rand/rng.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! [`Rng`] trait
use rand_core::{Error, RngCore};
use crate::distributions::uniform::{SampleRange, SampleUniform};
use crate::distributions::{self, Distribution, Standard};
use core::num::Wrapping;
use core::{mem, slice};
/// An automatically-implemented extension trait on [`RngCore`] providing high-level
/// generic methods for sampling values and other convenience methods.
///
/// This is the primary trait to use when generating random values.
///
/// # Generic usage
///
/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
/// things are worth noting here:
///
/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
/// difference whether we use `R: Rng` or `R: RngCore`.
/// - The `+ ?Sized` un-bounding allows functions to be called directly on
/// type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without
/// this it would be necessary to write `foo(&mut r)`.
///
/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
/// trade-offs. It allows the argument to be consumed directly without a `&mut`
/// (which is how `from_rng(thread_rng())` works); also it still works directly
/// on references (including type-erased references). Unfortunately within the
/// function `foo` it is not known whether `rng` is a reference type or not,
/// hence many uses of `rng` require an extra reference, either explicitly
/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
/// optimiser can remove redundant references later.
///
/// Example:
///
/// ```
/// # use rand::thread_rng;
/// use rand::Rng;
///
/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
/// rng.gen()
/// }
///
/// # let v = foo(&mut thread_rng());
/// ```
pub trait Rng: RngCore {
/// Return a random value supporting the [`Standard`] distribution.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x: u32 = rng.gen();
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
///
/// # Arrays and tuples
///
/// The `rng.gen()` method is able to generate arrays (up to 32 elements)
/// and tuples (up to 12 elements), so long as all element types can be
/// generated.
/// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support
/// arrays larger than 32 elements.
///
/// For arrays of integers, especially for those with small element types
/// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
///
/// let arr1: [f32; 32] = rng.gen(); // array construction
/// let mut arr2 = [0u8; 128];
/// rng.fill(&mut arr2); // array fill
/// ```
///
/// [`Standard`]: distributions::Standard
#[inline]
fn gen<T>(&mut self) -> T
where Standard: Distribution<T> {
Standard.sample(self)
}
/// Generate a random value in the given range.
///
/// This function is optimised for the case that only a single sample is
/// made from the given range. See also the [`Uniform`] distribution
/// type which may be faster if sampling from the same range repeatedly.
///
/// Only `gen_range(low..high)` and `gen_range(low..=high)` are supported.
///
/// # Panics
///
/// Panics if the range is empty.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
///
/// // Exclusive range
/// let n: u32 = rng.gen_range(0..10);
/// println!("{}", n);
/// let m: f64 = rng.gen_range(-40.0..1.3e5);
/// println!("{}", m);
///
/// // Inclusive range
/// let n: u32 = rng.gen_range(0..=10);
/// println!("{}", n);
/// ```
///
/// [`Uniform`]: distributions::uniform::Uniform
fn gen_range<T, R>(&mut self, range: R) -> T
where
T: SampleUniform,
R: SampleRange<T>
{
assert!(!range.is_empty(), "cannot sample empty range");
range.sample_single(self)
}
/// Sample a new value, using the given distribution.
///
/// ### Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::Uniform;
///
/// let mut rng = thread_rng();
/// let x = rng.sample(Uniform::new(10u32, 15));
/// // Type annotation requires two types, the type and distribution; the
/// // distribution can be inferred.
/// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
/// ```
fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
distr.sample(self)
}
/// Create an iterator that generates values using the given distribution.
///
/// Note that this function takes its arguments by value. This works since
/// `(&mut R): Rng where R: Rng` and
/// `(&D): Distribution where D: Distribution`,
/// however borrowing is not automatic hence `rng.sample_iter(...)` may
/// need to be replaced with `(&mut rng).sample_iter(...)`.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::{Alphanumeric, Uniform, Standard};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect();
///
/// // String:
/// let s: String = (&mut rng).sample_iter(Alphanumeric)
/// .take(7)
/// .map(char::from)
/// .collect();
///
/// // Combined values
/// println!("{:?}", (&mut rng).sample_iter(Standard).take(5)
/// .collect::<Vec<(f64, bool)>>());
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
/// let mut roll_die = (&mut rng).sample_iter(die_range);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
where
D: Distribution<T>,
Self: Sized,
{
distr.sample_iter(self)
}
/// Fill any type implementing [`Fill`] with random data
///
/// The distribution is expected to be uniform with portable results, but
/// this cannot be guaranteed for third-party implementations.
///
/// This is identical to [`try_fill`] except that it panics on error.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut arr = [0i8; 20];
/// thread_rng().fill(&mut arr[..]);
/// ```
///
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill`]: Rng::try_fill
fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) {
dest.try_fill(self).unwrap_or_else(|_| panic!("Rng::fill failed"))
}
/// Fill any type implementing [`Fill`] with random data
///
/// The distribution is expected to be uniform with portable results, but
/// this cannot be guaranteed for third-party implementations.
///
/// This is identical to [`fill`] except that it forwards errors.
///
/// # Example
///
/// ```
/// # use rand::Error;
/// use rand::{thread_rng, Rng};
///
/// # fn try_inner() -> Result<(), Error> {
/// let mut arr = [0u64; 4];
/// thread_rng().try_fill(&mut arr[..])?;
/// # Ok(())
/// # }
///
/// # try_inner().unwrap()
/// ```
///
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
/// [`fill`]: Rng::fill
fn try_fill<T: Fill + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
dest.try_fill(self)
}
/// Return a bool with a probability `p` of being true.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same probability repeatedly.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_bool(1.0 / 3.0));
/// ```
///
/// # Panics
///
/// If `p < 0` or `p > 1`.
///
/// [`Bernoulli`]: distributions::Bernoulli
#[inline]
fn gen_bool(&mut self, p: f64) -> bool {
let d = distributions::Bernoulli::new(p).unwrap();
self.sample(d)
}
/// Return a bool with a probability of `numerator/denominator` of being
/// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
/// returning true. If `numerator == denominator`, then the returned value
/// is guaranteed to be `true`. If `numerator == 0`, then the returned
/// value is guaranteed to be `false`.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same `numerator` and `denominator` repeatedly.
///
/// # Panics
///
/// If `denominator == 0` or `numerator > denominator`.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_ratio(2, 3));
/// ```
///
/// [`Bernoulli`]: distributions::Bernoulli
#[inline]
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
self.sample(d)
}
}
impl<R: RngCore + ?Sized> Rng for R {}
/// Types which may be filled with random data
///
/// This trait allows arrays to be efficiently filled with random data.
///
/// Implementations are expected to be portable across machines unless
/// clearly documented otherwise (see the
/// [Chapter on Portability](https://rust-random.github.io/book/portability.html)).
pub trait Fill {
/// Fill self with random data
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error>;
}
macro_rules! impl_fill_each {
() => {};
($t:ty) => {
impl Fill for [$t] {
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
for elt in self.iter_mut() {
*elt = rng.gen();
}
Ok(())
}
}
};
($t:ty, $($tt:ty,)*) => {
impl_fill_each!($t);
impl_fill_each!($($tt,)*);
};
}
impl_fill_each!(bool, char, f32, f64,);
impl Fill for [u8] {
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
rng.try_fill_bytes(self)
}
}
macro_rules! impl_fill {
() => {};
($t:ty) => {
impl Fill for [$t] {
#[inline(never)] // in micro benchmarks, this improves performance
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
if self.len() > 0 {
rng.try_fill_bytes(unsafe {
slice::from_raw_parts_mut(self.as_mut_ptr()
as *mut u8,
self.len() * mem::size_of::<$t>()
)
})?;
for x in self {
*x = x.to_le();
}
}
Ok(())
}
}
impl Fill for [Wrapping<$t>] {
#[inline(never)]
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
if self.len() > 0 {
rng.try_fill_bytes(unsafe {
slice::from_raw_parts_mut(self.as_mut_ptr()
as *mut u8,
self.len() * mem::size_of::<$t>()
)
})?;
for x in self {
*x = Wrapping(x.0.to_le());
}
}
Ok(())
}
}
};
($t:ty, $($tt:ty,)*) => {
impl_fill!($t);
// TODO: this could replace above impl once Rust #32463 is fixed
// impl_fill!(Wrapping<$t>);
impl_fill!($($tt,)*);
}
}
impl_fill!(u16, u32, u64, usize,);
#[cfg(not(target_os = "emscripten"))]
impl_fill!(u128);
impl_fill!(i8, i16, i32, i64, isize,);
#[cfg(not(target_os = "emscripten"))]
impl_fill!(i128);
#[cfg(feature = "min_const_gen")]
impl<T, const N: usize> Fill for [T; N]
where [T]: Fill
{
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
self[..].try_fill(rng)
}
}
#[cfg(not(feature = "min_const_gen"))]
macro_rules! impl_fill_arrays {
($n:expr,) => {};
($n:expr, $N:ident) => {
impl<T> Fill for [T; $n] where [T]: Fill {
fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
self[..].try_fill(rng)
}
}
};
($n:expr, $N:ident, $($NN:ident,)*) => {
impl_fill_arrays!($n, $N);
impl_fill_arrays!($n - 1, $($NN,)*);
};
(!div $n:expr,) => {};
(!div $n:expr, $N:ident, $($NN:ident,)*) => {
impl_fill_arrays!($n, $N);
impl_fill_arrays!(!div $n / 2, $($NN,)*);
};
}
#[cfg(not(feature = "min_const_gen"))]
#[rustfmt::skip]
impl_fill_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
#[cfg(not(feature = "min_const_gen"))]
impl_fill_arrays!(!div 4096, N,N,N,N,N,N,N,);
#[cfg(test)]
mod test {
use super::*;
use crate::test::rng;
use crate::rngs::mock::StepRng;
#[cfg(feature = "alloc")] use alloc::boxed::Box;
#[test]
fn test_fill_bytes_default() {
let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
// check every remainder mod 8, both in small and big vectors.
let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87];
for &n in lengths.iter() {
let mut buffer = [0u8; 87];
let v = &mut buffer[0..n];
r.fill_bytes(v);
// use this to get nicer error messages.
for (i, &byte) in v.iter().enumerate() {
if byte == 0 {
panic!("byte {} of {} is zero", i, n)
}
}
}
}
#[test]
fn test_fill() {
let x = 9041086907909331047; // a random u64
let mut rng = StepRng::new(x, 0);
// Convert to byte sequence and back to u64; byte-swap twice if BE.
let mut array = [0u64; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x, x]);
assert_eq!(rng.next_u64(), x);
// Convert to bytes then u32 in LE order
let mut array = [0u32; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x as u32, (x >> 32) as u32]);
assert_eq!(rng.next_u32(), x as u32);
// Check equivalence using wrapped arrays
let mut warray = [Wrapping(0u32); 2];
rng.fill(&mut warray[..]);
assert_eq!(array[0], warray[0].0);
assert_eq!(array[1], warray[1].0);
// Check equivalence for generated floats
let mut array = [0f32; 2];
rng.fill(&mut array);
let gen: [f32; 2] = rng.gen();
assert_eq!(array, gen);
}
#[test]
fn test_fill_empty() {
let mut array = [0u32; 0];
let mut rng = StepRng::new(0, 1);
rng.fill(&mut array);
rng.fill(&mut array[..]);
}
#[test]
fn test_gen_range_int() {
let mut r = rng(101);
for _ in 0..1000 {
let a = r.gen_range(-4711..17);
assert!((-4711..17).contains(&a));
let a: i8 = r.gen_range(-3..42);
assert!((-3..42).contains(&a));
let a: u16 = r.gen_range(10..99);
assert!((10..99).contains(&a));
let a: i32 = r.gen_range(-100..2000);
assert!((-100..2000).contains(&a));
let a: u32 = r.gen_range(12..=24);
assert!((12..=24).contains(&a));
assert_eq!(r.gen_range(0u32..1), 0u32);
assert_eq!(r.gen_range(-12i64..-11), -12i64);
assert_eq!(r.gen_range(3_000_000..3_000_001), 3_000_000);
}
}
#[test]
fn test_gen_range_float() {
let mut r = rng(101);
for _ in 0..1000 {
let a = r.gen_range(-4.5..1.7);
assert!((-4.5..1.7).contains(&a));
let a = r.gen_range(-1.1..=-0.3);
assert!((-1.1..=-0.3).contains(&a));
assert_eq!(r.gen_range(0.0f32..=0.0), 0.);
assert_eq!(r.gen_range(-11.0..=-11.0), -11.);
assert_eq!(r.gen_range(3_000_000.0..=3_000_000.0), 3_000_000.);
}
}
#[test]
#[should_panic]
fn test_gen_range_panic_int() {
#![allow(clippy::reversed_empty_ranges)]
let mut r = rng(102);
r.gen_range(5..-2);
}
#[test]
#[should_panic]
fn test_gen_range_panic_usize() {
#![allow(clippy::reversed_empty_ranges)]
let mut r = rng(103);
r.gen_range(5..2);
}
#[test]
fn test_gen_bool() {
#![allow(clippy::bool_assert_comparison)]
let mut r = rng(105);
for _ in 0..5 {
assert_eq!(r.gen_bool(0.0), false);
assert_eq!(r.gen_bool(1.0), true);
}
}
#[test]
fn test_rng_trait_object() {
use crate::distributions::{Distribution, Standard};
let mut rng = rng(109);
let mut r = &mut rng as &mut dyn RngCore;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0..1), 0);
let _c: u8 = Standard.sample(&mut r);
}
#[test]
#[cfg(feature = "alloc")]
fn test_rng_boxed_trait() {
use crate::distributions::{Distribution, Standard};
let rng = rng(110);
let mut r = Box::new(rng) as Box<dyn RngCore>;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0..1), 0);
let _c: u8 = Standard.sample(&mut r);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_gen_ratio_average() {
const NUM: u32 = 3;
const DENOM: u32 = 10;
const N: u32 = 100_000;
let mut sum: u32 = 0;
let mut rng = rng(111);
for _ in 0..N {
if rng.gen_ratio(NUM, DENOM) {
sum += 1;
}
}
// Have Binomial(N, NUM/DENOM) distribution
let expected = (NUM * N) / DENOM; // exact integer
assert!(((sum - expected) as i32).abs() < 500);
}
}