circuit/connection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::{stream, Error, Node, Result};
use futures::channel::mpsc::{channel, Receiver, Sender};
use futures::channel::oneshot;
use futures::lock::Mutex;
use futures::stream::Stream;
use futures::StreamExt;
use rand::random;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::io::Write;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::{Arc, Weak};
use std::time::Duration;
// We're stuffing enough u64s into streams that this is worth doing.
impl crate::protocol::ProtocolMessage for u64 {
const MIN_SIZE: usize = 8;
fn write_bytes<W: Write>(&self, out: &mut W) -> Result<usize> {
out.write_all(&self.to_le_bytes())?;
Ok(8)
}
fn byte_size(&self) -> usize {
8
}
fn try_from_bytes(bytes: &[u8]) -> Result<(Self, usize)> {
Ok((u64::from_le_bytes(bytes.try_into().map_err(|_| Error::BufferTooShort(8))?), 8))
}
}
/// Entry in a stream map. See `StreamMap` below.
enum StreamMapEntry {
/// The user is expecting the other end of the connection to start a stream with a certain ID,
/// but we haven't actually seen the stream show up yet.
Waiting(oneshot::Sender<(stream::Reader, stream::Writer)>),
/// The other end of the connection has started a stream with a given ID, but we're still
/// waiting on the user on this end to accept it by invoking `bind_stream()`.
Ready(stream::Reader, stream::Writer),
/// A stream with a given ID was started by the other end of the connection, and accepted by
/// this end. If we see another stream with that ID something has gone wrong in the protocol
/// state machine.
Taken,
}
#[derive(Copy, Clone, Debug)]
enum ClientOrServer {
Client,
Server,
}
impl ClientOrServer {
fn is_server(&self) -> bool {
matches!(self, Self::Server)
}
}
impl StreamMapEntry {
/// Turns the `Ready` state into the `Taken` state and returns the reader and writer that were
/// consumed. Returns `None` if we were not in the `Ready` state.
fn take(&mut self) -> Option<(stream::Reader, stream::Writer)> {
match std::mem::replace(self, Self::Taken) {
Self::Waiting(_) | Self::Taken => None,
Self::Ready(r, w) => Some((r, w)),
}
}
/// Turns the `Waiting` state into the `Taken` state, passing the given reader and writer to the
/// waiter. If we're not in the `Waiting` state this drops the reader and writer and does
/// nothing.
fn ready(&mut self, reader: stream::Reader, writer: stream::Writer) {
if let Self::Waiting(sender) = std::mem::replace(self, Self::Taken) {
if let Err((reader, writer)) = sender.send((reader, writer)) {
*self = Self::Ready(reader, writer)
}
}
}
}
/// A Mutex-protected map of stream IDs to an optional reader/writer pair for the stream.
type StreamMap = Mutex<HashMap<u64, StreamMapEntry>>;
/// A connection is a group of streams that span from one node to another on the circuit network.
///
/// When we establish a network of circuit nodes, we can create a stream from any one to any other.
/// These streams are independent, however; they have no name or identifier, nor anything else by
/// which you might group them.
///
/// A `Connection` is a link from a node to a peer that we can obtain streams from, just as we can
/// from the `Node` itself, but the streams have IDs which are in a namespace unique to the
/// connection. Multiple connections can exist per node, and each sees only the streams related to
/// itself.
///
/// There's a small bit of added protocol associated with this, so there will be some change to
/// traffic on the wire.
#[derive(Clone)]
pub struct Connection {
id: u64,
streams: Arc<StreamMap>,
node: Arc<Node>,
peer_node_id: String,
next_stream_id: Arc<AtomicU64>,
}
impl Connection {
pub async fn bind_stream(&self, id: u64) -> Option<(stream::Reader, stream::Writer)> {
let receiver = {
match self.streams.lock().await.entry(id) {
Entry::Occupied(mut e) => return e.get_mut().take(),
Entry::Vacant(v) => {
let (sender, receiver) = oneshot::channel();
v.insert(StreamMapEntry::Waiting(sender));
receiver
}
}
};
receiver.await.ok()
}
pub fn from(&self) -> &str {
&self.peer_node_id
}
/// Create a new stream to the other end of this connection.
pub async fn alloc_stream(
&self,
reader: stream::Reader,
writer: stream::Writer,
) -> Result<u64> {
let id = self.next_stream_id.fetch_add(2, Ordering::Relaxed);
reader.push_back_protocol_message(&id)?;
reader.push_back_protocol_message(&self.id)?;
self.node.connect_to_peer(reader, writer, &self.peer_node_id).await?;
Ok(id)
}
/// Whether this connection is a client (initiated by another node) as opposed to a server
/// (initiated by this node).
pub fn is_client(&self) -> bool {
is_client_stream_id(self.next_stream_id.load(Ordering::Relaxed))
}
}
impl std::fmt::Debug for Connection {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Connection({:#x} to {})", self.id, self.peer_node_id)
}
}
/// Wrapper class for a `Node` that lets us create `Connection` objects instead of creating raw
/// streams on the node itself.
pub struct ConnectionNode {
node: Arc<Node>,
conns: Arc<Mutex<HashMap<u64, (Weak<StreamMap>, ClientOrServer)>>>,
}
/// Streams initiated by the client (the end of the connection that initiated the connection) should
/// be even, while streams initiated by the server (the end of the connection that received the
/// connection) should be odd.
fn is_client_stream_id(id: u64) -> bool {
(id & 1) == 0
}
impl ConnectionNode {
/// Create a new `ConnectionNode`. We can create a `Connection` object for any peer via this
/// node, and we can then create streams to that peer and have that peer create streams to us.
/// Unlike with a raw `Node`, those streams will be associated with only our connection object,
/// and the peer will get a connection object that will return to it only the streams we create
/// from this connection object.
///
/// Returns both a `ConnectionNode`, and a `futures::stream::Stream` of `Connection` objects,
/// which are produced by other nodes connecting to us.
pub fn new(
node_id: &str,
protocol: &str,
new_peer_sender: Sender<String>,
) -> Result<(ConnectionNode, impl Stream<Item = Connection> + Send)> {
let (incoming_stream_sender, incoming_stream_receiver) = channel(1);
let node = Arc::new(Node::new(node_id, protocol, new_peer_sender, incoming_stream_sender)?);
let conns = Arc::new(Mutex::new(HashMap::<u64, (Weak<StreamMap>, ClientOrServer)>::new()));
let conn_stream =
conn_stream(Arc::downgrade(&node), Arc::clone(&conns), incoming_stream_receiver);
Ok((ConnectionNode { node, conns }, conn_stream))
}
/// Like `ConnectionNode::new` but creates a router task as well. See `Node::new_with_router`.
pub fn new_with_router(
node_id: &str,
protocol: &str,
interval: Duration,
new_peer_sender: Sender<String>,
) -> Result<(ConnectionNode, impl Stream<Item = Connection> + Send)> {
let (incoming_stream_sender, incoming_stream_receiver) = channel(1);
let (node, router) = Node::new_with_router(
node_id,
protocol,
interval,
new_peer_sender,
incoming_stream_sender,
)?;
let node = Arc::new(node);
let conns = Arc::new(Mutex::new(HashMap::<u64, (Weak<StreamMap>, ClientOrServer)>::new()));
// With some cleverness, we can make polling the conn stream poll the router as a side effect.
let conn_stream =
conn_stream(Arc::downgrade(&node), Arc::clone(&conns), incoming_stream_receiver)
.map(Some);
let router_stream = futures::stream::once(router).map(|()| None);
let conn_stream =
futures::stream::select(conn_stream, router_stream).filter_map(|x| async move { x });
Ok((ConnectionNode { node, conns }, conn_stream))
}
/// Establish a connection to a peer. The `connection_reader` and `connection_writer` will be
/// used to service stream ID 0, which is always created when we start a connection.
pub async fn connect_to_peer(
&self,
node_id: &str,
connection_reader: stream::Reader,
connection_writer: stream::Writer,
) -> Result<Connection> {
if &*self.node.node_id() == node_id {
return Err(Error::LoopbackUnsupported);
}
let id = random();
// Create stream 0 automatically. This will have the side effect of verifying connectivity
// to the node as well.
connection_reader.push_back_protocol_message(&0u64)?;
connection_reader.push_back_protocol_message(&id)?;
self.node.connect_to_peer(connection_reader, connection_writer, node_id).await?;
let streams = Arc::new(Mutex::new(HashMap::new()));
self.conns.lock().await.insert(id, (Arc::downgrade(&streams), ClientOrServer::Client));
Ok(Connection {
id,
streams,
node: Arc::clone(&self.node),
peer_node_id: node_id.to_string(),
next_stream_id: Arc::new(AtomicU64::new(2)),
})
}
/// Get this node as a plain old `Node`.
pub fn node(&self) -> &Node {
&*self.node
}
}
/// Creates a futures::Stream that when polled, will yield incoming streams on a particular
/// connection.
///
/// Polling is also responsible for dispatching incoming streams from the node to existing
/// connections.
fn conn_stream(
node: Weak<Node>,
conns: Arc<Mutex<HashMap<u64, (Weak<StreamMap>, ClientOrServer)>>>,
incoming_stream_receiver: Receiver<(stream::Reader, stream::Writer, String)>,
) -> impl Stream<Item = Connection> + Send {
incoming_stream_receiver.filter_map(move |(reader, writer, peer_node_id)| {
let conns = Arc::clone(&conns);
let node = node.upgrade();
async move {
let node = node?;
let got = reader
.read(16, |buf| {
Ok((
(
u64::from_le_bytes(buf[..8].try_into().unwrap()),
u64::from_le_bytes(buf[8..16].try_into().unwrap()),
),
16,
))
})
.await;
let (conn_id, stream_id) = match got {
Ok(got) => got,
Err(Error::ConnectionClosed(reason)) => {
let reason = reason.as_deref().unwrap_or("(No reason given)");
log::warn!(reason; "New stream closed without associating with a connection");
return None;
}
_ => unreachable!("Deserializing the connection ID should never fail!"),
};
let mut conns = conns.lock().await;
if let Some((streams, client_or_server)) = conns.get(&conn_id) {
if let Some(streams) = streams.upgrade() {
if is_client_stream_id(stream_id) == client_or_server.is_server() {
match streams.lock().await.entry(stream_id) {
Entry::Occupied(mut o) => o.get_mut().ready(reader, writer),
Entry::Vacant(v) => {
v.insert(StreamMapEntry::Ready(reader, writer));
}
}
} else {
log::warn!(stream_id, end:? = client_or_server.is_server();
"Peer initiated stream ID which does not match role");
}
}
None
} else if stream_id == 0 {
let mut streams = HashMap::new();
streams.insert(stream_id, StreamMapEntry::Ready(reader, writer));
let streams = Arc::new(Mutex::new(streams));
conns.insert(conn_id, (Arc::downgrade(&streams), ClientOrServer::Server));
Some(Connection {
id: conn_id,
streams,
node,
peer_node_id,
next_stream_id: Arc::new(AtomicU64::new(1)),
})
} else {
log::warn!(conn_id, stream_id; "Connection does not exist");
None
}
}
})
}