netstack3_ip/device/
opaque_iid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Opaque interface identifier (IID) used in SLAAC.

use core::fmt::{self, Debug};

use hmac::Mac as _;
use net_types::ip::{Ipv6Addr, Subnet};
use rand::Rng;

/// The length in bytes of the `secret_key` argument to
/// [`generate_opaque_interface_identifier`].
const IID_SECRET_KEY_BYTES: usize = 32;

/// A secret for generating [`OpaqueIid`]s.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct IidSecret([u8; IID_SECRET_KEY_BYTES]);

impl IidSecret {
    /// A static secret for use in tests.
    #[cfg(any(test, feature = "testutils"))]
    pub const ALL_ONES: Self = Self([1u8; IID_SECRET_KEY_BYTES]);

    /// Creates a new random secret with the provided `rng`.
    pub fn new_random<R: Rng>(rng: &mut R) -> Self {
        let mut bytes = [0u8; IID_SECRET_KEY_BYTES];
        rng.fill(&mut bytes[..]);
        Self(bytes)
    }
}

impl Debug for IidSecret {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Avoid putting the secret in logs.
        f.write_str("IidSecret(..)")
    }
}

type HmacSha256 = hmac::Hmac<sha2::Sha256>;

/// An opaque interface identifier (IID).
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct OpaqueIid(u128);

impl OpaqueIid {
    /// Computes an opaque interface identifier (IID) using the algorithm in [RFC
    /// 7217 Section 5].
    ///
    /// Each argument to `generate_opaque_interface_identifier` corresponds to an
    /// argument from Section 5 of the RFC:
    /// - `prefix` corresponds to the "Prefix" argument
    /// - `net_iface` corresponds to the "Net_Iface" argument
    /// - `net_id` corresponds to the "Network_ID" argument
    /// - `nonce` corresponds to the "DAD_Counter" argument if nonce =
    /// [`OpaqueIidNonce::DadCounter`]
    /// - `secret_key` corresponds to the "secret_key" argument
    ///
    /// Callers can set `nonce` = [`OpaqueIidNonce::Random(x)`] to pass in a
    /// randomly-generated value. This guaranteese the caller similar privacy
    /// properties as the original algorithm specified in the RFC without requiring
    /// that they keep state in the form of a DAD count.
    ///
    /// For fixed inputs, the output of `generate_opaque_interface_identifier` is
    /// guaranteed to be stable across versions this codebase.
    ///
    /// [RFC 7217 Section 5]: https://tools.ietf.org/html/rfc7217#section-5
    pub fn new<IF, ID>(
        prefix: Subnet<Ipv6Addr>,
        net_iface: IF,
        net_id: ID,
        dad_counter: OpaqueIidNonce,
        secret_key: &IidSecret,
    ) -> Self
    where
        IF: AsRef<[u8]>,
        ID: AsRef<[u8]>,
    {
        // OVERVIEW
        //
        // This algorithm is simple - use a cryptographically-secure hash-based
        // message authentication code (HMAC). Use the `secret_key` as the HMAC's
        // key, and the other arguments as the HMAC's input.
        //
        // HMACs and PRFs
        //
        // Per RFC 7217 Section 5, the function, "F()", must satisfy the following
        // requirements:
        //
        //  A pseudorandom function (PRF) that MUST NOT be computable from the
        //  outside (without knowledge of the secret key).  F() MUST also be
        //  difficult to reverse, such that it resists attempts to obtain the
        //  secret_key, even when given samples of the output of F() and knowledge
        //  or control of the other input parameters. F() SHOULD produce an output
        //  of at least 64 bits.  F() could be implemented as a cryptographic hash
        //  of the concatenation of each of the function parameters.
        //
        // For some HMACs, given an HMAC and a key, k, which is unknown to an
        // attacker, F(p) = HMAC(k, p) is a PRF. HMAC-SHA256 is *almost certainly*
        // one such HMAC. [1] Thus, the construction here satisfies the PRF
        // requirement.
        //
        // ALGORITHM
        //
        // Our primary goal is to ensure that `generate_opaque_interface_identifier`
        // implements a PRF. Our HMAC implements a PRF, and we just truncate its
        // output to 128 bits and return it. [5] Thus, all we need to do is not
        // somehow negate the HMAC's PRF property in constructing its input.
        //
        // A trivial way to do this is to ensure that any two distinct inputs to
        // `generate_opaque_interface_identifier` will result in a distinct byte
        // sequence being fed to the HMAC. We do this by feeding each input to the
        // HMAC one at a time and, for the variable-length inputs, prefixing them
        // with a fixed-length binary representation of their length. [6]
        //
        // [1] See [2]. There is some subtlety [3], however HMAC-SHA256 is used as a
        //     PRF in existing standards (e.g., [4]), and thus it is almost
        //     certainly good enough for the present purpose.
        // [2] https://en.wikipedia.org/wiki/HMAC#Security
        // [3] https://crypto.stackexchange.com/questions/88165/is-hmac-sha256-a-prf
        // [4] https://tools.ietf.org/html/rfc4868
        // [5] A PRF whose output is truncated is still a PRF. A quick proof sketch:
        //
        //     A function is a PRF if, having been drawn uniformly at random from
        //     a larger set of functions (known as a "PRF family"), there does not
        //     exist a polynomial-time adversary who is able to distinguish the
        //     function from a random oracle [7] (a "distinguisher").
        //
        //     Let f be a PRF. Let g(x) = truncate(f(x), N) be a truncated version
        //     of f which returns only the first N bits of f's output. Assume (by
        //     of contradiction) that g is not a PRF. Thus, there exists a
        //     distinguisher, D, for g. Given D, we can construct a new
        //     distinguisher, E, as follows: E(f) = D(g(x) = truncate(f(x), N)).
        //     Since truncate(f(x), N) is equivalent to g(x), then by definition,
        //     A(g(x) = truncate(f(x), N)) is able to distinguish its input from a
        //     random oracle. Thus, E is able to distinguish its input from a random
        //     oracle. This means that E is a distinguisher for f, which implies
        //     that f is not a PRF, which is a contradiction. Thus, g, the truncated
        //     version of f, is a PRF.
        // [6] This representation ensures that it is always possible to reverse the
        //     encoding and decompose the encoding into the separate arguments to
        //     `generate_opaque_interface_identifier`. This implies that no two
        //     sets of inputs to `generate_opaque_interface_identifier` will ever
        //     produce the same encoding.
        // [7] https://en.wikipedia.org/wiki/Random_oracle

        fn write_u64(hmac: &mut HmacSha256, u: u64) {
            hmac.update(&u.to_be_bytes());
        }

        fn write_usize(hmac: &mut HmacSha256, u: usize) {
            // Write `usize` values as `u64` so that we always write the same number
            // of bytes regardless of the platform.
            //
            // This `unwrap` is guaranteed not to panic unless we a) run on a
            // 128-bit platform and, b) call `generate_opaque_interface_identifier`
            // on a byte slice which is larger than 2^64 bytes.
            write_u64(hmac, u.try_into().unwrap())
        }

        let IidSecret(secret_key) = secret_key;
        let mut hmac = HmacSha256::new_from_slice(&secret_key[..]).expect("create new HmacSha256");

        // Write prefix address; no need to prefix with length because this is
        // always the same length.
        hmac.update(&prefix.network().ipv6_bytes());
        // Write prefix length, which is a single byte.
        hmac.update(&[prefix.prefix()][..]);

        // `net_iface` is variable length, so write its length first. We make sure
        // to call `net_iface.as_ref()` once and then use its return value in case
        // the `AsRef::as_ref` implementation doesn't always return the same number
        // of bytes, which would break the security of this algorithm.
        let net_iface = net_iface.as_ref();
        write_usize(&mut hmac, net_iface.len());
        hmac.update(net_iface);

        // `net_id` is variable length, so write its length first. We make sure to
        // call `net_iface.as_ref()` once and then use its return value in case the
        // `AsRef::as_ref` implementation doesn't always return the same number of
        // bytes, which would break the security of this algorithm.
        let net_id = net_id.as_ref();
        write_usize(&mut hmac, net_id.len());
        hmac.update(net_id);

        write_u64(&mut hmac, dad_counter.into());

        let hmac_bytes: [u8; 32] = hmac.finalize().into_bytes().into();
        Self(u128::from_be_bytes((&hmac_bytes[..16]).try_into().unwrap()))
    }

    /// Copies the bytes from this identifier in Big Endian representation.
    pub fn to_be_bytes(&self) -> [u8; 16] {
        let Self(i) = self;
        i.to_be_bytes()
    }
}

/// Describes the value being used as the nonce for
/// [`generate_opaque_interface_identifier`].
///
/// See the function documentation for more info.
#[derive(Copy, Clone, Debug)]
#[allow(missing_docs)]
pub enum OpaqueIidNonce {
    // TODO(https://fxbug.dev/42148800): Remove cfg(test) when this is used
    // to generate static opaque identifiers.
    #[cfg(test)]
    DadCounter(u8),
    Random(u64),
}

impl From<OpaqueIidNonce> for u64 {
    fn from(nonce: OpaqueIidNonce) -> Self {
        match nonce {
            #[cfg(test)]
            OpaqueIidNonce::DadCounter(count) => count.into(),
            OpaqueIidNonce::Random(random) => random,
        }
    }
}

#[cfg(test)]
mod tests {
    use net_types::ip::Ipv6;

    use super::*;

    #[test]
    fn test_generate_opaque_interface_identifier() {
        // Default values for arguments. When testing a particular argument,
        // these can be used for the values of the other arguments.
        let default_prefix = Ipv6::SITE_LOCAL_UNICAST_SUBNET;
        let default_net_iface = &[0, 1, 2];
        let default_net_id = &[3, 4, 5];
        let default_dad_counter = OpaqueIidNonce::DadCounter(0);
        let default_secret_key = &IidSecret::ALL_ONES;

        // Test that the same arguments produce the same output.
        let iid0 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            default_net_id,
            default_dad_counter,
            default_secret_key,
        );
        let iid1 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            default_net_id,
            default_dad_counter,
            default_secret_key,
        );
        assert_eq!(iid0, iid1);

        // Test that modifications to any byte of `net_iface` cause a change
        // to the output.
        let net_iface = &mut default_net_iface.clone();
        let iid0 = OpaqueIid::new(
            default_prefix,
            &net_iface[..],
            default_net_id,
            default_dad_counter,
            default_secret_key,
        );
        for i in 0..net_iface.len() {
            net_iface[i] += 1;
            let iid1 = OpaqueIid::new(
                default_prefix,
                &net_iface[..],
                default_net_id,
                default_dad_counter,
                default_secret_key,
            );
            net_iface[i] -= 1;
            assert_ne!(iid0, iid1);
        }

        // Test that modifications to any byte of `net_id` cause a change to the
        // output.
        let net_id = &mut default_net_id.clone();
        let iid0 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            &net_id[..],
            default_dad_counter,
            default_secret_key,
        );
        for i in 0..net_id.len() {
            net_id[i] += 1;
            let iid1 = OpaqueIid::new(
                default_prefix,
                default_net_iface,
                &net_id[..],
                default_dad_counter,
                default_secret_key,
            );
            net_id[i] -= 1;
            assert_ne!(iid0, iid1);
        }

        // Test that moving a byte between `net_iface` and `net_id` causes a
        // change in the output.
        let iid0 = OpaqueIid::new(
            default_prefix,
            &[0, 1, 2],
            &[3, 4, 5],
            default_dad_counter,
            default_secret_key,
        );
        let iid1 = OpaqueIid::new(
            default_prefix,
            &[0, 1, 2, 3],
            &[4, 5],
            default_dad_counter,
            default_secret_key,
        );
        let iid2 = OpaqueIid::new(
            default_prefix,
            &[0, 1],
            &[2, 3, 4, 5],
            default_dad_counter,
            default_secret_key,
        );
        assert_ne!(iid0, iid1);
        assert_ne!(iid0, iid2);
        assert_ne!(iid1, iid2);

        // Test that a change to `dad_counter` causes a change in the output.
        let iid0 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            default_net_id,
            default_dad_counter,
            default_secret_key,
        );
        let iid1 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            default_net_id,
            OpaqueIidNonce::DadCounter(1),
            default_secret_key,
        );
        assert_ne!(iid0, iid1);

        // Test that a change to `secret_key` causes a change in the output.
        let iid0 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            default_net_id,
            default_dad_counter,
            default_secret_key,
        );
        let mut secret_key = default_secret_key.clone();
        secret_key.0[0] += 1;
        let iid1 = OpaqueIid::new(
            default_prefix,
            default_net_iface,
            default_net_id,
            default_dad_counter,
            &secret_key,
        );
        assert_ne!(iid0, iid1);
    }

    #[test]
    fn test_stable_outputs() {
        // generate_opaque_interface_identifier guarantees that it provides a stable output across
        // codebase versions. This test case asserts that, and should not be changed!
        const PREFIX: Subnet<Ipv6Addr> = Ipv6::SITE_LOCAL_UNICAST_SUBNET;
        const NET_IFACE: &[u8] = &[0, 1, 2];
        const NET_ID: &[u8] = &[3, 4, 5];
        const DAD_COUNTER: OpaqueIidNonce = OpaqueIidNonce::DadCounter(0);

        assert_eq!(
            OpaqueIid::new(PREFIX, NET_IFACE, NET_ID, DAD_COUNTER, &IidSecret::ALL_ONES),
            OpaqueIid(255541303695013087662815070945404751656),
        );
    }
}