packet_formats/
gmp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Common types and utilities between MLDv2 and IGMPv3.
//!
//! See [`crate::igmp`] and [`crate::icmp::mld`] for implementations.

use core::borrow::Borrow;
use core::fmt::Debug;
use core::num::NonZeroUsize;
use core::time::Duration;
use core::usize;

use net_types::ip::IpAddress;
use net_types::MulticastAddr;

/// Creates a bitmask of [n] bits, [n] must be <= 31.
/// E.g. for n = 12 yields 0xFFF.
const fn bitmask(n: u8) -> u32 {
    assert!((n as u32) < u32::BITS);
    (1 << n) - 1
}

/// Requested value doesn't fit the representation.
#[derive(Debug, Eq, PartialEq)]
pub struct OverflowError;

/// Exact conversion failed.
#[derive(Debug, Eq, PartialEq)]
pub enum ExactConversionError {
    /// Equivalent to [`OverflowError`].
    Overflow,
    /// An exact representation is not possible.
    NotExact,
}

impl From<OverflowError> for ExactConversionError {
    fn from(OverflowError: OverflowError) -> Self {
        Self::Overflow
    }
}

/// The trait converts a code to a floating point value: in a linear fashion up
/// to `SWITCHPOINT` and then using a floating point representation to allow the
/// conversion of larger values. In MLD and IGMP there are different codes that
/// follow this pattern, e.g. QQIC, ResponseDelay ([RFC 3376 section 4.1], [RFC
/// 3810 section 5.1]), which all convert a code with the following underlying
/// structure:
///
///       0    NUM_EXP_BITS       NUM_MANT_BITS
///      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///      |X|      exp      |          mant         |
///      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// This trait simplifies the implementation by providing methods to perform the
/// conversion.
///
/// [RFC 3376 section 4.1]:
///     https://datatracker.ietf.org/doc/html/rfc3376#section-4.1
/// [RFC 3810 section 5.1]:
///     https://datatracker.ietf.org/doc/html/rfc3810#section-5.1
pub(crate) trait LinExpConversion<C: Debug + PartialEq + Copy + Clone>:
    Into<C> + Copy + Clone + Sized
{
    // Specified by Implementors
    /// Number of bits used for the mantissa.
    const NUM_MANT_BITS: u8;
    /// Number of bits used for the exponent.
    const NUM_EXP_BITS: u8;
    /// Perform a lossy conversion from the `C` type.
    ///
    /// Not all values in `C` can be exactly represented using the code and they
    /// will be rounded to a code that represents a value close the provided
    /// one.
    fn lossy_try_from(value: C) -> Result<Self, OverflowError>;

    // Provided for Implementors.
    /// How much the exponent needs to be incremented when performing the
    /// exponential conversion.
    const EXP_INCR: u32 = 3;
    /// Bitmask for the mantissa.
    const MANT_BITMASK: u32 = bitmask(Self::NUM_MANT_BITS);
    /// Bitmask for the exponent.
    const EXP_BITMASK: u32 = bitmask(Self::NUM_EXP_BITS);
    /// First value for which we start the exponential conversion.
    const SWITCHPOINT: u32 = 0x1 << (Self::NUM_MANT_BITS + Self::NUM_EXP_BITS);
    /// Prefix for capturing the mantissa.
    const MANT_PREFIX: u32 = 0x1 << Self::NUM_MANT_BITS;
    /// Maximum value the code supports.
    const MAX_VALUE: u32 =
        (Self::MANT_BITMASK | Self::MANT_PREFIX) << (Self::EXP_INCR + Self::EXP_BITMASK);

    /// Converts the provided code to a value: in a linear way until
    /// [Self::SWITCHPOINT] and using a floating representation for larger
    /// values.
    fn to_expanded(code: u16) -> u32 {
        let code = code.into();
        if code < Self::SWITCHPOINT {
            code
        } else {
            let mant = code & Self::MANT_BITMASK;
            let exp = (code >> Self::NUM_MANT_BITS) & Self::EXP_BITMASK;
            (mant | Self::MANT_PREFIX) << (Self::EXP_INCR + exp)
        }
    }

    /// Performs a lossy conversion from `value`.
    ///
    /// The function will always succeed for values within the valid range.
    /// However, the code might not exactly represent the provided input. E.g. a
    /// value of `MAX_VALUE - 1` cannot be exactly represented with a
    /// corresponding code, due the exponential representation. However, the
    /// function will be able to provide a code representing a value close to
    /// the provided one.
    ///
    /// If stronger guarantees are needed consider using
    /// [`LinExpConversion::exact_try_from`].
    fn lossy_try_from_expanded(value: u32) -> Result<u16, OverflowError> {
        if value > Self::MAX_VALUE {
            Err(OverflowError)
        } else if value < Self::SWITCHPOINT {
            // Given that Value is < Self::SWITCHPOINT, unwrapping here is safe.
            let code = value.try_into().unwrap();
            Ok(code)
        } else {
            let msb = (u32::BITS - value.leading_zeros()) - 1;
            let exp = msb - u32::from(Self::NUM_MANT_BITS);
            let mant = (value >> exp) & Self::MANT_BITMASK;
            // Unwrap guaranteed by the structure of the built int:
            let code = (Self::SWITCHPOINT | ((exp - Self::EXP_INCR) << Self::NUM_MANT_BITS) | mant)
                .try_into()
                .unwrap();
            Ok(code)
        }
    }

    /// Attempts an exact conversion from `value`.
    ///
    /// The function will succeed only for values within the valid range that
    /// can be exactly represented by the produced code. E.g. a value of
    /// `FLOATING_POINT_MAX_VALUE - 1` cannot be exactly represented with a
    /// corresponding, code due the exponential representation. In this case,
    /// the function will return an error.
    ///
    /// If a lossy conversion can be tolerated consider using
    /// [`LinExpConversion::lossy_try_from_expanded`].
    ///
    /// If the conversion is attempt is lossy, returns `Ok(None)`.
    fn exact_try_from(value: C) -> Result<Self, ExactConversionError> {
        let res = Self::lossy_try_from(value)?;
        if value == res.into() {
            Ok(res)
        } else {
            Err(ExactConversionError::NotExact)
        }
    }
}

create_protocol_enum!(
    /// Group/Multicast Record Types as defined in [RFC 3376 section 4.2.12] and
    /// [RFC 3810 section 5.2.12].
    ///
    /// [RFC 3376 section 4.2.12]:
    ///     https://tools.ietf.org/html/rfc3376#section-4.2.12
    /// [RFC 3810 section 5.2.12]:
    ///     https://www.rfc-editor.org/rfc/rfc3810#section-5.2.12
    #[allow(missing_docs)]
    #[derive(PartialEq, Eq, Copy, Clone, PartialOrd, Ord)]
    pub enum GroupRecordType: u8 {
        ModeIsInclude, 0x01, "Mode Is Include";
        ModeIsExclude, 0x02, "Mode Is Exclude";
        ChangeToIncludeMode, 0x03, "Change To Include Mode";
        ChangeToExcludeMode, 0x04, "Change To Exclude Mode";
        AllowNewSources, 0x05, "Allow New Sources";
        BlockOldSources, 0x06, "Block Old Sources";
    }
);

impl GroupRecordType {
    /// Returns `true` if this record type allows the record to be split into
    /// multiple reports.
    ///
    /// If `false`, then the list of sources should be truncated instead.
    ///
    /// From [RFC 3810 section 5.2.15]:
    ///
    /// > if its Type is not IS_EX or TO_EX, it is split into multiple Multicast
    /// > Address Records; each such record contains a different subset of the
    /// > source addresses, and is sent in a separate Report.
    ///
    /// > if its Type is IS_EX or TO_EX, a single Multicast Address Record is
    /// > sent, with as many source addresses as can fit; the remaining source
    /// > addresses are not reported.
    ///
    /// Text is equivalent in [RFC 3376 section 4.2.16]:
    ///
    /// > If a single Group Record contains so many source addresses that it
    /// > does not fit within the size limit of a single Report message, if its
    /// > Type is not MODE_IS_EXCLUDE or CHANGE_TO_EXCLUDE_MODE, it is split
    /// > into multiple Group Records, each containing a different subset of the
    /// > source addresses and each sent in a separate Report message.  If its
    /// > Type is MODE_IS_EXCLUDE or CHANGE_TO_EXCLUDE_MODE, a single Group
    /// > Record is sent, containing as many source addresses as can fit, and
    /// > the remaining source addresses are not reported;
    ///
    /// [RFC 3810 section 5.2.15]:
    ///     https://datatracker.ietf.org/doc/html/rfc3810#section-5.2.15
    /// [RFC 3376 section 4.2.16]:
    ///     https://datatracker.ietf.org/doc/html/rfc3376#section-4.2.16
    fn allow_split(&self) -> bool {
        match self {
            GroupRecordType::ModeIsInclude
            | GroupRecordType::ChangeToIncludeMode
            | GroupRecordType::AllowNewSources
            | GroupRecordType::BlockOldSources => true,
            GroupRecordType::ModeIsExclude | GroupRecordType::ChangeToExcludeMode => false,
        }
    }
}

/// QQIC (Querier's Query Interval Code) used in IGMPv3/MLDv2 messages, defined
/// in [RFC 3376 section 4.1.7] and [RFC 3810 section 5.1.9].
///
/// [RFC 3376 section 4.1.7]:
///     https://datatracker.ietf.org/doc/html/rfc3376#section-4.1.7
/// [RFC 3810 section 5.1.9]:
///     https://datatracker.ietf.org/doc/html/rfc3810#section-5.1.9
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub struct QQIC(u8);

impl QQIC {
    /// Creates a new `QQIC` allowing lossy conversion from `value`.
    pub fn new_lossy(value: Duration) -> Result<Self, OverflowError> {
        Self::lossy_try_from(value)
    }

    /// Creates a new `QQIC` rejecting lossy conversion from `value`.
    pub fn new_exact(value: Duration) -> Result<Self, ExactConversionError> {
        Self::exact_try_from(value)
    }
}

impl LinExpConversion<Duration> for QQIC {
    const NUM_MANT_BITS: u8 = 4;
    const NUM_EXP_BITS: u8 = 3;

    fn lossy_try_from(value: Duration) -> Result<Self, OverflowError> {
        let secs: u32 = value.as_secs().try_into().map_err(|_| OverflowError)?;
        let code = Self::lossy_try_from_expanded(secs)?.try_into().map_err(|_| OverflowError)?;
        Ok(Self(code))
    }
}

impl From<QQIC> for Duration {
    fn from(code: QQIC) -> Self {
        let secs: u64 = QQIC::to_expanded(code.0.into()).into();
        Duration::from_secs(secs)
    }
}

impl From<QQIC> for u8 {
    fn from(QQIC(v): QQIC) -> Self {
        v
    }
}

impl From<u8> for QQIC {
    fn from(value: u8) -> Self {
        Self(value)
    }
}

/// QRV (Querier's Robustness Variable) used in IGMPv3/MLDv2 messages, defined
/// in [RFC 3376 section 4.1.6] and [RFC 3810 section 5.1.8].
///
/// [RFC 3376 section 4.1.6]:
///     https://datatracker.ietf.org/doc/html/rfc3376#section-4.1.6
/// [RFC 3810 section 5.1.8]:
///     https://datatracker.ietf.org/doc/html/rfc3810#section-5.1.8
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub struct QRV(u8);

impl QRV {
    const QRV_MAX: u8 = 7;

    /// Returns the Querier's Robustness Variable.
    ///
    /// From [RFC 3376 section 4.1.6]: If the querier's [Robustness Variable]
    /// exceeds 7, the maximum value of the QRV field, the QRV is set to zero.
    ///
    /// From [RFC 3810 section 5.1.8]: If the Querier's [Robustness Variable]
    /// exceeds 7 (the maximum value of the QRV field), the QRV field is set to
    /// zero.
    ///
    /// [RFC 3376 section 4.1.6]:
    ///     https://datatracker.ietf.org/doc/html/rfc3376#section-4.1.6
    ///
    /// [RFC 3810 section 5.1.8]:
    ///     https://datatracker.ietf.org/doc/html/rfc3810#section-5.1.8
    pub fn new(robustness_value: u8) -> Self {
        if robustness_value > Self::QRV_MAX {
            return QRV(0);
        }
        QRV(robustness_value)
    }
}

impl From<QRV> for u8 {
    fn from(qrv: QRV) -> u8 {
        qrv.0
    }
}

/// A trait abstracting a multicast group record in MLDv2 or IGMPv3.
///
/// This trait facilitates the nested iterators required for implementing group
/// records (iterator of groups, each of which with an iterator of sources)
/// without propagating the inner iterator types far up.
///
/// An implementation for tuples of `(group, record_type, iterator)` is
/// provided.
pub trait GmpReportGroupRecord<A: IpAddress> {
    /// Returns the multicast group this report refers to.
    fn group(&self) -> MulticastAddr<A>;

    /// Returns record type to insert in the record entry.
    fn record_type(&self) -> GroupRecordType;

    /// Returns an iterator over the sources in the report.
    fn sources(&self) -> impl Iterator<Item: Borrow<A>> + '_;
}

impl<A, I> GmpReportGroupRecord<A> for (MulticastAddr<A>, GroupRecordType, I)
where
    A: IpAddress,
    I: Iterator<Item: Borrow<A>> + Clone,
{
    fn group(&self) -> MulticastAddr<A> {
        self.0
    }

    fn record_type(&self) -> GroupRecordType {
        self.1
    }

    fn sources(&self) -> impl Iterator<Item: Borrow<A>> + '_ {
        self.2.clone()
    }
}

#[derive(Clone)]
struct OverrideGroupRecordSources<R> {
    record: R,
    limit: NonZeroUsize,
    skip: usize,
}

impl<R, A> GmpReportGroupRecord<A> for OverrideGroupRecordSources<R>
where
    A: IpAddress,
    R: GmpReportGroupRecord<A>,
{
    fn group(&self) -> MulticastAddr<A> {
        self.record.group()
    }

    fn record_type(&self) -> GroupRecordType {
        self.record.record_type()
    }

    fn sources(&self) -> impl Iterator<Item: Borrow<A>> + '_ {
        self.record.sources().skip(self.skip).take(self.limit.get())
    }
}

/// The error returned when size constraints can't fit records.
#[derive(Debug, Eq, PartialEq)]
pub struct InvalidConstraintsError;

pub(crate) fn group_record_split_iterator<A, I>(
    max_len: usize,
    group_header: usize,
    groups: I,
) -> Result<
    impl Iterator<Item: Iterator<Item: GmpReportGroupRecord<A>> + Clone>,
    InvalidConstraintsError,
>
where
    A: IpAddress,
    I: Iterator<Item: GmpReportGroupRecord<A> + Clone> + Clone,
{
    // We need a maximum length that can fit at least one group with one source.
    if group_header + core::mem::size_of::<A>() > max_len {
        return Err(InvalidConstraintsError);
    }
    // These are the mutable state given to the iterator.
    //
    // `groups` is the main iterator that is moved forward whenever we've fully
    // yielded a group out on a `next` call.
    let mut groups = groups.peekable();
    // `skip` is saved in case the first group of a next iteration needs to skip
    // sources entries.
    let mut skip = 0;
    Ok(core::iter::from_fn(move || {
        let start = groups.clone();
        let mut take = 0;
        let mut len = 0;
        loop {
            let group = match groups.peek() {
                Some(group) => group,
                None => break,
            };
            len += group_header;
            // Can't even fit the header.
            if len > max_len {
                break;
            }

            // `skip` is only going to be valid for the first group we look at,
            // so always reset it to zero.
            let skipped = core::mem::replace(&mut skip, 0);
            let sources = group.sources();
            if take == 0 {
                // If this is the first group, we should be able to split this
                // into multiple reports as necessary. Alternatively, if we have
                // skipped records from a previous yield we should produce the
                // rest of the records here.
                let mut sources = sources.skip(skipped).enumerate();
                loop {
                    // NB: This is not written as a `while` or `for` loop so we
                    // don't create temporaries that are holding on to borrows
                    // of groups, which then allows us to drive the main
                    // iterator before exiting here.
                    let Some((i, _)) = sources.next() else { break };

                    len += core::mem::size_of::<A>();
                    if len > max_len {
                        // We're ensured to always be able to fit at least one
                        // group with one source per report, so we should never
                        // hit max length on the first source.
                        let limit = NonZeroUsize::new(i).expect("can't fit a single source");
                        let record = if group.record_type().allow_split() {
                            // Update skip so we yield the rest of the message
                            // on the next iteration.
                            skip = skipped + i;
                            group.clone()
                        } else {
                            // Use the current limit and just ignore any further
                            // sources. We known unwrap is okay here we just
                            // peeked.
                            drop(sources);
                            groups.next().unwrap()
                        };
                        return Some(either::Either::Left(core::iter::once(
                            OverrideGroupRecordSources { record, limit, skip: skipped },
                        )));
                    }
                }
                // If we need to skip any records, yield a single entry. It's a
                // bit too complicated to insert this group in a report with
                // other groups, so let's just issue the rest of its sources in
                // its own report.
                if skipped != 0 {
                    // Consume this current group. Unwrap is safe we just
                    // peeked.
                    drop(sources);
                    let group = groups.next().unwrap();
                    return Some(either::Either::Left(core::iter::once(
                        OverrideGroupRecordSources {
                            record: group,
                            limit: NonZeroUsize::MAX,
                            skip: skipped,
                        },
                    )));
                }
            } else {
                // We can't handle skipped sources here.
                assert_eq!(skipped, 0);
                // If not the first group only account for it if we can take all
                // sources.
                len += sources.count() * core::mem::size_of::<A>();
                if len > max_len {
                    break;
                }
            }

            // This entry fits account for it.
            let _: Option<_> = groups.next();
            take += 1;
        }

        if take == 0 {
            None
        } else {
            Some(either::Either::Right(start.take(take).map(|record| OverrideGroupRecordSources {
                record,
                limit: NonZeroUsize::MAX,
                skip: 0,
            })))
        }
    }))
}

#[cfg(test)]
mod tests {
    use core::ops::Range;

    use super::*;

    use ip_test_macro::ip_test;
    use net_types::ip::{Ip, Ipv4Addr, Ipv6Addr};

    fn empty_iter<A: IpAddress>() -> impl Iterator<Item: GmpReportGroupRecord<A> + Clone> + Clone {
        core::iter::empty::<(MulticastAddr<A>, GroupRecordType, core::iter::Empty<A>)>()
    }

    fn addr<I: Ip>(i: u8) -> I::Addr {
        I::map_ip_out(
            i,
            |i| Ipv4Addr::new([0, 0, 0, i]),
            |i| Ipv6Addr::from_bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, i]),
        )
    }

    fn mcast_addr<I: Ip>(i: u8) -> MulticastAddr<I::Addr> {
        MulticastAddr::new(I::map_ip_out(
            i,
            |i| Ipv4Addr::new([224, 0, 0, i]),
            |i| Ipv6Addr::from_bytes([0xFF, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, i]),
        ))
        .unwrap()
    }

    fn addr_iter_range<I: Ip>(range: Range<u8>) -> impl Iterator<Item = I::Addr> + Clone {
        range.into_iter().map(|i| addr::<I>(i))
    }

    fn collect<I, A>(iter: I) -> Vec<Vec<(MulticastAddr<A>, GroupRecordType, Vec<A>)>>
    where
        I: Iterator<Item: Iterator<Item: GmpReportGroupRecord<A>>>,
        A: IpAddress,
    {
        iter.map(|groups| {
            groups
                .map(|g| {
                    (
                        g.group(),
                        g.record_type(),
                        g.sources().map(|b| b.borrow().clone()).collect::<Vec<_>>(),
                    )
                })
                .collect::<Vec<_>>()
        })
        .collect::<Vec<_>>()
    }

    const GROUP_RECORD_HEADER: usize = 1;

    #[ip_test(I)]
    fn split_rejects_small_lengths<I: Ip>() {
        assert_eq!(
            group_record_split_iterator(
                GROUP_RECORD_HEADER,
                GROUP_RECORD_HEADER,
                empty_iter::<I::Addr>()
            )
            .map(collect),
            Err(InvalidConstraintsError)
        );
        assert_eq!(
            group_record_split_iterator(
                GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>() - 1,
                GROUP_RECORD_HEADER,
                empty_iter::<I::Addr>()
            )
            .map(collect),
            Err(InvalidConstraintsError)
        );
        // Works, doesn't yield anything because of empty iterator.
        assert_eq!(
            group_record_split_iterator(
                GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>(),
                GROUP_RECORD_HEADER,
                empty_iter::<I::Addr>()
            )
            .map(collect),
            Ok(vec![])
        );
    }

    #[ip_test(I)]
    fn basic_split<I: Ip>() {
        let iter = group_record_split_iterator(
            GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>() * 2,
            GROUP_RECORD_HEADER,
            [
                (mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(1..2)),
                (mcast_addr::<I>(2), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(2..4)),
                (
                    mcast_addr::<I>(3),
                    GroupRecordType::ChangeToIncludeMode,
                    addr_iter_range::<I>(0..0),
                ),
                (
                    mcast_addr::<I>(4),
                    GroupRecordType::ChangeToExcludeMode,
                    addr_iter_range::<I>(0..0),
                ),
            ]
            .into_iter(),
        )
        .unwrap();

        let report1 = vec![(
            mcast_addr::<I>(1),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(1..2).collect::<Vec<_>>(),
        )];
        let report2 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsExclude,
            addr_iter_range::<I>(2..4).collect::<Vec<_>>(),
        )];
        let report3 = vec![
            (mcast_addr::<I>(3), GroupRecordType::ChangeToIncludeMode, vec![]),
            (mcast_addr::<I>(4), GroupRecordType::ChangeToExcludeMode, vec![]),
        ];
        assert_eq!(collect(iter), vec![report1, report2, report3]);
    }

    #[ip_test(I)]
    fn sources_split<I: Ip>() {
        let iter = group_record_split_iterator(
            GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>(),
            GROUP_RECORD_HEADER,
            [
                (mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..0)),
                (mcast_addr::<I>(2), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..3)),
                (mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..0)),
            ]
            .into_iter(),
        )
        .unwrap();

        let report1 = vec![(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, vec![])];
        let report2 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(0..1).collect::<Vec<_>>(),
        )];
        let report3 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(1..2).collect::<Vec<_>>(),
        )];
        let report4 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(2..3).collect::<Vec<_>>(),
        )];
        let report5 = vec![(mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, vec![])];
        assert_eq!(collect(iter), vec![report1, report2, report3, report4, report5]);
    }

    #[ip_test(I)]
    fn sources_truncate<I: Ip>() {
        let iter = group_record_split_iterator(
            GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>(),
            GROUP_RECORD_HEADER,
            [
                (mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..0)),
                (mcast_addr::<I>(2), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(0..2)),
                (mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(2..3)),
            ]
            .into_iter(),
        )
        .unwrap();

        let report1 = vec![(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, vec![])];
        // Only one report for the exclude mode is generated, sources are
        // truncated.
        let report2 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsExclude,
            addr_iter_range::<I>(0..1).collect::<Vec<_>>(),
        )];
        let report3 = vec![(
            mcast_addr::<I>(3),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(2..3).collect::<Vec<_>>(),
        )];
        assert_eq!(collect(iter), vec![report1, report2, report3]);
    }

    /// Tests for a current limitation of the iterator. We don't attempt to pack
    /// split sources, but rather possibly generate a short report.
    #[ip_test(I)]
    fn odd_split<I: Ip>() {
        let iter = group_record_split_iterator(
            GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>() * 4,
            GROUP_RECORD_HEADER,
            [
                (mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..5)),
                (mcast_addr::<I>(2), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(5..6)),
            ]
            .into_iter(),
        )
        .unwrap();

        let report1 = vec![(
            mcast_addr::<I>(1),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(0..4).collect::<Vec<_>>(),
        )];
        let report2 = vec![(
            mcast_addr::<I>(1),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(4..5).collect::<Vec<_>>(),
        )];
        let report3 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsExclude,
            addr_iter_range::<I>(5..6).collect::<Vec<_>>(),
        )];
        assert_eq!(collect(iter), vec![report1, report2, report3]);
    }

    /// Tests that we prefer to keep a group together if we can, i.e., avoid
    /// splitting off a group that is not the first in a message.
    #[ip_test(I)]
    fn split_off_large_group<I: Ip>() {
        let iter = group_record_split_iterator(
            (GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>()) * 2,
            GROUP_RECORD_HEADER,
            [
                (mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..1)),
                // The beginning of this group should be in its own message.
                (mcast_addr::<I>(2), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(1..3)),
                (mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(3..4)),
                // This group should be in its own message as opposed to
                // truncating together with the previous one.
                (mcast_addr::<I>(4), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(4..6)),
            ]
            .into_iter(),
        )
        .unwrap();

        let report1 = vec![(
            mcast_addr::<I>(1),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(0..1).collect::<Vec<_>>(),
        )];
        let report2 = vec![(
            mcast_addr::<I>(2),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(1..3).collect::<Vec<_>>(),
        )];
        let report3 = vec![(
            mcast_addr::<I>(3),
            GroupRecordType::ModeIsInclude,
            addr_iter_range::<I>(3..4).collect::<Vec<_>>(),
        )];
        let report4 = vec![(
            mcast_addr::<I>(4),
            GroupRecordType::ModeIsExclude,
            addr_iter_range::<I>(4..6).collect::<Vec<_>>(),
        )];
        assert_eq!(collect(iter), vec![report1, report2, report3, report4]);
    }
}