overnet_core/router/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Manages peer<->peer connections and routing packets over links between nodes.

// General structure:
// A router is a collection of: - streams (each with a StreamId<LinkData>)
//                                These are streams of information flow between processes.
//                              - peers (each with a PeerId)
//                                These are other overnet instances in the overlay network.
//                                There is a client oriented and a server oriented peer per
//                                node.
//                              - links (each with a LinkId)
//                                These are connections between this instance and other
//                                instances in the mesh.
// For each node in the mesh, a routing table tracks which link on which to send data to
// that node (said link may be a third node that will be requested to forward datagrams
// on our behalf).

mod service_map;

use self::service_map::ServiceMap;
use crate::future_help::{log_errors, Observer};
use crate::handle_info::{handle_info, HandleKey, HandleType};
use crate::labels::{NodeId, TransferKey};
use crate::peer::{FramedStreamReader, FramedStreamWriter, Peer, PeerConnRef};
use crate::proxy::{
    IntoProxied, ProxyTransferInitiationReceiver, RemoveFromProxyTable, StreamRefSender,
};
use anyhow::{bail, format_err, Context as _, Error};
use async_utils::mutex_ticket::MutexTicket;
use fidl::{AsHandleRef, Channel, EventPair, Handle, HandleBased, Socket};
use fidl_fuchsia_overnet_protocol::{
    ChannelHandle, EventPairHandle, EventPairRights, SocketHandle, SocketType, StreamId, StreamRef,
    ZirconHandle,
};
use fuchsia_async::Task;
use futures::channel::oneshot;
use futures::future::poll_fn;
use futures::lock::Mutex;
use futures::prelude::*;
use futures::ready;
use rand::Rng;
use std::collections::{BTreeMap, HashMap};
use std::pin::pin;
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::{Arc, Weak};
use std::task::{Context, Poll, Waker};
use std::time::Duration;

pub use self::service_map::ListablePeer;

#[derive(Debug)]
enum PendingTransfer {
    Complete(FoundTransfer),
    Waiting(Waker),
}

type PendingTransferMap = BTreeMap<TransferKey, PendingTransfer>;

#[derive(Debug)]
pub(crate) enum FoundTransfer {
    Fused(Handle),
    Remote(FramedStreamWriter, FramedStreamReader),
}

#[derive(Debug)]
pub(crate) enum OpenedTransfer {
    Fused,
    Remote(FramedStreamWriter, FramedStreamReader, Handle),
}

#[derive(Debug)]
#[allow(dead_code)]
enum CircuitState {
    Waiters(Vec<oneshot::Sender<()>>),
    Peer(Arc<Peer>),
}

impl CircuitState {
    fn peer(&self) -> Option<Arc<Peer>> {
        if let CircuitState::Peer(peer) = self {
            Some(Arc::clone(peer))
        } else {
            None
        }
    }
}

#[derive(Debug)]
struct PeerMaps {
    circuit_clients: BTreeMap<NodeId, CircuitState>,
}

/// Wrapper to get the right list_peers behavior.
#[derive(Debug)]
pub struct ListPeersContext(Mutex<Option<Observer<Vec<ListablePeer>>>>);

static LIST_PEERS_CALL: AtomicU64 = AtomicU64::new(0);

impl ListPeersContext {
    /// Implementation of ListPeers fidl method.
    pub async fn list_peers(&self) -> Result<Vec<ListablePeer>, Error> {
        let call_id = LIST_PEERS_CALL.fetch_add(1, Ordering::SeqCst);
        tracing::trace!(list_peers_call = call_id, "get observer");
        let mut obs = self
            .0
            .lock()
            .await
            .take()
            .ok_or_else(|| anyhow::format_err!("Already listing peers"))?;
        tracing::trace!(list_peers_call = call_id, "wait for value");
        let r = obs.next().await;
        tracing::trace!(list_peers_call = call_id, "replace observer");
        *self.0.lock().await = Some(obs);
        tracing::trace!(list_peers_call = call_id, "return");
        Ok(r.unwrap_or_else(Vec::new))
    }
}

/// Whether this node's ascendd clients should be routed to each other
pub enum AscenddClientRouting {
    /// Ascendd client routing is allowed
    Enabled,
    /// Ascendd client routing is prevented
    Disabled,
}

/// Router maintains global state for one node_id.
/// `LinkData` is a token identifying a link for layers above Router.
/// `Time` is a representation of time for the Router, to assist injecting different platforms
/// schemes.
pub struct Router {
    /// Our node id
    node_id: NodeId,
    /// All peers.
    peers: Mutex<PeerMaps>,
    service_map: ServiceMap,
    proxied_streams: Mutex<HashMap<HandleKey, ProxiedHandle>>,
    pending_transfers: Mutex<PendingTransferMap>,
    task: Mutex<Option<Task<()>>>,
    /// Hack to prevent the n^2 scaling of a fully-connected graph of ffxs
    ascendd_client_routing: AtomicBool,
    circuit_node: circuit::ConnectionNode,
}

struct ProxiedHandle {
    remove_sender: futures::channel::oneshot::Sender<RemoveFromProxyTable>,
    original_paired: HandleKey,
    proxy_task: Task<()>,
}

/// Generate a new random node id
fn generate_node_id() -> NodeId {
    rand::thread_rng().gen::<u64>().into()
}

fn sorted<T: std::cmp::Ord>(mut v: Vec<T>) -> Vec<T> {
    v.sort();
    v
}

impl std::fmt::Debug for Router {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Router({:?})", self.node_id)
    }
}

/// This is sent when initiating connections between circuit nodes and must be identical between all
/// such nodes.
const OVERNET_CIRCUIT_PROTOCOL: &'static str = "Overnet:0";

impl Router {
    /// Create a new router. If `router_interval` is given, this router will
    /// behave like an interior node and tell its neighbors about each other.
    pub fn new(router_interval: Option<Duration>) -> Result<Arc<Self>, Error> {
        Router::with_node_id(generate_node_id(), router_interval)
    }

    /// Make a router with a specific node ID.
    pub fn with_node_id(
        node_id: NodeId,
        router_interval: Option<Duration>,
    ) -> Result<Arc<Self>, Error> {
        let service_map = ServiceMap::new(node_id);
        let (new_peer_sender, new_peer_receiver) = futures::channel::mpsc::channel(1);
        let (circuit_node, circuit_connections) = if let Some(interval) = router_interval {
            let (a, b) = circuit::ConnectionNode::new_with_router(
                &node_id.circuit_string(),
                OVERNET_CIRCUIT_PROTOCOL,
                interval,
                new_peer_sender,
            )?;
            (a, b.boxed())
        } else {
            let (a, b) = circuit::ConnectionNode::new(
                &node_id.circuit_string(),
                OVERNET_CIRCUIT_PROTOCOL,
                new_peer_sender,
            )?;
            (a, b.boxed())
        };
        let router = Arc::new(Router {
            node_id,
            service_map,
            peers: Mutex::new(PeerMaps { circuit_clients: BTreeMap::new() }),
            proxied_streams: Mutex::new(HashMap::new()),
            pending_transfers: Mutex::new(PendingTransferMap::new()),
            task: Mutex::new(None),
            // Default is to route all clients to each other. Ffx daemon disabled client routing.
            ascendd_client_routing: AtomicBool::new(true),
            circuit_node,
        });

        let weak_router = Arc::downgrade(&router);
        *router.task.lock().now_or_never().unwrap() = Some(Task::spawn(log_errors(
            run_circuits(weak_router, circuit_connections, new_peer_receiver),
            format!("router {:?} support loop failed", node_id),
        )));

        Ok(router)
    }

    /// Get the circuit protocol node for this router. This will let us create new connections to
    /// other nodes.
    pub fn circuit_node(&self) -> &circuit::Node {
        self.circuit_node.node()
    }

    /// Accessor for the node id of this router.
    pub fn node_id(&self) -> NodeId {
        self.node_id
    }

    /// Accessor for whether to route ascendd clients to each other
    pub fn client_routing(&self) -> AscenddClientRouting {
        if self.ascendd_client_routing.load(std::sync::atomic::Ordering::SeqCst) {
            AscenddClientRouting::Enabled
        } else {
            AscenddClientRouting::Disabled
        }
    }

    /// Setter for whether to route ascendd clients to each other
    pub fn set_client_routing(&self, client_routing: AscenddClientRouting) {
        let client_routing = match client_routing {
            AscenddClientRouting::Enabled => true,
            AscenddClientRouting::Disabled => false,
        };
        self.ascendd_client_routing.store(client_routing, std::sync::atomic::Ordering::SeqCst);
    }

    pub(crate) fn service_map(&self) -> &ServiceMap {
        &self.service_map
    }

    /// Create a new stream to advertised service `service` on remote node id `node`.
    pub async fn connect_to_service(
        self: &Arc<Self>,
        node_id: NodeId,
        service_name: &str,
        chan: Channel,
    ) -> Result<(), Error> {
        let is_local = node_id == self.node_id;
        tracing::trace!(
            %service_name,
            node_id = node_id.0,
            local = is_local,
            "Request connect_to_service",
        );
        if is_local {
            self.service_map().connect(service_name, chan).await
        } else {
            self.client_peer(node_id)
                .await
                .with_context(|| {
                    format_err!(
                        "Fetching client peer for new stream to {:?} for service {:?}",
                        node_id,
                        service_name,
                    )
                })?
                .new_stream(service_name, chan, self)
                .await
        }
    }

    /// Register a service. The callback should connect the given channel to the
    /// service in question.
    pub async fn register_service(
        &self,
        service_name: String,
        provider: impl Fn(fidl::Channel) -> Result<(), Error> + Send + 'static,
    ) -> Result<(), Error> {
        self.service_map().register_service(service_name, provider).await;
        Ok(())
    }

    /// Create a new list_peers context
    pub async fn new_list_peers_context(&self) -> ListPeersContext {
        ListPeersContext(Mutex::new(Some(self.service_map.new_list_peers_observer().await)))
    }

    async fn client_peer(self: &Arc<Self>, peer_node_id: NodeId) -> Result<Arc<Peer>, Error> {
        loop {
            let mut peers = self.peers.lock().await;
            match peers.circuit_clients.get_mut(&peer_node_id) {
                Some(CircuitState::Peer(peer)) => break Ok(Arc::clone(&peer)),
                Some(CircuitState::Waiters(waiters)) => {
                    let (sender, receiver) = oneshot::channel();
                    waiters.push(sender);
                    std::mem::drop(peers);
                    let _ = receiver.await;
                }
                None => {
                    peers.circuit_clients.insert(peer_node_id, CircuitState::Waiters(Vec::new()));
                }
            }
        }
    }

    fn add_proxied(
        self: &Arc<Self>,
        proxied_streams: &mut HashMap<HandleKey, ProxiedHandle>,
        this_handle_key: HandleKey,
        pair_handle_key: HandleKey,
        remove_sender: futures::channel::oneshot::Sender<RemoveFromProxyTable>,
        f: impl 'static + Send + Future<Output = Result<(), Error>>,
    ) {
        let router = Arc::downgrade(&self);
        let proxy_task = Task::spawn(async move {
            if let Err(e) = f.await {
                tracing::trace!(?this_handle_key, ?pair_handle_key, "Proxy failed: {:?}", e);
            } else {
                tracing::trace!(?this_handle_key, ?pair_handle_key, "Proxy completed successfully",);
            }
            if let Some(router) = Weak::upgrade(&router) {
                router.remove_proxied(this_handle_key, pair_handle_key).await;
            }
        });
        assert!(proxied_streams
            .insert(
                this_handle_key,
                ProxiedHandle { remove_sender, original_paired: pair_handle_key, proxy_task },
            )
            .is_none());
    }

    // Remove a proxied handle from our table.
    // Called by proxy::Proxy::drop.
    async fn remove_proxied(
        self: &Arc<Self>,
        this_handle_key: HandleKey,
        pair_handle_key: HandleKey,
    ) {
        let mut proxied_streams = self.proxied_streams.lock().await;
        tracing::trace!(
            node_id = self.node_id.0,
            ?this_handle_key,
            ?pair_handle_key,
            all = ?sorted(proxied_streams.keys().map(|x| *x).collect::<Vec<_>>()),
            "REMOVE_PROXIED",
        );
        if let Some(removed) = proxied_streams.remove(&this_handle_key) {
            assert_eq!(removed.original_paired, pair_handle_key);
            let _ = removed.remove_sender.send(RemoveFromProxyTable::Dropped);
            removed.proxy_task.detach();
        }
    }

    // Prepare a handle to be sent to another machine.
    // Returns a ZirconHandle describing the established proxy.
    pub(crate) async fn send_proxied(
        self: &Arc<Self>,
        handle: Handle,
        conn: PeerConnRef<'_>,
    ) -> Result<ZirconHandle, Error> {
        let raw_handle = handle.raw_handle(); // for debugging
        let info = handle_info(handle.as_handle_ref())
            .with_context(|| format!("Getting handle information for {}", raw_handle))?;
        let mut proxied_streams = self.proxied_streams.lock().await;
        tracing::trace!(
            node_id = self.node_id.0,
            ?handle,
            ?info,
            all = ?sorted(proxied_streams.keys().map(|x| *x).collect::<Vec<_>>()),
            "SEND_PROXIED",
        );
        if let Some(pair) = proxied_streams.remove(&info.pair_handle_key) {
            // This handle is the other end of an already proxied object...
            // Here we need to inform the existing proxy loop that a transfer is going to be
            // initiated, and to where.
            drop(proxied_streams);
            assert_eq!(info.this_handle_key, pair.original_paired);
            tracing::trace!(
                ?handle,
                orig_pair = ?pair.original_paired,
                "Send paired proxied"
            );
            // We allocate a drain stream to flush any messages we've buffered locally to the new
            // endpoint.
            let drain_stream = conn.alloc_uni().await?.into();
            let (stream_ref_sender, stream_ref_receiver) = StreamRefSender::new();
            pair.remove_sender
                .send(RemoveFromProxyTable::InitiateTransfer {
                    paired_handle: handle,
                    drain_stream,
                    stream_ref_sender,
                })
                .map_err(|_| format_err!("Failed to initiate transfer"))?;
            let stream_ref = stream_ref_receiver
                .await
                .with_context(|| format!("waiting for stream_ref for {:?}", raw_handle))?;
            pair.proxy_task.detach();
            match info.handle_type {
                HandleType::Channel(rights) => {
                    Ok(ZirconHandle::Channel(ChannelHandle { stream_ref, rights }))
                }
                HandleType::Socket(socket_type, rights) => {
                    Ok(ZirconHandle::Socket(SocketHandle { stream_ref, socket_type, rights }))
                }
                HandleType::EventPair => Ok(ZirconHandle::EventPair(EventPairHandle {
                    stream_ref,
                    rights: EventPairRights::empty(),
                })),
            }
        } else {
            // This handle (and its pair) is previously unseen... establish a proxy stream for it
            tracing::trace!(?handle, "Send proxied");
            let (tx, rx) = futures::channel::oneshot::channel();
            let rx = ProxyTransferInitiationReceiver::new(rx.map_err(move |_| {
                format_err!(
                    "cancelled transfer via send_proxied {:?}\n{}",
                    info,
                    111 //std::backtrace::Backtrace::force_capture()
                )
            }));
            let (stream_writer, stream_reader) = conn.alloc_bidi().await?;
            let stream_ref = StreamRef::Creating(StreamId { id: stream_writer.id() });
            Ok(match info.handle_type {
                HandleType::Channel(rights) => {
                    self.add_proxied(
                        &mut *proxied_streams,
                        info.this_handle_key,
                        info.pair_handle_key,
                        tx,
                        crate::proxy::spawn_send(
                            Channel::from_handle(handle).into_proxied()?,
                            rx,
                            stream_writer.into(),
                            stream_reader.into(),
                            Arc::downgrade(&self),
                        ),
                    );
                    ZirconHandle::Channel(ChannelHandle { stream_ref, rights })
                }
                HandleType::Socket(socket_type, rights) => {
                    self.add_proxied(
                        &mut *proxied_streams,
                        info.this_handle_key,
                        info.pair_handle_key,
                        tx,
                        crate::proxy::spawn_send(
                            Socket::from_handle(handle).into_proxied()?,
                            rx,
                            stream_writer.into(),
                            stream_reader.into(),
                            Arc::downgrade(&self),
                        ),
                    );
                    ZirconHandle::Socket(SocketHandle { stream_ref, socket_type, rights })
                }
                HandleType::EventPair => {
                    self.add_proxied(
                        &mut *proxied_streams,
                        info.this_handle_key,
                        info.pair_handle_key,
                        tx,
                        crate::proxy::spawn_send(
                            EventPair::from_handle(handle).into_proxied()?,
                            rx,
                            stream_writer.into(),
                            stream_reader.into(),
                            Arc::downgrade(&self),
                        ),
                    );
                    ZirconHandle::EventPair(EventPairHandle {
                        stream_ref,
                        rights: EventPairRights::empty(),
                    })
                }
            })
        }
    }

    // Take a received handle description and construct a fidl::Handle that represents it
    // whilst establishing proxies as required
    pub(crate) async fn recv_proxied(
        self: &Arc<Self>,
        handle: ZirconHandle,
        conn: PeerConnRef<'_>,
    ) -> Result<Handle, Error> {
        match handle {
            ZirconHandle::Channel(ChannelHandle { stream_ref, rights }) => {
                self.recv_proxied_handle(conn, stream_ref, move || Ok(Channel::create()), rights)
                    .await
            }
            ZirconHandle::Socket(SocketHandle { stream_ref, socket_type, rights }) => {
                self.recv_proxied_handle(
                    conn,
                    stream_ref,
                    move || {
                        Ok(match socket_type {
                            SocketType::Stream => Socket::create_stream(),
                            SocketType::Datagram => Socket::create_datagram(),
                        })
                    },
                    rights,
                )
                .await
            }
            ZirconHandle::EventPair(EventPairHandle { stream_ref, rights }) => {
                self.recv_proxied_handle(conn, stream_ref, move || Ok(EventPair::create()), rights)
                    .await
            }
        }
    }

    async fn recv_proxied_handle<Hdl, CreateType>(
        self: &Arc<Self>,
        conn: PeerConnRef<'_>,
        stream_ref: StreamRef,
        create_handles: impl FnOnce() -> Result<(CreateType, CreateType), Error> + 'static,
        rights: CreateType::Rights,
    ) -> Result<Handle, Error>
    where
        Hdl: 'static + for<'a> crate::proxy::ProxyableRW<'a>,
        CreateType: 'static
            + fidl::HandleBased
            + IntoProxied<Proxied = Hdl>
            + std::fmt::Debug
            + crate::handle_info::WithRights,
    {
        let (tx, rx) = futures::channel::oneshot::channel();
        let rx = ProxyTransferInitiationReceiver::new(
            rx.map_err(move |_| format_err!("cancelled transfer via recv_proxied")),
        );
        let (h, p) = crate::proxy::spawn_recv(
            create_handles,
            rights,
            rx,
            stream_ref,
            conn,
            Arc::downgrade(&self),
        )
        .await?;
        if let Some(p) = p {
            let info = handle_info(h.as_handle_ref())?;
            self.add_proxied(
                &mut *self.proxied_streams.lock().await,
                info.pair_handle_key,
                info.this_handle_key,
                tx,
                p,
            );
        }
        Ok(h)
    }

    // Note the endpoint of a transfer that we know about (may complete a transfer operation)
    pub(crate) async fn post_transfer(
        &self,
        transfer_key: TransferKey,
        other_end: FoundTransfer,
    ) -> Result<(), Error> {
        let mut pending_transfers = self.pending_transfers.lock().await;
        match pending_transfers.insert(transfer_key, PendingTransfer::Complete(other_end)) {
            Some(PendingTransfer::Complete(_)) => bail!("Duplicate transfer received"),
            Some(PendingTransfer::Waiting(w)) => w.wake(),
            None => (),
        }
        Ok(())
    }

    fn poll_find_transfer(
        &self,
        ctx: &mut Context<'_>,
        transfer_key: TransferKey,
        lock: &mut MutexTicket<'_, PendingTransferMap>,
    ) -> Poll<Result<FoundTransfer, Error>> {
        let mut pending_transfers = ready!(lock.poll(ctx));
        if let Some(PendingTransfer::Complete(other_end)) = pending_transfers.remove(&transfer_key)
        {
            Poll::Ready(Ok(other_end))
        } else {
            pending_transfers.insert(transfer_key, PendingTransfer::Waiting(ctx.waker().clone()));
            Poll::Pending
        }
    }

    // Lookup a transfer that we're expected to eventually know about
    pub(crate) async fn find_transfer(
        &self,
        transfer_key: TransferKey,
    ) -> Result<FoundTransfer, Error> {
        let mut lock = MutexTicket::new(&self.pending_transfers);
        poll_fn(|ctx| self.poll_find_transfer(ctx, transfer_key, &mut lock)).await
    }

    // Begin a transfer operation (opposite of find_transfer), publishing an endpoint on the remote
    // nodes transfer table.
    pub(crate) async fn open_transfer(
        self: &Arc<Router>,
        target: NodeId,
        transfer_key: TransferKey,
        handle: Handle,
    ) -> Result<OpenedTransfer, Error> {
        if target == self.node_id {
            // The target is local: we just file away the handle.
            // Later, find_transfer will find this and we'll collapse away Overnet's involvement and
            // reunite the channel ends.
            let info = handle_info(handle.as_handle_ref())?;
            let mut proxied_streams = self.proxied_streams.lock().await;
            tracing::trace!(
                node_id = self.node_id.0,
                key = ?transfer_key,
                info = ?info,
                all = ?sorted(proxied_streams.keys().map(|x| *x).collect::<Vec<_>>()),
                "OPEN_TRANSFER_REMOVE_PROXIED",
            );
            if let Some(removed) = proxied_streams.remove(&info.this_handle_key) {
                assert_eq!(removed.original_paired, info.pair_handle_key);
                assert!(removed.remove_sender.send(RemoveFromProxyTable::Dropped).is_ok());
                removed.proxy_task.detach();
            }
            if let Some(removed) = proxied_streams.remove(&info.pair_handle_key) {
                assert_eq!(removed.original_paired, info.this_handle_key);
                assert!(removed.remove_sender.send(RemoveFromProxyTable::Dropped).is_ok());
                removed.proxy_task.detach();
            }
            self.post_transfer(transfer_key, FoundTransfer::Fused(handle)).await?;
            Ok(OpenedTransfer::Fused)
        } else {
            if let Some((writer, reader)) =
                self.client_peer(target).await?.send_open_transfer(transfer_key).await
            {
                Ok(OpenedTransfer::Remote(writer, reader, handle))
            } else {
                bail!("{:?} failed sending open transfer to {:?}", self.node_id, target)
            }
        }
    }

    pub(crate) async fn client_closed(&self, peer_node_id: NodeId) {
        self.peers.lock().await.circuit_clients.remove(&peer_node_id);
    }
}

/// Runs our `ConnectionNode` to set up circuit-based peers.
async fn run_circuits(
    router: Weak<Router>,
    connections: impl futures::Stream<Item = circuit::Connection> + Send,
    peers: impl futures::Stream<Item = String> + Send,
) -> Result<(), Error> {
    // Notes whenever a new peer announces itself on the network.
    let new_peer_fut = {
        let router = router.clone();
        async move {
            let mut peers = pin!(peers);
            while let Some(peer_node_id) = peers.next().await {
                let router = match router.upgrade() {
                    Some(x) => x,
                    None => {
                        tracing::warn!("Router disappeared from under circuit runner");
                        break;
                    }
                };

                let res = async {
                    let peer_node_id_num = NodeId::from_circuit_string(&peer_node_id)
                        .map_err(|_| format_err!("Invalid node id: {:?}", peer_node_id))?;
                    let mut peers = router.peers.lock().await;

                    if peers.circuit_clients.get(&peer_node_id_num).and_then(|x| x.peer()).is_some()
                    {
                        tracing::warn!(peer = ?peer_node_id, "Re-establishing connection");
                    }

                    let (reader, writer_remote) = circuit::stream::stream();
                    let (reader_remote, writer) = circuit::stream::stream();
                    let conn = router
                        .circuit_node
                        .connect_to_peer(&peer_node_id, reader_remote, writer_remote)
                        .await?;
                    let peer = Peer::new_circuit_client(
                        conn,
                        writer,
                        reader,
                        router.service_map.new_local_service_observer().await,
                        &router,
                        peer_node_id_num,
                    )?;

                    if let Some(CircuitState::Waiters(waiters)) =
                        peers.circuit_clients.insert(peer_node_id_num, CircuitState::Peer(peer))
                    {
                        for waiter in waiters {
                            let _ = waiter.send(());
                        }
                    }

                    Result::<_, Error>::Ok(())
                }
                .await;

                if let Err(e) = res {
                    tracing::warn!(peer = ?peer_node_id, "Attempt to connect to peer failed: {:?}", e);
                }
            }
        }
    };

    // Loops over incoming connections and starts servers.
    let new_conn_fut = async move {
        let mut connections = pin!(connections);
        while let Some(conn) = connections.next().await {
            let peer_name = conn.from().to_owned();
            let res = async {
                let router = router.upgrade().ok_or_else(|| format_err!("router gone"))?;
                Peer::new_circuit_server(conn, &router).await?;
                Result::<_, Error>::Ok(())
            }
            .await;

            if let Err(e) = res {
                tracing::warn!(
                    peer = ?peer_name,
                    "Attempt to receive connection from peer failed: {:?}",
                    e
                );
            }
        }
    };

    futures::future::join(new_peer_fut, new_conn_fut).await;
    Ok(())
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::test_util::*;
    use circuit::multi_stream::multi_stream_node_connection;
    use circuit::stream::stream;
    use circuit::Quality;

    #[fuchsia::test]
    async fn no_op(run: usize) {
        let mut node_id_gen = NodeIdGenerator::new("router::no_op", run);
        node_id_gen.new_router().unwrap();
        let id = node_id_gen.next().unwrap();
        assert_eq!(Router::with_node_id(id, None).unwrap().node_id, id);
    }

    async fn register_test_service(
        serving_router: Arc<Router>,
        client_router: Arc<Router>,
        service: &'static str,
    ) -> futures::channel::oneshot::Receiver<Channel> {
        use fuchsia_sync::Mutex;
        let (send, recv) = futures::channel::oneshot::channel();
        serving_router
            .service_map()
            .register_service(service.to_string(), {
                let sender = Mutex::new(Some(send));
                move |chan| {
                    println!("{} got request", service);
                    sender.lock().take().unwrap().send(chan).unwrap();
                    println!("{} forwarded channel", service);
                    Ok(())
                }
            })
            .await;
        let serving_node_id = serving_router.node_id();
        println!("{} wait for service to appear @ client", service);
        let lpc = client_router.new_list_peers_context().await;
        loop {
            let peers = lpc.list_peers().await.unwrap();
            println!("{} got peers {:?}", service, peers);
            if peers
                .iter()
                .find(move |peer| {
                    serving_node_id == peer.node_id
                        && peer
                            .services
                            .iter()
                            .find(move |&advertised_service| advertised_service == service)
                            .is_some()
                })
                .is_some()
            {
                break;
            }
        }
        recv
    }

    async fn run_two_node<
        F: 'static + Clone + Sync + Send + Fn(Arc<Router>, Arc<Router>) -> Fut,
        Fut: 'static + Send + Future<Output = Result<(), Error>>,
    >(
        name: &'static str,
        run: usize,
        f: F,
    ) -> Result<(), Error> {
        let mut node_id_gen = NodeIdGenerator::new(name, run);
        let router1 = node_id_gen.new_router()?;
        let router2 = node_id_gen.new_router()?;
        let (circuit1_reader, circuit1_writer) = stream();
        let (circuit2_reader, circuit2_writer) = stream();
        let (out_1, _) = futures::channel::mpsc::unbounded();
        let (out_2, _) = futures::channel::mpsc::unbounded();

        let conn_1 = multi_stream_node_connection(
            router1.circuit_node(),
            circuit1_reader,
            circuit2_writer,
            true,
            Quality::IN_PROCESS,
            out_1,
            "router1".to_owned(),
        );
        let conn_2 = multi_stream_node_connection(
            router2.circuit_node(),
            circuit2_reader,
            circuit1_writer,
            false,
            Quality::IN_PROCESS,
            out_2,
            "router2".to_owned(),
        );
        let _fwd = Task::spawn(async move {
            if let Err(e) = futures::future::try_join(conn_1, conn_2).await {
                tracing::trace!("forwarding failed: {:?}", e)
            }
        });
        f(router1, router2).await
    }

    #[fuchsia::test]
    async fn no_op_env(run: usize) -> Result<(), Error> {
        run_two_node("router::no_op_env", run, |_router1, _router2| async { Ok(()) }).await
    }

    #[fuchsia::test]
    async fn create_stream(run: usize) -> Result<(), Error> {
        run_two_node("create_stream", run, |router1, router2| async move {
            let (_, p) = fidl::Channel::create();
            println!("create_stream: register service");
            let s = register_test_service(router2.clone(), router1.clone(), "create_stream").await;
            println!("create_stream: connect to service");
            router1.connect_to_service(router2.node_id, "create_stream", p).await?;
            println!("create_stream: wait for connection");
            let _ = s.await?;
            Ok(())
        })
        .await
    }

    #[fuchsia::test]
    async fn send_datagram_immediately(run: usize) -> Result<(), Error> {
        run_two_node("send_datagram_immediately", run, |router1, router2| async move {
            let (c, p) = fidl::Channel::create();
            println!("send_datagram_immediately: register service");
            let s = register_test_service(
                router2.clone(),
                router1.clone(),
                "send_datagram_immediately",
            )
            .await;
            println!("send_datagram_immediately: connect to service");
            router1.connect_to_service(router2.node_id, "send_datagram_immediately", p).await?;
            println!("send_datagram_immediately: wait for connection");
            let s = s.await?;
            let c = fidl::AsyncChannel::from_channel(c);
            let s = fidl::AsyncChannel::from_channel(s);
            c.write(&[1, 2, 3, 4, 5], &mut Vec::new())?;
            let mut buf = fidl::MessageBufEtc::new();
            println!("send_datagram_immediately: wait for datagram");
            s.recv_etc_msg(&mut buf).await?;
            assert_eq!(buf.n_handle_infos(), 0);
            assert_eq!(buf.bytes(), &[1, 2, 3, 4, 5]);
            Ok(())
        })
        .await
    }

    #[fuchsia::test]
    async fn ping_pong(run: usize) -> Result<(), Error> {
        run_two_node("ping_pong", run, |router1, router2| async move {
            let (c, p) = fidl::Channel::create();
            println!("ping_pong: register service");
            let s = register_test_service(router2.clone(), router1.clone(), "ping_pong").await;
            println!("ping_pong: connect to service");
            router1.connect_to_service(router2.node_id, "ping_pong", p).await?;
            println!("ping_pong: wait for connection");
            let s = s.await?;
            let c = fidl::AsyncChannel::from_channel(c);
            let s = fidl::AsyncChannel::from_channel(s);
            println!("ping_pong: send ping");
            c.write(&[1, 2, 3, 4, 5], &mut Vec::new())?;
            println!("ping_pong: receive ping");
            let mut buf = fidl::MessageBufEtc::new();
            s.recv_etc_msg(&mut buf).await?;
            assert_eq!(buf.n_handle_infos(), 0);
            assert_eq!(buf.bytes(), &[1, 2, 3, 4, 5]);
            println!("ping_pong: send pong");
            s.write(&[9, 8, 7, 6, 5, 4, 3, 2, 1], &mut Vec::new())?;
            println!("ping_pong: receive pong");
            let mut buf = fidl::MessageBufEtc::new();
            c.recv_etc_msg(&mut buf).await?;
            assert_eq!(buf.n_handle_infos(), 0);
            assert_eq!(buf.bytes(), &[9, 8, 7, 6, 5, 4, 3, 2, 1]);
            Ok(())
        })
        .await
    }

    fn ensure_pending(f: &mut (impl Send + Unpin + Future<Output = ()>)) {
        let mut ctx = Context::from_waker(futures::task::noop_waker_ref());
        // Poll a bunch of times to convince ourselves the future is pending forever...
        for _ in 0..1000 {
            assert!(f.poll_unpin(&mut ctx).is_pending());
        }
    }

    #[fuchsia::test]
    async fn concurrent_list_peer_calls_will_error(run: usize) -> Result<(), Error> {
        let mut node_id_gen = NodeIdGenerator::new("concurrent_list_peer_calls_will_error", run);
        let n = node_id_gen.new_router().unwrap();
        let lp = n.new_list_peers_context().await;
        lp.list_peers().await.unwrap();
        let mut never_completes = async {
            lp.list_peers().await.unwrap();
        }
        .boxed();
        ensure_pending(&mut never_completes);
        lp.list_peers().await.expect_err("Concurrent list peers should fail");
        ensure_pending(&mut never_completes);
        Ok(())
    }
}