniform<f32> = Uniform::new(-1., 1.);
1197        let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
1198
1199        assert_eq!(unit_box.0.low, de_unit_box.0.low);
1200        assert_eq!(unit_box.0.scale, de_unit_box.0.scale);
1201    }
1202
1203    #[should_panic]
1204    #[test]
1205    fn test_uniform_bad_limits_equal_int() {
1206        Uniform::new(10, 10);
1207    }
1208
1209    #[test]
1210    fn test_uniform_good_limits_equal_int() {
1211        let mut rng = crate::test::rng(804);
1212        let dist = Uniform::new_inclusive(10, 10);
1213        for _ in 0..20 {
1214            assert_eq!(rng.sample(dist), 10);
1215        }
1216    }
1217
1218    #[should_panic]
1219    #[test]
1220    fn test_uniform_bad_limits_flipped_int() {
1221        Uniform::new(10, 5);
1222    }
1223
1224    #[test]
1225    #[cfg_attr(miri, ignore)] // Miri is too slow
1226    fn test_integers() {
1227        #[cfg(not(target_os = "emscripten"))] use core::{i128, u128};
1228        use core::{i16, i32, i64, i8, isize};
1229        use core::{u16, u32, u64, u8, usize};
1230
1231        let mut rng = crate::test::rng(251);
1232        macro_rules! t {
1233            ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
1234                for &(low, high) in $v.iter() {
1235                    let my_uniform = Uniform::new(low, high);
1236                    for _ in 0..1000 {
1237                        let v: $ty = rng.sample(my_uniform);
1238                        assert!($le(low, v) && $lt(v, high));
1239                    }
1240
1241                    let my_uniform = Uniform::new_inclusive(low, high);
1242                    for _ in 0..1000 {
1243                        let v: $ty = rng.sample(my_uniform);
1244                        assert!($le(low, v) && $le(v, high));
1245                    }
1246
1247                    let my_uniform = Uniform::new(&low, high);
1248                    for _ in 0..1000 {
1249                        let v: $ty = rng.sample(my_uniform);
1250                        assert!($le(low, v) && $lt(v, high));
1251                    }
1252
1253                    let my_uniform = Uniform::new_inclusive(&low, &high);
1254                    for _ in 0..1000 {
1255                        let v: $ty = rng.sample(my_uniform);
1256                        assert!($le(low, v) && $le(v, high));
1257                    }
1258
1259                    for _ in 0..1000 {
1260                        let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng);
1261                        assert!($le(low, v) && $lt(v, high));
1262                    }
1263
1264                    for _ in 0..1000 {
1265                        let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng);
1266                        assert!($le(low, v) && $le(v, high));
1267                    }
1268                }
1269            }};
1270
1271            // scalar bulk
1272            ($($ty:ident),*) => {{
1273                $(t!(
1274                    $ty,
1275                    [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
1276                    |x, y| x <= y,
1277                    |x, y| x < y
1278                );)*
1279            }};
1280
1281            // simd bulk
1282            ($($ty:ident),* => $scalar:ident) => {{
1283                $(t!(
1284                    $ty,
1285                    [
1286                        ($ty::splat(0), $ty::splat(10)),
1287                        ($ty::splat(10), $ty::splat(127)),
1288                        ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
1289                    ],
1290                    |x: $ty, y| x.le(y).all(),
1291                    |x: $ty, y| x.lt(y).all()
1292                );)*
1293            }};
1294        }
1295        t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize);
1296        #[cfg(not(target_os = "emscripten"))]
1297        t!(i128, u128);
1298
1299        #[cfg(feature = "simd_support")]
1300        {
1301            t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
1302            t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
1303            t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
1304            t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
1305            t!(u32x2, u32x4, u32x8, u32x16 => u32);
1306            t!(i32x2, i32x4, i32x8, i32x16 => i32);
1307            t!(u64x2, u64x4, u64x8 => u64);
1308            t!(i64x2, i64x4, i64x8 => i64);
1309        }
1310    }
1311
1312    #[test]
1313    #[cfg_attr(miri, ignore)] // Miri is too slow
1314    fn test_char() {
1315        let mut rng = crate::test::rng(891);
1316        let mut max = core::char::from_u32(0).unwrap();
1317        for _ in 0..100 {
1318            let c = rng.gen_range('A'..='Z');
1319            assert!(('A'..='Z').contains(&c));
1320            max = max.max(c);
1321        }
1322        assert_eq!(max, 'Z');
1323        let d = Uniform::new(
1324            core::char::from_u32(0xD7F0).unwrap(),
1325            core::char::from_u32(0xE010).unwrap(),
1326        );
1327        for _ in 0..100 {
1328            let c = d.sample(&mut rng);
1329            assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF);
1330        }
1331    }
1332
1333    #[test]
1334    #[cfg_attr(miri, ignore)] // Miri is too slow
1335    fn test_floats() {
1336        let mut rng = crate::test::rng(252);
1337        let mut zero_rng = StepRng::new(0, 0);
1338        let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
1339        macro_rules! t {
1340            ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
1341                let v: &[($f_scalar, $f_scalar)] = &[
1342                    (0.0, 100.0),
1343                    (-1e35, -1e25),
1344                    (1e-35, 1e-25),
1345                    (-1e35, 1e35),
1346                    (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
1347                    (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
1348                    (-<$f_scalar>::from_bits(5), 0.0),
1349                    (-<$f_scalar>::from_bits(7), -0.0),
1350                    (0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
1351                    (-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7),
1352                ];
1353                for &(low_scalar, high_scalar) in v.iter() {
1354                    for lane in 0..<$ty>::lanes() {
1355                        let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
1356                        let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
1357                        let my_uniform = Uniform::new(low, high);
1358                        let my_incl_uniform = Uniform::new_inclusive(low, high);
1359                        for _ in 0..100 {
1360                            let v = rng.sample(my_uniform).extract(lane);
1361                            assert!(low_scalar <= v && v < high_scalar);
1362                            let v = rng.sample(my_incl_uniform).extract(lane);
1363                            assert!(low_scalar <= v && v <= high_scalar);
1364                            let v = <$ty as SampleUniform>::Sampler
1365                                ::sample_single(low, high, &mut rng).extract(lane);
1366                            assert!(low_scalar <= v && v < high_scalar);
1367                        }
1368
1369                        assert_eq!(
1370                            rng.sample(Uniform::new_inclusive(low, low)).extract(lane),
1371                            low_scalar
1372                        );
1373
1374                        assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
1375                        assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
1376                        assert_eq!(<$ty as SampleUniform>::Sampler
1377                            ::sample_single(low, high, &mut zero_rng)
1378                            .extract(lane), low_scalar);
1379                        assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
1380                        assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);
1381
1382                        // Don't run this test for really tiny differences between high and low
1383                        // since for those rounding might result in selecting high for a very
1384                        // long time.
1385                        if (high_scalar - low_scalar) > 0.0001 {
1386                            let mut lowering_max_rng = StepRng::new(
1387                                0xffff_ffff_ffff_ffff,
1388                                (-1i64 << $bits_shifted) as u64,
1389                            );
1390                            assert!(
1391                                <$ty as SampleUniform>::Sampler
1392                                    ::sample_single(low, high, &mut lowering_max_rng)
1393                                    .extract(lane) < high_scalar
1394                            );
1395                        }
1396                    }
1397                }
1398
1399                assert_eq!(
1400                    rng.sample(Uniform::new_inclusive(
1401                        ::core::$f_scalar::MAX,
1402                        ::core::$f_scalar::MAX
1403                    )),
1404                    ::core::$f_scalar::MAX
1405                );
1406                assert_eq!(
1407                    rng.sample(Uniform::new_inclusive(
1408                        -::core::$f_scalar::MAX,
1409                        -::core::$f_scalar::MAX
1410                    )),
1411                    -::core::$f_scalar::MAX
1412                );
1413            }};
1414        }
1415
1416        t!(f32, f32, 32 - 23);
1417        t!(f64, f64, 64 - 52);
1418        #[cfg(feature = "simd_support")]
1419        {
1420            t!(f32x2, f32, 32 - 23);
1421            t!(f32x4, f32, 32 - 23);
1422            t!(f32x8, f32, 32 - 23);
1423            t!(f32x16, f32, 32 - 23);
1424            t!(f64x2, f64, 64 - 52);
1425            t!(f64x4, f64, 64 - 52);
1426            t!(f64x8, f64, 64 - 52);
1427        }
1428    }
1429
1430    #[test]
1431    #[should_panic]
1432    fn test_float_overflow() {
1433        Uniform::from(::core::f64::MIN..::core::f64::MAX);
1434    }
1435
1436    #[test]
1437    #[should_panic]
1438    fn test_float_overflow_single() {
1439        let mut rng = crate::test::rng(252);
1440        rng.gen_range(::core::f64::MIN..::core::f64::MAX);
1441    }
1442
1443    #[test]
1444    #[cfg(all(
1445        feature = "std",
1446        not(target_arch = "wasm32"),
1447        not(target_arch = "asmjs")
1448    ))]
1449    fn test_float_assertions() {
1450        use super::SampleUniform;
1451        use std::panic::catch_unwind;
1452        fn range<T: SampleUniform>(low: T, high: T) {
1453            let mut rng = crate::test::rng(253);
1454            T::Sampler::sample_single(low, high, &mut rng);
1455        }
1456
1457        macro_rules! t {
1458            ($ty:ident, $f_scalar:ident) => {{
1459                let v: &[($f_scalar, $f_scalar)] = &[
1460                    (::std::$f_scalar::NAN, 0.0),
1461                    (1.0, ::std::$f_scalar::NAN),
1462                    (::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
1463                    (1.0, 0.5),
1464                    (::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
1465                    (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
1466                    (
1467                        ::std::$f_scalar::NEG_INFINITY,
1468                        ::std::$f_scalar::NEG_INFINITY,
1469                    ),
1470                    (::std::$f_scalar::NEG_INFINITY, 5.0),
1471                    (5.0, ::std::$f_scalar::INFINITY),
1472                    (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
1473                    (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
1474                    (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
1475                ];
1476                for &(low_scalar, high_scalar) in v.iter() {
1477                    for lane in 0..<$ty>::lanes() {
1478                        let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
1479                        let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
1480                        assert!(catch_unwind(|| range(low, high)).is_err());
1481                        assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
1482                        assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
1483                        assert!(catch_unwind(|| range(low, low)).is_err());
1484                        assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
1485                    }
1486                }
1487            }};
1488        }
1489
1490        t!(f32, f32);
1491        t!(f64, f64);
1492        #[cfg(feature = "simd_support")]
1493        {
1494            t!(f32x2, f32);
1495            t!(f32x4, f32);
1496            t!(f32x8, f32);
1497            t!(f32x16, f32);
1498            t!(f64x2, f64);
1499            t!(f64x4, f64);
1500            t!(f64x8, f64);
1501        }
1502    }
1503
1504
1505    #[test]
1506    #[cfg_attr(miri, ignore)] // Miri is too slow
1507    fn test_durations() {
1508        #[cfg(not(feature = "std"))] use core::time::Duration;
1509        #[cfg(feature = "std")] use std::time::Duration;
1510
1511        let mut rng = crate::test::rng(253);
1512
1513        let v = &[
1514            (Duration::new(10, 50000), Duration::new(100, 1234)),
1515            (Duration::new(0, 100), Duration::new(1, 50)),
1516            (
1517                Duration::new(0, 0),
1518                Duration::new(u64::max_value(), 999_999_999),
1519            ),
1520        ];
1521        for &(low, high) in v.iter() {
1522            let my_uniform = Uniform::new(low, high);
1523            for _ in 0..1000 {
1524                let v = rng.sample(my_uniform);
1525                assert!(low <= v && v < high);
1526            }
1527        }
1528    }
1529
1530    #[test]
1531    fn test_custom_uniform() {
1532        use crate::distributions::uniform::{
1533            SampleBorrow, SampleUniform, UniformFloat, UniformSampler,
1534        };
1535        #[derive(Clone, Copy, PartialEq, PartialOrd)]
1536        struct MyF32 {
1537            x: f32,
1538        }
1539        #[derive(Clone, Copy, Debug)]
1540        struct UniformMyF32(UniformFloat<f32>);
1541        impl UniformSampler for UniformMyF32 {
1542            type X = MyF32;
1543
1544            fn new<B1, B2>(low: B1, high: B2) -> Self
1545            where
1546                B1: SampleBorrow<Self::X> + Sized,
1547                B2: SampleBorrow<Self::X> + Sized,
1548            {
1549                UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x))
1550            }
1551
1552            fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
1553            where
1554                B1: SampleBorrow<Self::X> + Sized,
1555                B2: SampleBorrow<Self::X> + Sized,
1556            {
1557                UniformSampler::new(low, high)
1558            }
1559
1560            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
1561                MyF32 {
1562                    x: self.0.sample(rng),
1563                }
1564            }
1565        }
1566        impl SampleUniform for MyF32 {
1567            type Sampler = UniformMyF32;
1568        }
1569
1570        let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
1571        let uniform = Uniform::new(low, high);
1572        let mut rng = crate::test::rng(804);
1573        for _ in 0..100 {
1574            let x: MyF32 = rng.sample(uniform);
1575            assert!(low <= x && x < high);
1576        }
1577    }
1578
1579    #[test]
1580    fn test_uniform_from_std_range() {
1581        let r = Uniform::from(2u32..7);
1582        assert_eq!(r.0.low, 2);
1583        assert_eq!(r.0.range, 5);
1584        let r = Uniform::from(2.0f64..7.0);
1585        assert_eq!(r.0.low, 2.0);
1586        assert_eq!(r.0.scale, 5.0);
1587    }
1588
1589    #[test]
1590    fn test_uniform_from_std_range_inclusive() {
1591        let r = Uniform::from(2u32..=6);
1592        assert_eq!(r.0.low, 2);
1593        assert_eq!(r.0.range, 5);
1594        let r = Uniform::from(2.0f64..=7.0);
1595        assert_eq!(r.0.low, 2.0);
1596        assert!(r.0.scale > 5.0);
1597        assert!(r.0.scale < 5.0 + 1e-14);
1598    }
1599
1600    #[test]
1601    fn value_stability() {
1602        fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>(
1603            lb: T, ub: T, expected_single: &[T], expected_multiple: &[T],
1604        ) where Uniform<T>: Distribution<T> {
1605            let mut rng = crate::test::rng(897);
1606            let mut buf = [lb; 3];
1607
1608            for x in &mut buf {
1609                *x = T::Sampler::sample_single(lb, ub, &mut rng);
1610            }
1611            assert_eq!(&buf, expected_single);
1612
1613            let distr = Uniform::new(lb, ub);
1614            for x in &mut buf {
1615                *x = rng.sample(&distr);
1616            }
1617            assert_eq!(&buf, expected_multiple);
1618        }
1619
1620        // We test on a sub-set of types; possibly we should do more.
1621        // TODO: SIMD types
1622
1623        test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]);
1624        test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]);
1625
1626        test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[
1627            0.008194133,
1628            0.00398172,
1629            0.007428536,
1630        ]);
1631        test_samples(
1632            -1e10f64,
1633            1e10f64,
1634            &[-4673848682.871551, 6388267422.932352, 4857075081.198343],
1635            &[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
1636        );
1637
1638        test_samples(
1639            Duration::new(2, 0),
1640            Duration::new(4, 0),
1641            &[
1642                Duration::new(2, 532615131),
1643                Duration::new(3, 638826742),
1644                Duration::new(3, 485707508),
1645            ],
1646            &[
1647                Duration::new(3, 117337521),
1648                Duration::new(3, 191764285),
1649                Duration::new(3, 236507617),
1650            ],
1651        );
1652    }
1653}