1use super::UnknownUnit;
11use crate::approxeq::ApproxEq;
12use crate::approxord::{max, min};
13use crate::length::Length;
14use crate::num::*;
15use crate::point::{point2, point3, Point2D, Point3D};
16use crate::scale::Scale;
17use crate::size::{size2, size3, Size2D, Size3D};
18use crate::transform2d::Transform2D;
19use crate::transform3d::Transform3D;
20use crate::trig::Trig;
21use crate::Angle;
22use core::cmp::{Eq, PartialEq};
23use core::fmt;
24use core::hash::Hash;
25use core::marker::PhantomData;
26use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
27#[cfg(feature = "mint")]
28use mint;
29use num_traits::{Float, NumCast, Signed};
30#[cfg(feature = "serde")]
31use serde;
32
33#[repr(C)]
35pub struct Vector2D<T, U> {
36 pub x: T,
38 pub y: T,
40 #[doc(hidden)]
41 pub _unit: PhantomData<U>,
42}
43
44mint_vec!(Vector2D[x, y] = Vector2);
45
46impl<T: Copy, U> Copy for Vector2D<T, U> {}
47
48impl<T: Clone, U> Clone for Vector2D<T, U> {
49 fn clone(&self) -> Self {
50 Vector2D {
51 x: self.x.clone(),
52 y: self.y.clone(),
53 _unit: PhantomData,
54 }
55 }
56}
57
58#[cfg(feature = "serde")]
59impl<'de, T, U> serde::Deserialize<'de> for Vector2D<T, U>
60where
61 T: serde::Deserialize<'de>,
62{
63 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
64 where
65 D: serde::Deserializer<'de>,
66 {
67 let (x, y) = serde::Deserialize::deserialize(deserializer)?;
68 Ok(Vector2D {
69 x,
70 y,
71 _unit: PhantomData,
72 })
73 }
74}
75
76#[cfg(feature = "serde")]
77impl<T, U> serde::Serialize for Vector2D<T, U>
78where
79 T: serde::Serialize,
80{
81 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
82 where
83 S: serde::Serializer,
84 {
85 (&self.x, &self.y).serialize(serializer)
86 }
87}
88
89impl<T: Eq, U> Eq for Vector2D<T, U> {}
90
91impl<T: PartialEq, U> PartialEq for Vector2D<T, U> {
92 fn eq(&self, other: &Self) -> bool {
93 self.x == other.x && self.y == other.y
94 }
95}
96
97impl<T: Hash, U> Hash for Vector2D<T, U> {
98 fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
99 self.x.hash(h);
100 self.y.hash(h);
101 }
102}
103
104impl<T: Zero, U> Zero for Vector2D<T, U> {
105 #[inline]
107 fn zero() -> Self {
108 Vector2D::new(Zero::zero(), Zero::zero())
109 }
110}
111
112impl<T: fmt::Debug, U> fmt::Debug for Vector2D<T, U> {
113 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
114 f.debug_tuple("").field(&self.x).field(&self.y).finish()
115 }
116}
117
118impl<T: Default, U> Default for Vector2D<T, U> {
119 fn default() -> Self {
120 Vector2D::new(Default::default(), Default::default())
121 }
122}
123
124impl<T, U> Vector2D<T, U> {
125 #[inline]
127 pub fn zero() -> Self
128 where
129 T: Zero,
130 {
131 Vector2D::new(Zero::zero(), Zero::zero())
132 }
133
134 #[inline]
136 pub const fn new(x: T, y: T) -> Self {
137 Vector2D {
138 x,
139 y,
140 _unit: PhantomData,
141 }
142 }
143
144 pub fn from_angle_and_length(angle: Angle<T>, length: T) -> Self
146 where
147 T: Trig + Mul<Output = T> + Copy,
148 {
149 vec2(length * angle.radians.cos(), length * angle.radians.sin())
150 }
151
152 #[inline]
154 pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self {
155 vec2(x.0, y.0)
156 }
157
158 #[inline]
160 pub fn from_untyped(p: Vector2D<T, UnknownUnit>) -> Self {
161 vec2(p.x, p.y)
162 }
163
164 pub fn abs(self) -> Self
185 where
186 T: Signed,
187 {
188 vec2(self.x.abs(), self.y.abs())
189 }
190
191 #[inline]
193 pub fn dot(self, other: Self) -> T
194 where
195 T: Add<Output = T> + Mul<Output = T>,
196 {
197 self.x * other.x + self.y * other.y
198 }
199
200 #[inline]
202 pub fn cross(self, other: Self) -> T
203 where
204 T: Sub<Output = T> + Mul<Output = T>,
205 {
206 self.x * other.y - self.y * other.x
207 }
208}
209
210impl<T: Copy, U> Vector2D<T, U> {
211 #[inline]
213 pub fn extend(self, z: T) -> Vector3D<T, U> {
214 vec3(self.x, self.y, z)
215 }
216
217 #[inline]
221 pub fn to_point(self) -> Point2D<T, U> {
222 Point2D {
223 x: self.x,
224 y: self.y,
225 _unit: PhantomData,
226 }
227 }
228
229 #[inline]
231 pub fn yx(self) -> Self {
232 vec2(self.y, self.x)
233 }
234
235 #[inline]
237 pub fn to_size(self) -> Size2D<T, U> {
238 size2(self.x, self.y)
239 }
240
241 #[inline]
243 pub fn to_untyped(self) -> Vector2D<T, UnknownUnit> {
244 vec2(self.x, self.y)
245 }
246
247 #[inline]
249 pub fn cast_unit<V>(self) -> Vector2D<T, V> {
250 vec2(self.x, self.y)
251 }
252
253 #[inline]
255 pub fn to_array(self) -> [T; 2] {
256 [self.x, self.y]
257 }
258
259 #[inline]
261 pub fn to_tuple(self) -> (T, T) {
262 (self.x, self.y)
263 }
264
265 #[inline]
267 pub fn to_3d(self) -> Vector3D<T, U>
268 where
269 T: Zero,
270 {
271 vec3(self.x, self.y, Zero::zero())
272 }
273
274 #[inline]
285 #[must_use]
286 pub fn round(self) -> Self
287 where
288 T: Round,
289 {
290 vec2(self.x.round(), self.y.round())
291 }
292
293 #[inline]
304 #[must_use]
305 pub fn ceil(self) -> Self
306 where
307 T: Ceil,
308 {
309 vec2(self.x.ceil(), self.y.ceil())
310 }
311
312 #[inline]
323 #[must_use]
324 pub fn floor(self) -> Self
325 where
326 T: Floor,
327 {
328 vec2(self.x.floor(), self.y.floor())
329 }
330
331 pub fn angle_from_x_axis(self) -> Angle<T>
337 where
338 T: Trig,
339 {
340 Angle::radians(Trig::fast_atan2(self.y, self.x))
341 }
342
343 #[inline]
345 pub fn to_transform(self) -> Transform2D<T, U, U>
346 where
347 T: Zero + One,
348 {
349 Transform2D::translation(self.x, self.y)
350 }
351}
352
353impl<T, U> Vector2D<T, U>
354where
355 T: Copy + Mul<T, Output = T> + Add<T, Output = T>,
356{
357 #[inline]
359 pub fn square_length(self) -> T {
360 self.x * self.x + self.y * self.y
361 }
362
363 #[inline]
367 pub fn project_onto_vector(self, onto: Self) -> Self
368 where
369 T: Sub<T, Output = T> + Div<T, Output = T>,
370 {
371 onto * (self.dot(onto) / onto.square_length())
372 }
373
374 pub fn angle_to(self, other: Self) -> Angle<T>
378 where
379 T: Sub<Output = T> + Trig,
380 {
381 Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other)))
382 }
383}
384
385impl<T: Float, U> Vector2D<T, U> {
386 #[inline]
388 pub fn length(self) -> T {
389 self.square_length().sqrt()
390 }
391
392 #[inline]
394 #[must_use]
395 pub fn normalize(self) -> Self {
396 self / self.length()
397 }
398
399 #[inline]
404 #[must_use]
405 pub fn try_normalize(self) -> Option<Self> {
406 let len = self.length();
407 if len == T::zero() {
408 None
409 } else {
410 Some(self / len)
411 }
412 }
413
414 #[inline]
416 #[must_use]
417 pub fn robust_normalize(self) -> Self {
418 let length = self.length();
419 if length.is_infinite() {
420 let scaled = self / T::max_value();
421 scaled / scaled.length()
422 } else {
423 self / length
424 }
425 }
426
427 #[inline]
429 pub fn with_max_length(self, max_length: T) -> Self {
430 let square_length = self.square_length();
431 if square_length > max_length * max_length {
432 return self * (max_length / square_length.sqrt());
433 }
434
435 self
436 }
437
438 #[inline]
440 pub fn with_min_length(self, min_length: T) -> Self {
441 let square_length = self.square_length();
442 if square_length < min_length * min_length {
443 return self * (min_length / square_length.sqrt());
444 }
445
446 self
447 }
448
449 #[inline]
451 pub fn clamp_length(self, min: T, max: T) -> Self {
452 debug_assert!(min <= max);
453 self.with_min_length(min).with_max_length(max)
454 }
455}
456
457impl<T, U> Vector2D<T, U>
458where
459 T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
460{
461 #[inline]
479 pub fn lerp(self, other: Self, t: T) -> Self {
480 let one_t = T::one() - t;
481 self * one_t + other * t
482 }
483
484 #[inline]
486 pub fn reflect(self, normal: Self) -> Self {
487 let two = T::one() + T::one();
488 self - normal * two * self.dot(normal)
489 }
490}
491
492impl<T: PartialOrd, U> Vector2D<T, U> {
493 #[inline]
495 pub fn min(self, other: Self) -> Self {
496 vec2(min(self.x, other.x), min(self.y, other.y))
497 }
498
499 #[inline]
501 pub fn max(self, other: Self) -> Self {
502 vec2(max(self.x, other.x), max(self.y, other.y))
503 }
504
505 #[inline]
510 pub fn clamp(self, start: Self, end: Self) -> Self
511 where
512 T: Copy,
513 {
514 self.max(start).min(end)
515 }
516
517 #[inline]
519 pub fn greater_than(self, other: Self) -> BoolVector2D {
520 BoolVector2D {
521 x: self.x > other.x,
522 y: self.y > other.y,
523 }
524 }
525
526 #[inline]
528 pub fn lower_than(self, other: Self) -> BoolVector2D {
529 BoolVector2D {
530 x: self.x < other.x,
531 y: self.y < other.y,
532 }
533 }
534}
535
536impl<T: PartialEq, U> Vector2D<T, U> {
537 #[inline]
539 pub fn equal(self, other: Self) -> BoolVector2D {
540 BoolVector2D {
541 x: self.x == other.x,
542 y: self.y == other.y,
543 }
544 }
545
546 #[inline]
548 pub fn not_equal(self, other: Self) -> BoolVector2D {
549 BoolVector2D {
550 x: self.x != other.x,
551 y: self.y != other.y,
552 }
553 }
554}
555
556impl<T: NumCast + Copy, U> Vector2D<T, U> {
557 #[inline]
563 pub fn cast<NewT: NumCast>(self) -> Vector2D<NewT, U> {
564 self.try_cast().unwrap()
565 }
566
567 pub fn try_cast<NewT: NumCast>(self) -> Option<Vector2D<NewT, U>> {
573 match (NumCast::from(self.x), NumCast::from(self.y)) {
574 (Some(x), Some(y)) => Some(Vector2D::new(x, y)),
575 _ => None,
576 }
577 }
578
579 #[inline]
583 pub fn to_f32(self) -> Vector2D<f32, U> {
584 self.cast()
585 }
586
587 #[inline]
589 pub fn to_f64(self) -> Vector2D<f64, U> {
590 self.cast()
591 }
592
593 #[inline]
599 pub fn to_usize(self) -> Vector2D<usize, U> {
600 self.cast()
601 }
602
603 #[inline]
609 pub fn to_u32(self) -> Vector2D<u32, U> {
610 self.cast()
611 }
612
613 #[inline]
619 pub fn to_i32(self) -> Vector2D<i32, U> {
620 self.cast()
621 }
622
623 #[inline]
629 pub fn to_i64(self) -> Vector2D<i64, U> {
630 self.cast()
631 }
632}
633
634impl<T: Neg, U> Neg for Vector2D<T, U> {
635 type Output = Vector2D<T::Output, U>;
636
637 #[inline]
638 fn neg(self) -> Self::Output {
639 vec2(-self.x, -self.y)
640 }
641}
642
643impl<T: Add, U> Add for Vector2D<T, U> {
644 type Output = Vector2D<T::Output, U>;
645
646 #[inline]
647 fn add(self, other: Self) -> Self::Output {
648 Vector2D::new(self.x + other.x, self.y + other.y)
649 }
650}
651
652impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector2D<T, U> {
653 #[inline]
654 fn add_assign(&mut self, other: Self) {
655 *self = *self + other
656 }
657}
658
659impl<T: Sub, U> Sub for Vector2D<T, U> {
660 type Output = Vector2D<T::Output, U>;
661
662 #[inline]
663 fn sub(self, other: Self) -> Self::Output {
664 vec2(self.x - other.x, self.y - other.y)
665 }
666}
667
668impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Vector2D<T, U> {
669 #[inline]
670 fn sub_assign(&mut self, other: Self) {
671 *self = *self - other
672 }
673}
674
675impl<T: Copy + Mul, U> Mul<T> for Vector2D<T, U> {
676 type Output = Vector2D<T::Output, U>;
677
678 #[inline]
679 fn mul(self, scale: T) -> Self::Output {
680 vec2(self.x * scale, self.y * scale)
681 }
682}
683
684impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector2D<T, U> {
685 #[inline]
686 fn mul_assign(&mut self, scale: T) {
687 *self = *self * scale
688 }
689}
690
691impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector2D<T, U1> {
692 type Output = Vector2D<T::Output, U2>;
693
694 #[inline]
695 fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
696 vec2(self.x * scale.0, self.y * scale.0)
697 }
698}
699
700impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector2D<T, U> {
701 #[inline]
702 fn mul_assign(&mut self, scale: Scale<T, U, U>) {
703 self.x *= scale.0;
704 self.y *= scale.0;
705 }
706}
707
708impl<T: Copy + Div, U> Div<T> for Vector2D<T, U> {
709 type Output = Vector2D<T::Output, U>;
710
711 #[inline]
712 fn div(self, scale: T) -> Self::Output {
713 vec2(self.x / scale, self.y / scale)
714 }
715}
716
717impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector2D<T, U> {
718 #[inline]
719 fn div_assign(&mut self, scale: T) {
720 *self = *self / scale
721 }
722}
723
724impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector2D<T, U2> {
725 type Output = Vector2D<T::Output, U1>;
726
727 #[inline]
728 fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
729 vec2(self.x / scale.0, self.y / scale.0)
730 }
731}
732
733impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector2D<T, U> {
734 #[inline]
735 fn div_assign(&mut self, scale: Scale<T, U, U>) {
736 self.x /= scale.0;
737 self.y /= scale.0;
738 }
739}
740
741impl<T: Round, U> Round for Vector2D<T, U> {
742 #[inline]
744 fn round(self) -> Self {
745 self.round()
746 }
747}
748
749impl<T: Ceil, U> Ceil for Vector2D<T, U> {
750 #[inline]
752 fn ceil(self) -> Self {
753 self.ceil()
754 }
755}
756
757impl<T: Floor, U> Floor for Vector2D<T, U> {
758 #[inline]
760 fn floor(self) -> Self {
761 self.floor()
762 }
763}
764
765impl<T: ApproxEq<T>, U> ApproxEq<Vector2D<T, U>> for Vector2D<T, U> {
766 #[inline]
767 fn approx_epsilon() -> Self {
768 vec2(T::approx_epsilon(), T::approx_epsilon())
769 }
770
771 #[inline]
772 fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
773 self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)
774 }
775}
776
777impl<T, U> Into<[T; 2]> for Vector2D<T, U> {
778 fn into(self) -> [T; 2] {
779 [self.x, self.y]
780 }
781}
782
783impl<T, U> From<[T; 2]> for Vector2D<T, U> {
784 fn from([x, y]: [T; 2]) -> Self {
785 vec2(x, y)
786 }
787}
788
789impl<T, U> Into<(T, T)> for Vector2D<T, U> {
790 fn into(self) -> (T, T) {
791 (self.x, self.y)
792 }
793}
794
795impl<T, U> From<(T, T)> for Vector2D<T, U> {
796 fn from(tuple: (T, T)) -> Self {
797 vec2(tuple.0, tuple.1)
798 }
799}
800
801impl<T, U> From<Size2D<T, U>> for Vector2D<T, U> {
802 fn from(size: Size2D<T, U>) -> Self {
803 vec2(size.width, size.height)
804 }
805}
806
807#[repr(C)]
809pub struct Vector3D<T, U> {
810 pub x: T,
812 pub y: T,
814 pub z: T,
816 #[doc(hidden)]
817 pub _unit: PhantomData<U>,
818}
819
820mint_vec!(Vector3D[x, y, z] = Vector3);
821
822impl<T: Copy, U> Copy for Vector3D<T, U> {}
823
824impl<T: Clone, U> Clone for Vector3D<T, U> {
825 fn clone(&self) -> Self {
826 Vector3D {
827 x: self.x.clone(),
828 y: self.y.clone(),
829 z: self.z.clone(),
830 _unit: PhantomData,
831 }
832 }
833}
834
835#[cfg(feature = "serde")]
836impl<'de, T, U> serde::Deserialize<'de> for Vector3D<T, U>
837where
838 T: serde::Deserialize<'de>,
839{
840 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
841 where
842 D: serde::Deserializer<'de>,
843 {
844 let (x, y, z) = serde::Deserialize::deserialize(deserializer)?;
845 Ok(Vector3D {
846 x,
847 y,
848 z,
849 _unit: PhantomData,
850 })
851 }
852}
853
854#[cfg(feature = "serde")]
855impl<T, U> serde::Serialize for Vector3D<T, U>
856where
857 T: serde::Serialize,
858{
859 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
860 where
861 S: serde::Serializer,
862 {
863 (&self.x, &self.y, &self.z).serialize(serializer)
864 }
865}
866
867impl<T: Eq, U> Eq for Vector3D<T, U> {}
868
869impl<T: PartialEq, U> PartialEq for Vector3D<T, U> {
870 fn eq(&self, other: &Self) -> bool {
871 self.x == other.x && self.y == other.y && self.z == other.z
872 }
873}
874
875impl<T: Hash, U> Hash for Vector3D<T, U> {
876 fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
877 self.x.hash(h);
878 self.y.hash(h);
879 self.z.hash(h);
880 }
881}
882
883impl<T: Zero, U> Zero for Vector3D<T, U> {
884 #[inline]
886 fn zero() -> Self {
887 vec3(Zero::zero(), Zero::zero(), Zero::zero())
888 }
889}
890
891impl<T: fmt::Debug, U> fmt::Debug for Vector3D<T, U> {
892 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
893 f.debug_tuple("")
894 .field(&self.x)
895 .field(&self.y)
896 .field(&self.z)
897 .finish()
898 }
899}
900
901impl<T: Default, U> Default for Vector3D<T, U> {
902 fn default() -> Self {
903 Vector3D::new(Default::default(), Default::default(), Default::default())
904 }
905}
906
907impl<T, U> Vector3D<T, U> {
908 #[inline]
910 pub fn zero() -> Self
911 where
912 T: Zero,
913 {
914 vec3(Zero::zero(), Zero::zero(), Zero::zero())
915 }
916
917 #[inline]
919 pub const fn new(x: T, y: T, z: T) -> Self {
920 Vector3D {
921 x,
922 y,
923 z,
924 _unit: PhantomData,
925 }
926 }
927
928 #[inline]
930 pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Vector3D<T, U> {
931 vec3(x.0, y.0, z.0)
932 }
933
934 #[inline]
936 pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Self {
937 vec3(p.x, p.y, p.z)
938 }
939
940 pub fn abs(self) -> Self
962 where
963 T: Signed,
964 {
965 vec3(self.x.abs(), self.y.abs(), self.z.abs())
966 }
967
968 #[inline]
970 pub fn dot(self, other: Self) -> T
971 where
972 T: Add<Output = T> + Mul<Output = T>,
973 {
974 self.x * other.x + self.y * other.y + self.z * other.z
975 }
976}
977
978impl<T: Copy, U> Vector3D<T, U> {
979 #[inline]
981 pub fn cross(self, other: Self) -> Self
982 where
983 T: Sub<Output = T> + Mul<Output = T>,
984 {
985 vec3(
986 self.y * other.z - self.z * other.y,
987 self.z * other.x - self.x * other.z,
988 self.x * other.y - self.y * other.x,
989 )
990 }
991
992 #[inline]
996 pub fn to_point(self) -> Point3D<T, U> {
997 point3(self.x, self.y, self.z)
998 }
999
1000 #[inline]
1002 pub fn xy(self) -> Vector2D<T, U> {
1003 vec2(self.x, self.y)
1004 }
1005
1006 #[inline]
1008 pub fn xz(self) -> Vector2D<T, U> {
1009 vec2(self.x, self.z)
1010 }
1011
1012 #[inline]
1014 pub fn yz(self) -> Vector2D<T, U> {
1015 vec2(self.y, self.z)
1016 }
1017
1018 #[inline]
1020 pub fn to_array(self) -> [T; 3] {
1021 [self.x, self.y, self.z]
1022 }
1023
1024 #[inline]
1026 pub fn to_array_4d(self) -> [T; 4]
1027 where
1028 T: Zero,
1029 {
1030 [self.x, self.y, self.z, Zero::zero()]
1031 }
1032
1033 #[inline]
1035 pub fn to_tuple(self) -> (T, T, T) {
1036 (self.x, self.y, self.z)
1037 }
1038
1039 #[inline]
1041 pub fn to_tuple_4d(self) -> (T, T, T, T)
1042 where
1043 T: Zero,
1044 {
1045 (self.x, self.y, self.z, Zero::zero())
1046 }
1047
1048 #[inline]
1050 pub fn to_untyped(self) -> Vector3D<T, UnknownUnit> {
1051 vec3(self.x, self.y, self.z)
1052 }
1053
1054 #[inline]
1056 pub fn cast_unit<V>(self) -> Vector3D<T, V> {
1057 vec3(self.x, self.y, self.z)
1058 }
1059
1060 #[inline]
1062 pub fn to_2d(self) -> Vector2D<T, U> {
1063 self.xy()
1064 }
1065
1066 #[inline]
1077 #[must_use]
1078 pub fn round(self) -> Self
1079 where
1080 T: Round,
1081 {
1082 vec3(self.x.round(), self.y.round(), self.z.round())
1083 }
1084
1085 #[inline]
1096 #[must_use]
1097 pub fn ceil(self) -> Self
1098 where
1099 T: Ceil,
1100 {
1101 vec3(self.x.ceil(), self.y.ceil(), self.z.ceil())
1102 }
1103
1104 #[inline]
1115 #[must_use]
1116 pub fn floor(self) -> Self
1117 where
1118 T: Floor,
1119 {
1120 vec3(self.x.floor(), self.y.floor(), self.z.floor())
1121 }
1122
1123 #[inline]
1125 pub fn to_transform(self) -> Transform3D<T, U, U>
1126 where
1127 T: Zero + One,
1128 {
1129 Transform3D::translation(self.x, self.y, self.z)
1130 }
1131}
1132
1133impl<T, U> Vector3D<T, U>
1134where
1135 T: Copy + Mul<T, Output = T> + Add<T, Output = T>,
1136{
1137 #[inline]
1139 pub fn square_length(self) -> T {
1140 self.x * self.x + self.y * self.y + self.z * self.z
1141 }
1142
1143 #[inline]
1147 pub fn project_onto_vector(self, onto: Self) -> Self
1148 where
1149 T: Sub<T, Output = T> + Div<T, Output = T>,
1150 {
1151 onto * (self.dot(onto) / onto.square_length())
1152 }
1153}
1154
1155impl<T: Float, U> Vector3D<T, U> {
1156 pub fn angle_to(self, other: Self) -> Angle<T>
1160 where
1161 T: Trig,
1162 {
1163 Angle::radians(Trig::fast_atan2(
1164 self.cross(other).length(),
1165 self.dot(other),
1166 ))
1167 }
1168
1169 #[inline]
1171 pub fn length(self) -> T {
1172 self.square_length().sqrt()
1173 }
1174
1175 #[inline]
1177 #[must_use]
1178 pub fn normalize(self) -> Self {
1179 self / self.length()
1180 }
1181
1182 #[inline]
1187 #[must_use]
1188 pub fn try_normalize(self) -> Option<Self> {
1189 let len = self.length();
1190 if len == T::zero() {
1191 None
1192 } else {
1193 Some(self / len)
1194 }
1195 }
1196
1197 #[inline]
1199 #[must_use]
1200 pub fn robust_normalize(self) -> Self {
1201 let length = self.length();
1202 if length.is_infinite() {
1203 let scaled = self / T::max_value();
1204 scaled / scaled.length()
1205 } else {
1206 self / length
1207 }
1208 }
1209
1210 #[inline]
1212 pub fn with_max_length(self, max_length: T) -> Self {
1213 let square_length = self.square_length();
1214 if square_length > max_length * max_length {
1215 return self * (max_length / square_length.sqrt());
1216 }
1217
1218 self
1219 }
1220
1221 #[inline]
1223 pub fn with_min_length(self, min_length: T) -> Self {
1224 let square_length = self.square_length();
1225 if square_length < min_length * min_length {
1226 return self * (min_length / square_length.sqrt());
1227 }
1228
1229 self
1230 }
1231
1232 #[inline]
1234 pub fn clamp_length(self, min: T, max: T) -> Self {
1235 debug_assert!(min <= max);
1236 self.with_min_length(min).with_max_length(max)
1237 }
1238}
1239
1240impl<T, U> Vector3D<T, U>
1241where
1242 T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
1243{
1244 #[inline]
1262 pub fn lerp(self, other: Self, t: T) -> Self {
1263 let one_t = T::one() - t;
1264 self * one_t + other * t
1265 }
1266
1267 #[inline]
1269 pub fn reflect(self, normal: Self) -> Self {
1270 let two = T::one() + T::one();
1271 self - normal * two * self.dot(normal)
1272 }
1273}
1274
1275impl<T: PartialOrd, U> Vector3D<T, U> {
1276 #[inline]
1278 pub fn min(self, other: Self) -> Self {
1279 vec3(
1280 min(self.x, other.x),
1281 min(self.y, other.y),
1282 min(self.z, other.z),
1283 )
1284 }
1285
1286 #[inline]
1288 pub fn max(self, other: Self) -> Self {
1289 vec3(
1290 max(self.x, other.x),
1291 max(self.y, other.y),
1292 max(self.z, other.z),
1293 )
1294 }
1295
1296 #[inline]
1301 pub fn clamp(self, start: Self, end: Self) -> Self
1302 where
1303 T: Copy,
1304 {
1305 self.max(start).min(end)
1306 }
1307
1308 #[inline]
1310 pub fn greater_than(self, other: Self) -> BoolVector3D {
1311 BoolVector3D {
1312 x: self.x > other.x,
1313 y: self.y > other.y,
1314 z: self.z > other.z,
1315 }
1316 }
1317
1318 #[inline]
1320 pub fn lower_than(self, other: Self) -> BoolVector3D {
1321 BoolVector3D {
1322 x: self.x < other.x,
1323 y: self.y < other.y,
1324 z: self.z < other.z,
1325 }
1326 }
1327}
1328
1329impl<T: PartialEq, U> Vector3D<T, U> {
1330 #[inline]
1332 pub fn equal(self, other: Self) -> BoolVector3D {
1333 BoolVector3D {
1334 x: self.x == other.x,
1335 y: self.y == other.y,
1336 z: self.z == other.z,
1337 }
1338 }
1339
1340 #[inline]
1342 pub fn not_equal(self, other: Self) -> BoolVector3D {
1343 BoolVector3D {
1344 x: self.x != other.x,
1345 y: self.y != other.y,
1346 z: self.z != other.z,
1347 }
1348 }
1349}
1350
1351impl<T: NumCast + Copy, U> Vector3D<T, U> {
1352 #[inline]
1358 pub fn cast<NewT: NumCast>(self) -> Vector3D<NewT, U> {
1359 self.try_cast().unwrap()
1360 }
1361
1362 pub fn try_cast<NewT: NumCast>(self) -> Option<Vector3D<NewT, U>> {
1368 match (
1369 NumCast::from(self.x),
1370 NumCast::from(self.y),
1371 NumCast::from(self.z),
1372 ) {
1373 (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)),
1374 _ => None,
1375 }
1376 }
1377
1378 #[inline]
1382 pub fn to_f32(self) -> Vector3D<f32, U> {
1383 self.cast()
1384 }
1385
1386 #[inline]
1388 pub fn to_f64(self) -> Vector3D<f64, U> {
1389 self.cast()
1390 }
1391
1392 #[inline]
1398 pub fn to_usize(self) -> Vector3D<usize, U> {
1399 self.cast()
1400 }
1401
1402 #[inline]
1408 pub fn to_u32(self) -> Vector3D<u32, U> {
1409 self.cast()
1410 }
1411
1412 #[inline]
1418 pub fn to_i32(self) -> Vector3D<i32, U> {
1419 self.cast()
1420 }
1421
1422 #[inline]
1428 pub fn to_i64(self) -> Vector3D<i64, U> {
1429 self.cast()
1430 }
1431}
1432
1433impl<T: Neg, U> Neg for Vector3D<T, U> {
1434 type Output = Vector3D<T::Output, U>;
1435
1436 #[inline]
1437 fn neg(self) -> Self::Output {
1438 vec3(-self.x, -self.y, -self.z)
1439 }
1440}
1441
1442impl<T: Add, U> Add for Vector3D<T, U> {
1443 type Output = Vector3D<T::Output, U>;
1444
1445 #[inline]
1446 fn add(self, other: Self) -> Self::Output {
1447 vec3(self.x + other.x, self.y + other.y, self.z + other.z)
1448 }
1449}
1450
1451impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector3D<T, U> {
1452 #[inline]
1453 fn add_assign(&mut self, other: Self) {
1454 *self = *self + other
1455 }
1456}
1457
1458impl<T: Sub, U> Sub for Vector3D<T, U> {
1459 type Output = Vector3D<T::Output, U>;
1460
1461 #[inline]
1462 fn sub(self, other: Self) -> Self::Output {
1463 vec3(self.x - other.x, self.y - other.y, self.z - other.z)
1464 }
1465}
1466
1467impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Vector3D<T, U> {
1468 #[inline]
1469 fn sub_assign(&mut self, other: Self) {
1470 *self = *self - other
1471 }
1472}
1473
1474impl<T: Copy + Mul, U> Mul<T> for Vector3D<T, U> {
1475 type Output = Vector3D<T::Output, U>;
1476
1477 #[inline]
1478 fn mul(self, scale: T) -> Self::Output {
1479 vec3(
1480 self.x * scale,
1481 self.y * scale,
1482 self.z * scale,
1483 )
1484 }
1485}
1486
1487impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector3D<T, U> {
1488 #[inline]
1489 fn mul_assign(&mut self, scale: T) {
1490 *self = *self * scale
1491 }
1492}
1493
1494impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector3D<T, U1> {
1495 type Output = Vector3D<T::Output, U2>;
1496
1497 #[inline]
1498 fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
1499 vec3(
1500 self.x * scale.0,
1501 self.y * scale.0,
1502 self.z * scale.0,
1503 )
1504 }
1505}
1506
1507impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U> {
1508 #[inline]
1509 fn mul_assign(&mut self, scale: Scale<T, U, U>) {
1510 self.x *= scale.0;
1511 self.y *= scale.0;
1512 self.z *= scale.0;
1513 }
1514}
1515
1516impl<T: Copy + Div, U> Div<T> for Vector3D<T, U> {
1517 type Output = Vector3D<T::Output, U>;
1518
1519 #[inline]
1520 fn div(self, scale: T) -> Self::Output {
1521 vec3(
1522 self.x / scale,
1523 self.y / scale,
1524 self.z / scale,
1525 )
1526 }
1527}
1528
1529impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector3D<T, U> {
1530 #[inline]
1531 fn div_assign(&mut self, scale: T) {
1532 *self = *self / scale
1533 }
1534}
1535
1536impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector3D<T, U2> {
1537 type Output = Vector3D<T::Output, U1>;
1538
1539 #[inline]
1540 fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
1541 vec3(
1542 self.x / scale.0,
1543 self.y / scale.0,
1544 self.z / scale.0,
1545 )
1546 }
1547}
1548
1549impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U> {
1550 #[inline]
1551 fn div_assign(&mut self, scale: Scale<T, U, U>) {
1552 self.x /= scale.0;
1553 self.y /= scale.0;
1554 self.z /= scale.0;
1555 }
1556}
1557
1558impl<T: Round, U> Round for Vector3D<T, U> {
1559 #[inline]
1561 fn round(self) -> Self {
1562 self.round()
1563 }
1564}
1565
1566impl<T: Ceil, U> Ceil for Vector3D<T, U> {
1567 #[inline]
1569 fn ceil(self) -> Self {
1570 self.ceil()
1571 }
1572}
1573
1574impl<T: Floor, U> Floor for Vector3D<T, U> {
1575 #[inline]
1577 fn floor(self) -> Self {
1578 self.floor()
1579 }
1580}
1581
1582impl<T: ApproxEq<T>, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U> {
1583 #[inline]
1584 fn approx_epsilon() -> Self {
1585 vec3(
1586 T::approx_epsilon(),
1587 T::approx_epsilon(),
1588 T::approx_epsilon(),
1589 )
1590 }
1591
1592 #[inline]
1593 fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
1594 self.x.approx_eq_eps(&other.x, &eps.x)
1595 && self.y.approx_eq_eps(&other.y, &eps.y)
1596 && self.z.approx_eq_eps(&other.z, &eps.z)
1597 }
1598}
1599
1600impl<T, U> Into<[T; 3]> for Vector3D<T, U> {
1601 fn into(self) -> [T; 3] {
1602 [self.x, self.y, self.z]
1603 }
1604}
1605
1606impl<T, U> From<[T; 3]> for Vector3D<T, U> {
1607 fn from([x, y, z]: [T; 3]) -> Self {
1608 vec3(x, y, z)
1609 }
1610}
1611
1612impl<T, U> Into<(T, T, T)> for Vector3D<T, U> {
1613 fn into(self) -> (T, T, T) {
1614 (self.x, self.y, self.z)
1615 }
1616}
1617
1618impl<T, U> From<(T, T, T)> for Vector3D<T, U> {
1619 fn from(tuple: (T, T, T)) -> Self {
1620 vec3(tuple.0, tuple.1, tuple.2)
1621 }
1622}
1623
1624#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1626pub struct BoolVector2D {
1627 pub x: bool,
1628 pub y: bool,
1629}
1630
1631#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1633pub struct BoolVector3D {
1634 pub x: bool,
1635 pub y: bool,
1636 pub z: bool,
1637}
1638
1639impl BoolVector2D {
1640 #[inline]
1642 pub fn all(self) -> bool {
1643 self.x && self.y
1644 }
1645
1646 #[inline]
1648 pub fn any(self) -> bool {
1649 self.x || self.y
1650 }
1651
1652 #[inline]
1654 pub fn none(self) -> bool {
1655 !self.any()
1656 }
1657
1658 #[inline]
1660 pub fn and(self, other: Self) -> Self {
1661 BoolVector2D {
1662 x: self.x && other.x,
1663 y: self.y && other.y,
1664 }
1665 }
1666
1667 #[inline]
1669 pub fn or(self, other: Self) -> Self {
1670 BoolVector2D {
1671 x: self.x || other.x,
1672 y: self.y || other.y,
1673 }
1674 }
1675
1676 #[inline]
1678 pub fn not(self) -> Self {
1679 BoolVector2D {
1680 x: !self.x,
1681 y: !self.y,
1682 }
1683 }
1684
1685 #[inline]
1688 pub fn select_point<T, U>(self, a: Point2D<T, U>, b: Point2D<T, U>) -> Point2D<T, U> {
1689 point2(
1690 if self.x { a.x } else { b.x },
1691 if self.y { a.y } else { b.y },
1692 )
1693 }
1694
1695 #[inline]
1698 pub fn select_vector<T, U>(self, a: Vector2D<T, U>, b: Vector2D<T, U>) -> Vector2D<T, U> {
1699 vec2(
1700 if self.x { a.x } else { b.x },
1701 if self.y { a.y } else { b.y },
1702 )
1703 }
1704
1705 #[inline]
1708 pub fn select_size<T, U>(self, a: Size2D<T, U>, b: Size2D<T, U>) -> Size2D<T, U> {
1709 size2(
1710 if self.x { a.width } else { b.width },
1711 if self.y { a.height } else { b.height },
1712 )
1713 }
1714}
1715
1716impl BoolVector3D {
1717 #[inline]
1719 pub fn all(self) -> bool {
1720 self.x && self.y && self.z
1721 }
1722
1723 #[inline]
1725 pub fn any(self) -> bool {
1726 self.x || self.y || self.z
1727 }
1728
1729 #[inline]
1731 pub fn none(self) -> bool {
1732 !self.any()
1733 }
1734
1735 #[inline]
1737 pub fn and(self, other: Self) -> Self {
1738 BoolVector3D {
1739 x: self.x && other.x,
1740 y: self.y && other.y,
1741 z: self.z && other.z,
1742 }
1743 }
1744
1745 #[inline]
1747 pub fn or(self, other: Self) -> Self {
1748 BoolVector3D {
1749 x: self.x || other.x,
1750 y: self.y || other.y,
1751 z: self.z || other.z,
1752 }
1753 }
1754
1755 #[inline]
1757 pub fn not(self) -> Self {
1758 BoolVector3D {
1759 x: !self.x,
1760 y: !self.y,
1761 z: !self.z,
1762 }
1763 }
1764
1765 #[inline]
1768 pub fn select_point<T, U>(self, a: Point3D<T, U>, b: Point3D<T, U>) -> Point3D<T, U> {
1769 point3(
1770 if self.x { a.x } else { b.x },
1771 if self.y { a.y } else { b.y },
1772 if self.z { a.z } else { b.z },
1773 )
1774 }
1775
1776 #[inline]
1779 pub fn select_vector<T, U>(self, a: Vector3D<T, U>, b: Vector3D<T, U>) -> Vector3D<T, U> {
1780 vec3(
1781 if self.x { a.x } else { b.x },
1782 if self.y { a.y } else { b.y },
1783 if self.z { a.z } else { b.z },
1784 )
1785 }
1786
1787 #[inline]
1790 #[must_use]
1791 pub fn select_size<T, U>(self, a: Size3D<T, U>, b: Size3D<T, U>) -> Size3D<T, U> {
1792 size3(
1793 if self.x { a.width } else { b.width },
1794 if self.y { a.height } else { b.height },
1795 if self.z { a.depth } else { b.depth },
1796 )
1797 }
1798
1799 #[inline]
1801 pub fn xy(self) -> BoolVector2D {
1802 BoolVector2D {
1803 x: self.x,
1804 y: self.y,
1805 }
1806 }
1807
1808 #[inline]
1810 pub fn xz(self) -> BoolVector2D {
1811 BoolVector2D {
1812 x: self.x,
1813 y: self.z,
1814 }
1815 }
1816
1817 #[inline]
1819 pub fn yz(self) -> BoolVector2D {
1820 BoolVector2D {
1821 x: self.y,
1822 y: self.z,
1823 }
1824 }
1825}
1826
1827#[inline]
1829pub fn vec2<T, U>(x: T, y: T) -> Vector2D<T, U> {
1830 Vector2D {
1831 x,
1832 y,
1833 _unit: PhantomData,
1834 }
1835}
1836
1837#[inline]
1839pub fn vec3<T, U>(x: T, y: T, z: T) -> Vector3D<T, U> {
1840 Vector3D {
1841 x,
1842 y,
1843 z,
1844 _unit: PhantomData,
1845 }
1846}
1847
1848#[inline]
1850pub fn bvec2(x: bool, y: bool) -> BoolVector2D {
1851 BoolVector2D { x, y }
1852}
1853
1854#[inline]
1856pub fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D {
1857 BoolVector3D { x, y, z }
1858}
1859
1860#[cfg(test)]
1861mod vector2d {
1862 use crate::scale::Scale;
1863 use crate::{default, vec2};
1864
1865 #[cfg(feature = "mint")]
1866 use mint;
1867 type Vec2 = default::Vector2D<f32>;
1868
1869 #[test]
1870 pub fn test_scalar_mul() {
1871 let p1: Vec2 = vec2(3.0, 5.0);
1872
1873 let result = p1 * 5.0;
1874
1875 assert_eq!(result, Vec2::new(15.0, 25.0));
1876 }
1877
1878 #[test]
1879 pub fn test_dot() {
1880 let p1: Vec2 = vec2(2.0, 7.0);
1881 let p2: Vec2 = vec2(13.0, 11.0);
1882 assert_eq!(p1.dot(p2), 103.0);
1883 }
1884
1885 #[test]
1886 pub fn test_cross() {
1887 let p1: Vec2 = vec2(4.0, 7.0);
1888 let p2: Vec2 = vec2(13.0, 8.0);
1889 let r = p1.cross(p2);
1890 assert_eq!(r, -59.0);
1891 }
1892
1893 #[test]
1894 pub fn test_normalize() {
1895 use std::f32;
1896
1897 let p0: Vec2 = Vec2::zero();
1898 let p1: Vec2 = vec2(4.0, 0.0);
1899 let p2: Vec2 = vec2(3.0, -4.0);
1900 assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan());
1901 assert_eq!(p1.normalize(), vec2(1.0, 0.0));
1902 assert_eq!(p2.normalize(), vec2(0.6, -0.8));
1903
1904 let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX);
1905 assert_ne!(
1906 p3.normalize(),
1907 vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt())
1908 );
1909 assert_eq!(
1910 p3.robust_normalize(),
1911 vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt())
1912 );
1913
1914 let p4: Vec2 = Vec2::zero();
1915 assert!(p4.try_normalize().is_none());
1916 let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE);
1917 assert!(p5.try_normalize().is_none());
1918
1919 let p6: Vec2 = vec2(4.0, 0.0);
1920 let p7: Vec2 = vec2(3.0, -4.0);
1921 assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0));
1922 assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8));
1923 }
1924
1925 #[test]
1926 pub fn test_min() {
1927 let p1: Vec2 = vec2(1.0, 3.0);
1928 let p2: Vec2 = vec2(2.0, 2.0);
1929
1930 let result = p1.min(p2);
1931
1932 assert_eq!(result, vec2(1.0, 2.0));
1933 }
1934
1935 #[test]
1936 pub fn test_max() {
1937 let p1: Vec2 = vec2(1.0, 3.0);
1938 let p2: Vec2 = vec2(2.0, 2.0);
1939
1940 let result = p1.max(p2);
1941
1942 assert_eq!(result, vec2(2.0, 3.0));
1943 }
1944
1945 #[test]
1946 pub fn test_angle_from_x_axis() {
1947 use crate::approxeq::ApproxEq;
1948 use core::f32::consts::FRAC_PI_2;
1949
1950 let right: Vec2 = vec2(10.0, 0.0);
1951 let down: Vec2 = vec2(0.0, 4.0);
1952 let up: Vec2 = vec2(0.0, -1.0);
1953
1954 assert!(right.angle_from_x_axis().get().approx_eq(&0.0));
1955 assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2));
1956 assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2));
1957 }
1958
1959 #[test]
1960 pub fn test_angle_to() {
1961 use crate::approxeq::ApproxEq;
1962 use core::f32::consts::FRAC_PI_2;
1963
1964 let right: Vec2 = vec2(10.0, 0.0);
1965 let right2: Vec2 = vec2(1.0, 0.0);
1966 let up: Vec2 = vec2(0.0, -1.0);
1967 let up_left: Vec2 = vec2(-1.0, -1.0);
1968
1969 assert!(right.angle_to(right2).get().approx_eq(&0.0));
1970 assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2));
1971 assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2));
1972 assert!(up_left
1973 .angle_to(up)
1974 .get()
1975 .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005));
1976 }
1977
1978 #[test]
1979 pub fn test_with_max_length() {
1980 use crate::approxeq::ApproxEq;
1981
1982 let v1: Vec2 = vec2(0.5, 0.5);
1983 let v2: Vec2 = vec2(1.0, 0.0);
1984 let v3: Vec2 = vec2(0.1, 0.2);
1985 let v4: Vec2 = vec2(2.0, -2.0);
1986 let v5: Vec2 = vec2(1.0, 2.0);
1987 let v6: Vec2 = vec2(-1.0, 3.0);
1988
1989 assert_eq!(v1.with_max_length(1.0), v1);
1990 assert_eq!(v2.with_max_length(1.0), v2);
1991 assert_eq!(v3.with_max_length(1.0), v3);
1992 assert_eq!(v4.with_max_length(10.0), v4);
1993 assert_eq!(v5.with_max_length(10.0), v5);
1994 assert_eq!(v6.with_max_length(10.0), v6);
1995
1996 let v4_clamped = v4.with_max_length(1.0);
1997 assert!(v4_clamped.length().approx_eq(&1.0));
1998 assert!(v4_clamped.normalize().approx_eq(&v4.normalize()));
1999
2000 let v5_clamped = v5.with_max_length(1.5);
2001 assert!(v5_clamped.length().approx_eq(&1.5));
2002 assert!(v5_clamped.normalize().approx_eq(&v5.normalize()));
2003
2004 let v6_clamped = v6.with_max_length(2.5);
2005 assert!(v6_clamped.length().approx_eq(&2.5));
2006 assert!(v6_clamped.normalize().approx_eq(&v6.normalize()));
2007 }
2008
2009 #[test]
2010 pub fn test_project_onto_vector() {
2011 use crate::approxeq::ApproxEq;
2012
2013 let v1: Vec2 = vec2(1.0, 2.0);
2014 let x: Vec2 = vec2(1.0, 0.0);
2015 let y: Vec2 = vec2(0.0, 1.0);
2016
2017 assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0)));
2018 assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0)));
2019 assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0)));
2020 assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0)));
2021 assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1));
2022 assert!(v1.project_onto_vector(-v1).approx_eq(&v1));
2023 }
2024
2025 #[cfg(feature = "mint")]
2026 #[test]
2027 pub fn test_mint() {
2028 let v1 = Vec2::new(1.0, 3.0);
2029 let vm: mint::Vector2<_> = v1.into();
2030 let v2 = Vec2::from(vm);
2031
2032 assert_eq!(v1, v2);
2033 }
2034
2035 pub enum Mm {}
2036 pub enum Cm {}
2037
2038 pub type Vector2DMm<T> = super::Vector2D<T, Mm>;
2039 pub type Vector2DCm<T> = super::Vector2D<T, Cm>;
2040
2041 #[test]
2042 pub fn test_add() {
2043 let p1 = Vector2DMm::new(1.0, 2.0);
2044 let p2 = Vector2DMm::new(3.0, 4.0);
2045
2046 let result = p1 + p2;
2047
2048 assert_eq!(result, vec2(4.0, 6.0));
2049 }
2050
2051 #[test]
2052 pub fn test_add_assign() {
2053 let mut p1 = Vector2DMm::new(1.0, 2.0);
2054 p1 += vec2(3.0, 4.0);
2055
2056 assert_eq!(p1, vec2(4.0, 6.0));
2057 }
2058
2059 #[test]
2060 pub fn test_tpyed_scalar_mul() {
2061 let p1 = Vector2DMm::new(1.0, 2.0);
2062 let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1);
2063
2064 let result: Vector2DCm<f32> = p1 * cm_per_mm;
2065
2066 assert_eq!(result, vec2(0.1, 0.2));
2067 }
2068
2069 #[test]
2070 pub fn test_swizzling() {
2071 let p: default::Vector2D<i32> = vec2(1, 2);
2072 assert_eq!(p.yx(), vec2(2, 1));
2073 }
2074
2075 #[test]
2076 pub fn test_reflect() {
2077 use crate::approxeq::ApproxEq;
2078 let a: Vec2 = vec2(1.0, 3.0);
2079 let n1: Vec2 = vec2(0.0, -1.0);
2080 let n2: Vec2 = vec2(1.0, -1.0).normalize();
2081
2082 assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0)));
2083 assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0)));
2084 }
2085}
2086
2087#[cfg(test)]
2088mod vector3d {
2089 use crate::scale::Scale;
2090 use crate::{default, vec2, vec3};
2091 #[cfg(feature = "mint")]
2092 use mint;
2093
2094 type Vec3 = default::Vector3D<f32>;
2095
2096 #[test]
2097 pub fn test_dot() {
2098 let p1: Vec3 = vec3(7.0, 21.0, 32.0);
2099 let p2: Vec3 = vec3(43.0, 5.0, 16.0);
2100 assert_eq!(p1.dot(p2), 918.0);
2101 }
2102
2103 #[test]
2104 pub fn test_cross() {
2105 let p1: Vec3 = vec3(4.0, 7.0, 9.0);
2106 let p2: Vec3 = vec3(13.0, 8.0, 3.0);
2107 let p3 = p1.cross(p2);
2108 assert_eq!(p3, vec3(-51.0, 105.0, -59.0));
2109 }
2110
2111 #[test]
2112 pub fn test_normalize() {
2113 use std::f32;
2114
2115 let p0: Vec3 = Vec3::zero();
2116 let p1: Vec3 = vec3(0.0, -6.0, 0.0);
2117 let p2: Vec3 = vec3(1.0, 2.0, -2.0);
2118 assert!(
2119 p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan()
2120 );
2121 assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0));
2122 assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0));
2123
2124 let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0);
2125 assert_ne!(
2126 p3.normalize(),
2127 vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0)
2128 );
2129 assert_eq!(
2130 p3.robust_normalize(),
2131 vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0)
2132 );
2133
2134 let p4: Vec3 = Vec3::zero();
2135 assert!(p4.try_normalize().is_none());
2136 let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE);
2137 assert!(p5.try_normalize().is_none());
2138
2139 let p6: Vec3 = vec3(4.0, 0.0, 3.0);
2140 let p7: Vec3 = vec3(3.0, -4.0, 0.0);
2141 assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6));
2142 assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0));
2143 }
2144
2145 #[test]
2146 pub fn test_min() {
2147 let p1: Vec3 = vec3(1.0, 3.0, 5.0);
2148 let p2: Vec3 = vec3(2.0, 2.0, -1.0);
2149
2150 let result = p1.min(p2);
2151
2152 assert_eq!(result, vec3(1.0, 2.0, -1.0));
2153 }
2154
2155 #[test]
2156 pub fn test_max() {
2157 let p1: Vec3 = vec3(1.0, 3.0, 5.0);
2158 let p2: Vec3 = vec3(2.0, 2.0, -1.0);
2159
2160 let result = p1.max(p2);
2161
2162 assert_eq!(result, vec3(2.0, 3.0, 5.0));
2163 }
2164
2165 #[test]
2166 pub fn test_clamp() {
2167 let p1: Vec3 = vec3(1.0, -1.0, 5.0);
2168 let p2: Vec3 = vec3(2.0, 5.0, 10.0);
2169 let p3: Vec3 = vec3(-1.0, 2.0, 20.0);
2170
2171 let result = p3.clamp(p1, p2);
2172
2173 assert_eq!(result, vec3(1.0, 2.0, 10.0));
2174 }
2175
2176 #[test]
2177 pub fn test_typed_scalar_mul() {
2178 enum Mm {}
2179 enum Cm {}
2180
2181 let p1 = super::Vector3D::<f32, Mm>::new(1.0, 2.0, 3.0);
2182 let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1);
2183
2184 let result: super::Vector3D<f32, Cm> = p1 * cm_per_mm;
2185
2186 assert_eq!(result, vec3(0.1, 0.2, 0.3));
2187 }
2188
2189 #[test]
2190 pub fn test_swizzling() {
2191 let p: Vec3 = vec3(1.0, 2.0, 3.0);
2192 assert_eq!(p.xy(), vec2(1.0, 2.0));
2193 assert_eq!(p.xz(), vec2(1.0, 3.0));
2194 assert_eq!(p.yz(), vec2(2.0, 3.0));
2195 }
2196
2197 #[cfg(feature = "mint")]
2198 #[test]
2199 pub fn test_mint() {
2200 let v1 = Vec3::new(1.0, 3.0, 5.0);
2201 let vm: mint::Vector3<_> = v1.into();
2202 let v2 = Vec3::from(vm);
2203
2204 assert_eq!(v1, v2);
2205 }
2206
2207 #[test]
2208 pub fn test_reflect() {
2209 use crate::approxeq::ApproxEq;
2210 let a: Vec3 = vec3(1.0, 3.0, 2.0);
2211 let n1: Vec3 = vec3(0.0, -1.0, 0.0);
2212 let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize();
2213
2214 assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0)));
2215 assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0)));
2216 }
2217
2218 #[test]
2219 pub fn test_angle_to() {
2220 use crate::approxeq::ApproxEq;
2221 use core::f32::consts::FRAC_PI_2;
2222
2223 let right: Vec3 = vec3(10.0, 0.0, 0.0);
2224 let right2: Vec3 = vec3(1.0, 0.0, 0.0);
2225 let up: Vec3 = vec3(0.0, -1.0, 0.0);
2226 let up_left: Vec3 = vec3(-1.0, -1.0, 0.0);
2227
2228 assert!(right.angle_to(right2).get().approx_eq(&0.0));
2229 assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2));
2230 assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2));
2231 assert!(up_left
2232 .angle_to(up)
2233 .get()
2234 .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005));
2235 }
2236
2237 #[test]
2238 pub fn test_with_max_length() {
2239 use crate::approxeq::ApproxEq;
2240
2241 let v1: Vec3 = vec3(0.5, 0.5, 0.0);
2242 let v2: Vec3 = vec3(1.0, 0.0, 0.0);
2243 let v3: Vec3 = vec3(0.1, 0.2, 0.3);
2244 let v4: Vec3 = vec3(2.0, -2.0, 2.0);
2245 let v5: Vec3 = vec3(1.0, 2.0, -3.0);
2246 let v6: Vec3 = vec3(-1.0, 3.0, 2.0);
2247
2248 assert_eq!(v1.with_max_length(1.0), v1);
2249 assert_eq!(v2.with_max_length(1.0), v2);
2250 assert_eq!(v3.with_max_length(1.0), v3);
2251 assert_eq!(v4.with_max_length(10.0), v4);
2252 assert_eq!(v5.with_max_length(10.0), v5);
2253 assert_eq!(v6.with_max_length(10.0), v6);
2254
2255 let v4_clamped = v4.with_max_length(1.0);
2256 assert!(v4_clamped.length().approx_eq(&1.0));
2257 assert!(v4_clamped.normalize().approx_eq(&v4.normalize()));
2258
2259 let v5_clamped = v5.with_max_length(1.5);
2260 assert!(v5_clamped.length().approx_eq(&1.5));
2261 assert!(v5_clamped.normalize().approx_eq(&v5.normalize()));
2262
2263 let v6_clamped = v6.with_max_length(2.5);
2264 assert!(v6_clamped.length().approx_eq(&2.5));
2265 assert!(v6_clamped.normalize().approx_eq(&v6.normalize()));
2266 }
2267
2268 #[test]
2269 pub fn test_project_onto_vector() {
2270 use crate::approxeq::ApproxEq;
2271
2272 let v1: Vec3 = vec3(1.0, 2.0, 3.0);
2273 let x: Vec3 = vec3(1.0, 0.0, 0.0);
2274 let y: Vec3 = vec3(0.0, 1.0, 0.0);
2275 let z: Vec3 = vec3(0.0, 0.0, 1.0);
2276
2277 assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0)));
2278 assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0)));
2279 assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0)));
2280 assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0)));
2281 assert!(v1
2282 .project_onto_vector(x * 10.0)
2283 .approx_eq(&vec3(1.0, 0.0, 0.0)));
2284 assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1));
2285 assert!(v1.project_onto_vector(-v1).approx_eq(&v1));
2286 }
2287}
2288
2289#[cfg(test)]
2290mod bool_vector {
2291 use super::*;
2292 use crate::default;
2293 type Vec2 = default::Vector2D<f32>;
2294 type Vec3 = default::Vector3D<f32>;
2295
2296 #[test]
2297 fn test_bvec2() {
2298 assert_eq!(
2299 Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)),
2300 bvec2(false, true),
2301 );
2302
2303 assert_eq!(
2304 Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)),
2305 bvec2(true, false),
2306 );
2307
2308 assert_eq!(
2309 Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)),
2310 bvec2(true, false),
2311 );
2312
2313 assert_eq!(
2314 Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)),
2315 bvec2(false, true),
2316 );
2317
2318 assert!(bvec2(true, true).any());
2319 assert!(bvec2(false, true).any());
2320 assert!(bvec2(true, false).any());
2321 assert!(!bvec2(false, false).any());
2322 assert!(bvec2(false, false).none());
2323 assert!(bvec2(true, true).all());
2324 assert!(!bvec2(false, true).all());
2325 assert!(!bvec2(true, false).all());
2326 assert!(!bvec2(false, false).all());
2327
2328 assert_eq!(bvec2(true, false).not(), bvec2(false, true));
2329 assert_eq!(
2330 bvec2(true, false).and(bvec2(true, true)),
2331 bvec2(true, false)
2332 );
2333 assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true));
2334
2335 assert_eq!(
2336 bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)),
2337 Vec2::new(1.0, 4.0),
2338 );
2339 }
2340
2341 #[test]
2342 fn test_bvec3() {
2343 assert_eq!(
2344 Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)),
2345 bvec3(false, false, true),
2346 );
2347
2348 assert_eq!(
2349 Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)),
2350 bvec3(true, false, false),
2351 );
2352
2353 assert_eq!(
2354 Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)),
2355 bvec3(false, true, false),
2356 );
2357
2358 assert_eq!(
2359 Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)),
2360 bvec3(true, false, true),
2361 );
2362
2363 assert!(bvec3(true, true, false).any());
2364 assert!(bvec3(false, true, false).any());
2365 assert!(bvec3(true, false, false).any());
2366 assert!(!bvec3(false, false, false).any());
2367 assert!(bvec3(false, false, false).none());
2368 assert!(bvec3(true, true, true).all());
2369 assert!(!bvec3(false, true, false).all());
2370 assert!(!bvec3(true, false, false).all());
2371 assert!(!bvec3(false, false, false).all());
2372
2373 assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false));
2374 assert_eq!(
2375 bvec3(true, false, true).and(bvec3(true, true, false)),
2376 bvec3(true, false, false)
2377 );
2378 assert_eq!(
2379 bvec3(true, false, false).or(bvec3(true, true, false)),
2380 bvec3(true, true, false)
2381 );
2382
2383 assert_eq!(
2384 bvec3(true, false, true)
2385 .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)),
2386 Vec3::new(1.0, 5.0, 3.0),
2387 );
2388 }
2389}