tokio/runtime/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
//! The Tokio runtime.
//!
//! Unlike other Rust programs, asynchronous applications require runtime
//! support. In particular, the following runtime services are necessary:
//!
//! * An **I/O event loop**, called the driver, which drives I/O resources and
//! dispatches I/O events to tasks that depend on them.
//! * A **scheduler** to execute [tasks] that use these I/O resources.
//! * A **timer** for scheduling work to run after a set period of time.
//!
//! Tokio's [`Runtime`] bundles all of these services as a single type, allowing
//! them to be started, shut down, and configured together. However, often it is
//! not required to configure a [`Runtime`] manually, and a user may just use the
//! [`tokio::main`] attribute macro, which creates a [`Runtime`] under the hood.
//!
//! # Usage
//!
//! When no fine tuning is required, the [`tokio::main`] attribute macro can be
//! used.
//!
//! ```no_run
//! use tokio::net::TcpListener;
//! use tokio::io::{AsyncReadExt, AsyncWriteExt};
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let listener = TcpListener::bind("127.0.0.1:8080").await?;
//!
//! loop {
//! let (mut socket, _) = listener.accept().await?;
//!
//! tokio::spawn(async move {
//! let mut buf = [0; 1024];
//!
//! // In a loop, read data from the socket and write the data back.
//! loop {
//! let n = match socket.read(&mut buf).await {
//! // socket closed
//! Ok(n) if n == 0 => return,
//! Ok(n) => n,
//! Err(e) => {
//! println!("failed to read from socket; err = {:?}", e);
//! return;
//! }
//! };
//!
//! // Write the data back
//! if let Err(e) = socket.write_all(&buf[0..n]).await {
//! println!("failed to write to socket; err = {:?}", e);
//! return;
//! }
//! }
//! });
//! }
//! }
//! ```
//!
//! From within the context of the runtime, additional tasks are spawned using
//! the [`tokio::spawn`] function. Futures spawned using this function will be
//! executed on the same thread pool used by the [`Runtime`].
//!
//! A [`Runtime`] instance can also be used directly.
//!
//! ```no_run
//! use tokio::net::TcpListener;
//! use tokio::io::{AsyncReadExt, AsyncWriteExt};
//! use tokio::runtime::Runtime;
//!
//! fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Create the runtime
//! let rt = Runtime::new()?;
//!
//! // Spawn the root task
//! rt.block_on(async {
//! let listener = TcpListener::bind("127.0.0.1:8080").await?;
//!
//! loop {
//! let (mut socket, _) = listener.accept().await?;
//!
//! tokio::spawn(async move {
//! let mut buf = [0; 1024];
//!
//! // In a loop, read data from the socket and write the data back.
//! loop {
//! let n = match socket.read(&mut buf).await {
//! // socket closed
//! Ok(n) if n == 0 => return,
//! Ok(n) => n,
//! Err(e) => {
//! println!("failed to read from socket; err = {:?}", e);
//! return;
//! }
//! };
//!
//! // Write the data back
//! if let Err(e) = socket.write_all(&buf[0..n]).await {
//! println!("failed to write to socket; err = {:?}", e);
//! return;
//! }
//! }
//! });
//! }
//! })
//! }
//! ```
//!
//! ## Runtime Configurations
//!
//! Tokio provides multiple task scheduling strategies, suitable for different
//! applications. The [runtime builder] or `#[tokio::main]` attribute may be
//! used to select which scheduler to use.
//!
//! #### Multi-Thread Scheduler
//!
//! The multi-thread scheduler executes futures on a _thread pool_, using a
//! work-stealing strategy. By default, it will start a worker thread for each
//! CPU core available on the system. This tends to be the ideal configuration
//! for most applications. The multi-thread scheduler requires the `rt-multi-thread`
//! feature flag, and is selected by default:
//! ```
//! use tokio::runtime;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let threaded_rt = runtime::Runtime::new()?;
//! # Ok(()) }
//! ```
//!
//! Most applications should use the multi-thread scheduler, except in some
//! niche use-cases, such as when running only a single thread is required.
//!
//! #### Current-Thread Scheduler
//!
//! The current-thread scheduler provides a _single-threaded_ future executor.
//! All tasks will be created and executed on the current thread. This requires
//! the `rt` feature flag.
//! ```
//! use tokio::runtime;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let rt = runtime::Builder::new_current_thread()
//! .build()?;
//! # Ok(()) }
//! ```
//!
//! #### Resource drivers
//!
//! When configuring a runtime by hand, no resource drivers are enabled by
//! default. In this case, attempting to use networking types or time types will
//! fail. In order to enable these types, the resource drivers must be enabled.
//! This is done with [`Builder::enable_io`] and [`Builder::enable_time`]. As a
//! shorthand, [`Builder::enable_all`] enables both resource drivers.
//!
//! ## Lifetime of spawned threads
//!
//! The runtime may spawn threads depending on its configuration and usage. The
//! multi-thread scheduler spawns threads to schedule tasks and for `spawn_blocking`
//! calls.
//!
//! While the `Runtime` is active, threads may shut down after periods of being
//! idle. Once `Runtime` is dropped, all runtime threads have usually been
//! terminated, but in the presence of unstoppable spawned work are not
//! guaranteed to have been terminated. See the
//! [struct level documentation](Runtime#shutdown) for more details.
//!
//! [tasks]: crate::task
//! [`Runtime`]: Runtime
//! [`tokio::spawn`]: crate::spawn
//! [`tokio::main`]: ../attr.main.html
//! [runtime builder]: crate::runtime::Builder
//! [`Runtime::new`]: crate::runtime::Runtime::new
//! [`Builder::threaded_scheduler`]: crate::runtime::Builder::threaded_scheduler
//! [`Builder::enable_io`]: crate::runtime::Builder::enable_io
//! [`Builder::enable_time`]: crate::runtime::Builder::enable_time
//! [`Builder::enable_all`]: crate::runtime::Builder::enable_all
// At the top due to macros
#[cfg(test)]
#[cfg(not(target_family = "wasm"))]
#[macro_use]
mod tests;
pub(crate) mod context;
pub(crate) mod coop;
pub(crate) mod park;
mod driver;
pub(crate) mod scheduler;
cfg_io_driver_impl! {
pub(crate) mod io;
}
cfg_process_driver! {
mod process;
}
cfg_time! {
pub(crate) mod time;
}
cfg_signal_internal_and_unix! {
pub(crate) mod signal;
}
cfg_rt! {
pub(crate) mod task;
mod config;
use config::Config;
mod blocking;
#[cfg_attr(target_os = "wasi", allow(unused_imports))]
pub(crate) use blocking::spawn_blocking;
cfg_trace! {
pub(crate) use blocking::Mandatory;
}
cfg_fs! {
pub(crate) use blocking::spawn_mandatory_blocking;
}
mod builder;
pub use self::builder::Builder;
cfg_unstable! {
mod id;
#[cfg_attr(not(tokio_unstable), allow(unreachable_pub))]
pub use id::Id;
pub use self::builder::UnhandledPanic;
pub use crate::util::rand::RngSeed;
}
cfg_taskdump! {
pub mod dump;
pub use dump::Dump;
}
mod handle;
pub use handle::{EnterGuard, Handle, TryCurrentError};
mod runtime;
pub use runtime::{Runtime, RuntimeFlavor};
mod thread_id;
pub(crate) use thread_id::ThreadId;
cfg_metrics! {
mod metrics;
pub use metrics::{RuntimeMetrics, HistogramScale};
pub(crate) use metrics::{MetricsBatch, SchedulerMetrics, WorkerMetrics, HistogramBuilder};
cfg_net! {
pub(crate) use metrics::IoDriverMetrics;
}
}
cfg_not_metrics! {
pub(crate) mod metrics;
pub(crate) use metrics::{SchedulerMetrics, WorkerMetrics, MetricsBatch, HistogramBuilder};
}
/// After thread starts / before thread stops
type Callback = std::sync::Arc<dyn Fn() + Send + Sync>;
}