use std::cmp::{Ord, Ordering};
use std::fmt;
use std::ops::{self, Add, AddAssign, Deref, Range, Sub, SubAssign};
use serde::{Deserialize, Serialize};
use crate::term::RenderableCell;
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Side {
Left,
Right,
}
#[derive(Debug, Clone, Copy, Default, Eq, PartialEq, PartialOrd)]
pub struct Point<L = Line> {
pub line: L,
pub col: Column,
}
impl<L> Point<L> {
pub fn new(line: L, col: Column) -> Point<L> {
Point { line, col }
}
#[inline]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn sub(mut self, num_cols: usize, length: usize, absolute_indexing: bool) -> Point<L>
where
L: Copy + Add<usize, Output = L> + Sub<usize, Output = L>,
{
let line_changes = f32::ceil(length.saturating_sub(self.col.0) as f32 / num_cols as f32);
if absolute_indexing {
self.line = self.line + line_changes as usize;
} else {
self.line = self.line - line_changes as usize;
}
self.col = Column((num_cols + self.col.0 - length % num_cols) % num_cols);
self
}
#[inline]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn add(mut self, num_cols: usize, length: usize, absolute_indexing: bool) -> Point<L>
where
L: Copy + Add<usize, Output = L> + Sub<usize, Output = L>,
{
let line_changes = (length + self.col.0) / num_cols;
if absolute_indexing {
self.line = self.line - line_changes;
} else {
self.line = self.line + line_changes;
}
self.col = Column((self.col.0 + length) % num_cols);
self
}
}
impl Ord for Point {
fn cmp(&self, other: &Point) -> Ordering {
use std::cmp::Ordering::*;
match (self.line.cmp(&other.line), self.col.cmp(&other.col)) {
(Equal, Equal) => Equal,
(Equal, ord) | (ord, Equal) => ord,
(Less, _) => Less,
(Greater, _) => Greater,
}
}
}
impl From<Point<usize>> for Point<isize> {
fn from(point: Point<usize>) -> Self {
Point::new(point.line as isize, point.col)
}
}
impl From<Point<usize>> for Point<Line> {
fn from(point: Point<usize>) -> Self {
Point::new(Line(point.line), point.col)
}
}
impl From<Point<isize>> for Point<usize> {
fn from(point: Point<isize>) -> Self {
Point::new(point.line as usize, point.col)
}
}
impl From<Point> for Point<usize> {
fn from(point: Point) -> Self {
Point::new(point.line.0, point.col)
}
}
impl From<RenderableCell> for Point<Line> {
fn from(cell: RenderableCell) -> Self {
Point::new(cell.line, cell.column)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Ord, PartialOrd, Serialize, Deserialize)]
pub struct Line(pub usize);
impl fmt::Display for Line {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Ord, PartialOrd, Serialize, Deserialize)]
pub struct Column(pub usize);
impl fmt::Display for Column {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Ord, PartialOrd, Serialize, Deserialize)]
pub struct Linear(pub usize);
impl Linear {
pub fn new(columns: Column, column: Column, line: Line) -> Self {
Linear(line.0 * columns.0 + column.0)
}
pub fn from_point(columns: Column, point: Point<usize>) -> Self {
Linear(point.line * columns.0 + point.col.0)
}
}
impl fmt::Display for Linear {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Linear({})", self.0)
}
}
macro_rules! forward_ref_binop {
(impl $imp:ident, $method:ident for $t:ty, $u:ty) => {
impl<'a> $imp<$u> for &'a $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: $u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, other)
}
}
impl<'a> $imp<&'a $u> for $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output {
$imp::$method(self, *other)
}
}
impl<'a, 'b> $imp<&'a $u> for &'b $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, *other)
}
}
};
}
macro_rules! deref {
($ty:ty, $target:ty) => {
impl Deref for $ty {
type Target = $target;
#[inline]
fn deref(&self) -> &$target {
&self.0
}
}
};
}
macro_rules! add {
($ty:ty, $construct:expr) => {
impl ops::Add<$ty> for $ty {
type Output = $ty;
#[inline]
fn add(self, rhs: $ty) -> $ty {
$construct(self.0 + rhs.0)
}
}
};
}
macro_rules! sub {
($ty:ty, $construct:expr) => {
impl ops::Sub<$ty> for $ty {
type Output = $ty;
#[inline]
fn sub(self, rhs: $ty) -> $ty {
$construct(self.0 - rhs.0)
}
}
impl<'a> ops::Sub<$ty> for &'a $ty {
type Output = $ty;
#[inline]
fn sub(self, rhs: $ty) -> $ty {
$construct(self.0 - rhs.0)
}
}
impl<'a> ops::Sub<&'a $ty> for $ty {
type Output = $ty;
#[inline]
fn sub(self, rhs: &'a $ty) -> $ty {
$construct(self.0 - rhs.0)
}
}
impl<'a, 'b> ops::Sub<&'a $ty> for &'b $ty {
type Output = $ty;
#[inline]
fn sub(self, rhs: &'a $ty) -> $ty {
$construct(self.0 - rhs.0)
}
}
};
}
pub struct IndexRange<T>(pub Range<T>);
impl<T> From<Range<T>> for IndexRange<T> {
fn from(from: Range<T>) -> Self {
IndexRange(from)
}
}
macro_rules! ops {
($ty:ty, $construct:expr) => {
add!($ty, $construct);
sub!($ty, $construct);
deref!($ty, usize);
forward_ref_binop!(impl Add, add for $ty, $ty);
impl $ty {
#[inline]
fn steps_between(start: $ty, end: $ty, by: $ty) -> Option<usize> {
if by == $construct(0) { return None; }
if start < end {
let diff = (end - start).0;
let by = by.0;
if diff % by > 0 {
Some(diff / by + 1)
} else {
Some(diff / by)
}
} else {
Some(0)
}
}
#[inline]
fn steps_between_by_one(start: $ty, end: $ty) -> Option<usize> {
Self::steps_between(start, end, $construct(1))
}
}
impl Iterator for IndexRange<$ty> {
type Item = $ty;
#[inline]
fn next(&mut self) -> Option<$ty> {
if self.0.start < self.0.end {
let old = self.0.start;
self.0.start = old + 1;
Some(old)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match Self::Item::steps_between_by_one(self.0.start, self.0.end) {
Some(hint) => (hint, Some(hint)),
None => (0, None)
}
}
}
impl DoubleEndedIterator for IndexRange<$ty> {
#[inline]
fn next_back(&mut self) -> Option<$ty> {
if self.0.start < self.0.end {
let new = self.0.end - 1;
self.0.end = new;
Some(new)
} else {
None
}
}
}
impl AddAssign<$ty> for $ty {
#[inline]
fn add_assign(&mut self, rhs: $ty) {
self.0 += rhs.0
}
}
impl SubAssign<$ty> for $ty {
#[inline]
fn sub_assign(&mut self, rhs: $ty) {
self.0 -= rhs.0
}
}
impl AddAssign<usize> for $ty {
#[inline]
fn add_assign(&mut self, rhs: usize) {
self.0 += rhs
}
}
impl SubAssign<usize> for $ty {
#[inline]
fn sub_assign(&mut self, rhs: usize) {
self.0 -= rhs
}
}
impl From<usize> for $ty {
#[inline]
fn from(val: usize) -> $ty {
$construct(val)
}
}
impl Add<usize> for $ty {
type Output = $ty;
#[inline]
fn add(self, rhs: usize) -> $ty {
$construct(self.0 + rhs)
}
}
impl Sub<usize> for $ty {
type Output = $ty;
#[inline]
fn sub(self, rhs: usize) -> $ty {
$construct(self.0 - rhs)
}
}
}
}
ops!(Line, Line);
ops!(Column, Column);
ops!(Linear, Linear);
#[cfg(test)]
mod tests {
use super::{Column, Line, Point};
#[test]
fn location_ordering() {
assert!(Point::new(Line(0), Column(0)) == Point::new(Line(0), Column(0)));
assert!(Point::new(Line(1), Column(0)) > Point::new(Line(0), Column(0)));
assert!(Point::new(Line(0), Column(1)) > Point::new(Line(0), Column(0)));
assert!(Point::new(Line(1), Column(1)) > Point::new(Line(0), Column(0)));
assert!(Point::new(Line(1), Column(1)) > Point::new(Line(0), Column(1)));
assert!(Point::new(Line(1), Column(1)) > Point::new(Line(1), Column(0)));
}
}