packet_formats/gmp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Common types and utilities between MLDv2 and IGMPv3.
//!
//! See [`crate::igmp`] and [`crate::icmp::mld`] for implementations.
use core::borrow::Borrow;
use core::fmt::Debug;
use core::num::NonZeroUsize;
use core::time::Duration;
use core::usize;
use net_types::ip::IpAddress;
use net_types::MulticastAddr;
/// Creates a bitmask of [n] bits, [n] must be <= 31.
/// E.g. for n = 12 yields 0xFFF.
const fn bitmask(n: u8) -> u32 {
assert!((n as u32) < u32::BITS);
(1 << n) - 1
}
/// Requested value doesn't fit the representation.
#[derive(Debug, Eq, PartialEq)]
pub struct OverflowError;
/// Exact conversion failed.
#[derive(Debug, Eq, PartialEq)]
pub enum ExactConversionError {
/// Equivalent to [`OverflowError`].
Overflow,
/// An exact representation is not possible.
NotExact,
}
impl From<OverflowError> for ExactConversionError {
fn from(OverflowError: OverflowError) -> Self {
Self::Overflow
}
}
/// The trait converts a code to a floating point value: in a linear fashion up
/// to `SWITCHPOINT` and then using a floating point representation to allow the
/// conversion of larger values. In MLD and IGMP there are different codes that
/// follow this pattern, e.g. QQIC, ResponseDelay ([RFC 3376 section 4.1], [RFC
/// 3810 section 5.1]), which all convert a code with the following underlying
/// structure:
///
/// 0 NUM_EXP_BITS NUM_MANT_BITS
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// |X| exp | mant |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// This trait simplifies the implementation by providing methods to perform the
/// conversion.
///
/// [RFC 3376 section 4.1]:
/// https://datatracker.ietf.org/doc/html/rfc3376#section-4.1
/// [RFC 3810 section 5.1]:
/// https://datatracker.ietf.org/doc/html/rfc3810#section-5.1
pub(crate) trait LinExpConversion<C: Debug + PartialEq + Copy + Clone>:
Into<C> + Copy + Clone + Sized
{
// Specified by Implementors
/// Number of bits used for the mantissa.
const NUM_MANT_BITS: u8;
/// Number of bits used for the exponent.
const NUM_EXP_BITS: u8;
/// Perform a lossy conversion from the `C` type.
///
/// Not all values in `C` can be exactly represented using the code and they
/// will be rounded to a code that represents a value close the provided
/// one.
fn lossy_try_from(value: C) -> Result<Self, OverflowError>;
// Provided for Implementors.
/// How much the exponent needs to be incremented when performing the
/// exponential conversion.
const EXP_INCR: u32 = 3;
/// Bitmask for the mantissa.
const MANT_BITMASK: u32 = bitmask(Self::NUM_MANT_BITS);
/// Bitmask for the exponent.
const EXP_BITMASK: u32 = bitmask(Self::NUM_EXP_BITS);
/// First value for which we start the exponential conversion.
const SWITCHPOINT: u32 = 0x1 << (Self::NUM_MANT_BITS + Self::NUM_EXP_BITS);
/// Prefix for capturing the mantissa.
const MANT_PREFIX: u32 = 0x1 << Self::NUM_MANT_BITS;
/// Maximum value the code supports.
const MAX_VALUE: u32 =
(Self::MANT_BITMASK | Self::MANT_PREFIX) << (Self::EXP_INCR + Self::EXP_BITMASK);
/// Converts the provided code to a value: in a linear way until
/// [Self::SWITCHPOINT] and using a floating representation for larger
/// values.
fn to_expanded(code: u16) -> u32 {
let code = code.into();
if code < Self::SWITCHPOINT {
code
} else {
let mant = code & Self::MANT_BITMASK;
let exp = (code >> Self::NUM_MANT_BITS) & Self::EXP_BITMASK;
(mant | Self::MANT_PREFIX) << (Self::EXP_INCR + exp)
}
}
/// Performs a lossy conversion from `value`.
///
/// The function will always succeed for values within the valid range.
/// However, the code might not exactly represent the provided input. E.g. a
/// value of `MAX_VALUE - 1` cannot be exactly represented with a
/// corresponding code, due the exponential representation. However, the
/// function will be able to provide a code representing a value close to
/// the provided one.
///
/// If stronger guarantees are needed consider using
/// [`LinExpConversion::exact_try_from`].
fn lossy_try_from_expanded(value: u32) -> Result<u16, OverflowError> {
if value > Self::MAX_VALUE {
Err(OverflowError)
} else if value < Self::SWITCHPOINT {
// Given that Value is < Self::SWITCHPOINT, unwrapping here is safe.
let code = value.try_into().unwrap();
Ok(code)
} else {
let msb = (u32::BITS - value.leading_zeros()) - 1;
let exp = msb - u32::from(Self::NUM_MANT_BITS);
let mant = (value >> exp) & Self::MANT_BITMASK;
// Unwrap guaranteed by the structure of the built int:
let code = (Self::SWITCHPOINT | ((exp - Self::EXP_INCR) << Self::NUM_MANT_BITS) | mant)
.try_into()
.unwrap();
Ok(code)
}
}
/// Attempts an exact conversion from `value`.
///
/// The function will succeed only for values within the valid range that
/// can be exactly represented by the produced code. E.g. a value of
/// `FLOATING_POINT_MAX_VALUE - 1` cannot be exactly represented with a
/// corresponding, code due the exponential representation. In this case,
/// the function will return an error.
///
/// If a lossy conversion can be tolerated consider using
/// [`LinExpConversion::lossy_try_from_expanded`].
///
/// If the conversion is attempt is lossy, returns `Ok(None)`.
fn exact_try_from(value: C) -> Result<Self, ExactConversionError> {
let res = Self::lossy_try_from(value)?;
if value == res.into() {
Ok(res)
} else {
Err(ExactConversionError::NotExact)
}
}
}
create_protocol_enum!(
/// Group/Multicast Record Types as defined in [RFC 3376 section 4.2.12] and
/// [RFC 3810 section 5.2.12].
///
/// [RFC 3376 section 4.2.12]:
/// https://tools.ietf.org/html/rfc3376#section-4.2.12
/// [RFC 3810 section 5.2.12]:
/// https://www.rfc-editor.org/rfc/rfc3810#section-5.2.12
#[allow(missing_docs)]
#[derive(PartialEq, Eq, Copy, Clone, PartialOrd, Ord)]
pub enum GroupRecordType: u8 {
ModeIsInclude, 0x01, "Mode Is Include";
ModeIsExclude, 0x02, "Mode Is Exclude";
ChangeToIncludeMode, 0x03, "Change To Include Mode";
ChangeToExcludeMode, 0x04, "Change To Exclude Mode";
AllowNewSources, 0x05, "Allow New Sources";
BlockOldSources, 0x06, "Block Old Sources";
}
);
impl GroupRecordType {
/// Returns `true` if this record type allows the record to be split into
/// multiple reports.
///
/// If `false`, then the list of sources should be truncated instead.
///
/// From [RFC 3810 section 5.2.15]:
///
/// > if its Type is not IS_EX or TO_EX, it is split into multiple Multicast
/// > Address Records; each such record contains a different subset of the
/// > source addresses, and is sent in a separate Report.
///
/// > if its Type is IS_EX or TO_EX, a single Multicast Address Record is
/// > sent, with as many source addresses as can fit; the remaining source
/// > addresses are not reported.
///
/// Text is equivalent in [RFC 3376 section 4.2.16]:
///
/// > If a single Group Record contains so many source addresses that it
/// > does not fit within the size limit of a single Report message, if its
/// > Type is not MODE_IS_EXCLUDE or CHANGE_TO_EXCLUDE_MODE, it is split
/// > into multiple Group Records, each containing a different subset of the
/// > source addresses and each sent in a separate Report message. If its
/// > Type is MODE_IS_EXCLUDE or CHANGE_TO_EXCLUDE_MODE, a single Group
/// > Record is sent, containing as many source addresses as can fit, and
/// > the remaining source addresses are not reported;
///
/// [RFC 3810 section 5.2.15]:
/// https://datatracker.ietf.org/doc/html/rfc3810#section-5.2.15
/// [RFC 3376 section 4.2.16]:
/// https://datatracker.ietf.org/doc/html/rfc3376#section-4.2.16
fn allow_split(&self) -> bool {
match self {
GroupRecordType::ModeIsInclude
| GroupRecordType::ChangeToIncludeMode
| GroupRecordType::AllowNewSources
| GroupRecordType::BlockOldSources => true,
GroupRecordType::ModeIsExclude | GroupRecordType::ChangeToExcludeMode => false,
}
}
}
/// QQIC (Querier's Query Interval Code) used in IGMPv3/MLDv2 messages, defined
/// in [RFC 3376 section 4.1.7] and [RFC 3810 section 5.1.9].
///
/// [RFC 3376 section 4.1.7]:
/// https://datatracker.ietf.org/doc/html/rfc3376#section-4.1.7
/// [RFC 3810 section 5.1.9]:
/// https://datatracker.ietf.org/doc/html/rfc3810#section-5.1.9
#[derive(PartialEq, Eq, Debug, Clone, Copy, Default)]
pub struct QQIC(u8);
impl QQIC {
/// Creates a new `QQIC` allowing lossy conversion from `value`.
pub fn new_lossy(value: Duration) -> Result<Self, OverflowError> {
Self::lossy_try_from(value)
}
/// Creates a new `QQIC` rejecting lossy conversion from `value`.
pub fn new_exact(value: Duration) -> Result<Self, ExactConversionError> {
Self::exact_try_from(value)
}
}
impl LinExpConversion<Duration> for QQIC {
const NUM_MANT_BITS: u8 = 4;
const NUM_EXP_BITS: u8 = 3;
fn lossy_try_from(value: Duration) -> Result<Self, OverflowError> {
let secs: u32 = value.as_secs().try_into().map_err(|_| OverflowError)?;
let code = Self::lossy_try_from_expanded(secs)?.try_into().map_err(|_| OverflowError)?;
Ok(Self(code))
}
}
impl From<QQIC> for Duration {
fn from(code: QQIC) -> Self {
let secs: u64 = QQIC::to_expanded(code.0.into()).into();
Duration::from_secs(secs)
}
}
impl From<QQIC> for u8 {
fn from(QQIC(v): QQIC) -> Self {
v
}
}
impl From<u8> for QQIC {
fn from(value: u8) -> Self {
Self(value)
}
}
/// QRV (Querier's Robustness Variable) used in IGMPv3/MLDv2 messages, defined
/// in [RFC 3376 section 4.1.6] and [RFC 3810 section 5.1.8].
///
/// [RFC 3376 section 4.1.6]:
/// https://datatracker.ietf.org/doc/html/rfc3376#section-4.1.6
/// [RFC 3810 section 5.1.8]:
/// https://datatracker.ietf.org/doc/html/rfc3810#section-5.1.8
#[derive(PartialEq, Eq, Debug, Clone, Copy, Default)]
pub struct QRV(u8);
impl QRV {
const QRV_MAX: u8 = 7;
/// Returns the Querier's Robustness Variable.
///
/// From [RFC 3376 section 4.1.6]: If the querier's [Robustness Variable]
/// exceeds 7, the maximum value of the QRV field, the QRV is set to zero.
///
/// From [RFC 3810 section 5.1.8]: If the Querier's [Robustness Variable]
/// exceeds 7 (the maximum value of the QRV field), the QRV field is set to
/// zero.
///
/// [RFC 3376 section 4.1.6]:
/// https://datatracker.ietf.org/doc/html/rfc3376#section-4.1.6
///
/// [RFC 3810 section 5.1.8]:
/// https://datatracker.ietf.org/doc/html/rfc3810#section-5.1.8
pub fn new(robustness_value: u8) -> Self {
if robustness_value > Self::QRV_MAX {
return QRV(0);
}
QRV(robustness_value)
}
}
impl From<QRV> for u8 {
fn from(qrv: QRV) -> u8 {
qrv.0
}
}
/// A trait abstracting a multicast group record in MLDv2 or IGMPv3.
///
/// This trait facilitates the nested iterators required for implementing group
/// records (iterator of groups, each of which with an iterator of sources)
/// without propagating the inner iterator types far up.
///
/// An implementation for tuples of `(group, record_type, iterator)` is
/// provided.
pub trait GmpReportGroupRecord<A: IpAddress> {
/// Returns the multicast group this report refers to.
fn group(&self) -> MulticastAddr<A>;
/// Returns record type to insert in the record entry.
fn record_type(&self) -> GroupRecordType;
/// Returns an iterator over the sources in the report.
fn sources(&self) -> impl Iterator<Item: Borrow<A>> + '_;
}
impl<A, I> GmpReportGroupRecord<A> for (MulticastAddr<A>, GroupRecordType, I)
where
A: IpAddress,
I: Iterator<Item: Borrow<A>> + Clone,
{
fn group(&self) -> MulticastAddr<A> {
self.0
}
fn record_type(&self) -> GroupRecordType {
self.1
}
fn sources(&self) -> impl Iterator<Item: Borrow<A>> + '_ {
self.2.clone()
}
}
#[derive(Clone)]
struct OverrideGroupRecordSources<R> {
record: R,
limit: NonZeroUsize,
skip: usize,
}
impl<R, A> GmpReportGroupRecord<A> for OverrideGroupRecordSources<R>
where
A: IpAddress,
R: GmpReportGroupRecord<A>,
{
fn group(&self) -> MulticastAddr<A> {
self.record.group()
}
fn record_type(&self) -> GroupRecordType {
self.record.record_type()
}
fn sources(&self) -> impl Iterator<Item: Borrow<A>> + '_ {
self.record.sources().skip(self.skip).take(self.limit.get())
}
}
/// The error returned when size constraints can't fit records.
#[derive(Debug, Eq, PartialEq)]
pub struct InvalidConstraintsError;
pub(crate) fn group_record_split_iterator<A, I>(
max_len: usize,
group_header: usize,
groups: I,
) -> Result<
impl Iterator<Item: Iterator<Item: GmpReportGroupRecord<A>> + Clone>,
InvalidConstraintsError,
>
where
A: IpAddress,
I: Iterator<Item: GmpReportGroupRecord<A> + Clone> + Clone,
{
// We need a maximum length that can fit at least one group with one source.
if group_header + core::mem::size_of::<A>() > max_len {
return Err(InvalidConstraintsError);
}
// These are the mutable state given to the iterator.
//
// `groups` is the main iterator that is moved forward whenever we've fully
// yielded a group out on a `next` call.
let mut groups = groups.peekable();
// `skip` is saved in case the first group of a next iteration needs to skip
// sources entries.
let mut skip = 0;
Ok(core::iter::from_fn(move || {
let start = groups.clone();
let mut take = 0;
let mut len = 0;
loop {
let group = match groups.peek() {
Some(group) => group,
None => break,
};
len += group_header;
// Can't even fit the header.
if len > max_len {
break;
}
// `skip` is only going to be valid for the first group we look at,
// so always reset it to zero.
let skipped = core::mem::replace(&mut skip, 0);
let sources = group.sources();
if take == 0 {
// If this is the first group, we should be able to split this
// into multiple reports as necessary. Alternatively, if we have
// skipped records from a previous yield we should produce the
// rest of the records here.
let mut sources = sources.skip(skipped).enumerate();
loop {
// NB: This is not written as a `while` or `for` loop so we
// don't create temporaries that are holding on to borrows
// of groups, which then allows us to drive the main
// iterator before exiting here.
let Some((i, _)) = sources.next() else { break };
len += core::mem::size_of::<A>();
if len > max_len {
// We're ensured to always be able to fit at least one
// group with one source per report, so we should never
// hit max length on the first source.
let limit = NonZeroUsize::new(i).expect("can't fit a single source");
let record = if group.record_type().allow_split() {
// Update skip so we yield the rest of the message
// on the next iteration.
skip = skipped + i;
group.clone()
} else {
// Use the current limit and just ignore any further
// sources. We known unwrap is okay here we just
// peeked.
drop(sources);
groups.next().unwrap()
};
return Some(either::Either::Left(core::iter::once(
OverrideGroupRecordSources { record, limit, skip: skipped },
)));
}
}
// If we need to skip any records, yield a single entry. It's a
// bit too complicated to insert this group in a report with
// other groups, so let's just issue the rest of its sources in
// its own report.
if skipped != 0 {
// Consume this current group. Unwrap is safe we just
// peeked.
drop(sources);
let group = groups.next().unwrap();
return Some(either::Either::Left(core::iter::once(
OverrideGroupRecordSources {
record: group,
limit: NonZeroUsize::MAX,
skip: skipped,
},
)));
}
} else {
// We can't handle skipped sources here.
assert_eq!(skipped, 0);
// If not the first group only account for it if we can take all
// sources.
len += sources.count() * core::mem::size_of::<A>();
if len > max_len {
break;
}
}
// This entry fits account for it.
let _: Option<_> = groups.next();
take += 1;
}
if take == 0 {
None
} else {
Some(either::Either::Right(start.take(take).map(|record| OverrideGroupRecordSources {
record,
limit: NonZeroUsize::MAX,
skip: 0,
})))
}
}))
}
#[cfg(test)]
mod tests {
use core::ops::Range;
use super::*;
use ip_test_macro::ip_test;
use net_types::ip::{Ip, Ipv4Addr, Ipv6Addr};
fn empty_iter<A: IpAddress>() -> impl Iterator<Item: GmpReportGroupRecord<A> + Clone> + Clone {
core::iter::empty::<(MulticastAddr<A>, GroupRecordType, core::iter::Empty<A>)>()
}
fn addr<I: Ip>(i: u8) -> I::Addr {
I::map_ip_out(
i,
|i| Ipv4Addr::new([0, 0, 0, i]),
|i| Ipv6Addr::from_bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, i]),
)
}
fn mcast_addr<I: Ip>(i: u8) -> MulticastAddr<I::Addr> {
MulticastAddr::new(I::map_ip_out(
i,
|i| Ipv4Addr::new([224, 0, 0, i]),
|i| Ipv6Addr::from_bytes([0xFF, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, i]),
))
.unwrap()
}
fn addr_iter_range<I: Ip>(range: Range<u8>) -> impl Iterator<Item = I::Addr> + Clone {
range.into_iter().map(|i| addr::<I>(i))
}
fn collect<I, A>(iter: I) -> Vec<Vec<(MulticastAddr<A>, GroupRecordType, Vec<A>)>>
where
I: Iterator<Item: Iterator<Item: GmpReportGroupRecord<A>>>,
A: IpAddress,
{
iter.map(|groups| {
groups
.map(|g| {
(
g.group(),
g.record_type(),
g.sources().map(|b| b.borrow().clone()).collect::<Vec<_>>(),
)
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
}
const GROUP_RECORD_HEADER: usize = 1;
#[ip_test(I)]
fn split_rejects_small_lengths<I: Ip>() {
assert_eq!(
group_record_split_iterator(
GROUP_RECORD_HEADER,
GROUP_RECORD_HEADER,
empty_iter::<I::Addr>()
)
.map(collect),
Err(InvalidConstraintsError)
);
assert_eq!(
group_record_split_iterator(
GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>() - 1,
GROUP_RECORD_HEADER,
empty_iter::<I::Addr>()
)
.map(collect),
Err(InvalidConstraintsError)
);
// Works, doesn't yield anything because of empty iterator.
assert_eq!(
group_record_split_iterator(
GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>(),
GROUP_RECORD_HEADER,
empty_iter::<I::Addr>()
)
.map(collect),
Ok(vec![])
);
}
#[ip_test(I)]
fn basic_split<I: Ip>() {
let iter = group_record_split_iterator(
GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>() * 2,
GROUP_RECORD_HEADER,
[
(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(1..2)),
(mcast_addr::<I>(2), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(2..4)),
(
mcast_addr::<I>(3),
GroupRecordType::ChangeToIncludeMode,
addr_iter_range::<I>(0..0),
),
(
mcast_addr::<I>(4),
GroupRecordType::ChangeToExcludeMode,
addr_iter_range::<I>(0..0),
),
]
.into_iter(),
)
.unwrap();
let report1 = vec![(
mcast_addr::<I>(1),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(1..2).collect::<Vec<_>>(),
)];
let report2 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsExclude,
addr_iter_range::<I>(2..4).collect::<Vec<_>>(),
)];
let report3 = vec![
(mcast_addr::<I>(3), GroupRecordType::ChangeToIncludeMode, vec![]),
(mcast_addr::<I>(4), GroupRecordType::ChangeToExcludeMode, vec![]),
];
assert_eq!(collect(iter), vec![report1, report2, report3]);
}
#[ip_test(I)]
fn sources_split<I: Ip>() {
let iter = group_record_split_iterator(
GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>(),
GROUP_RECORD_HEADER,
[
(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..0)),
(mcast_addr::<I>(2), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..3)),
(mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..0)),
]
.into_iter(),
)
.unwrap();
let report1 = vec![(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, vec![])];
let report2 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(0..1).collect::<Vec<_>>(),
)];
let report3 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(1..2).collect::<Vec<_>>(),
)];
let report4 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(2..3).collect::<Vec<_>>(),
)];
let report5 = vec![(mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, vec![])];
assert_eq!(collect(iter), vec![report1, report2, report3, report4, report5]);
}
#[ip_test(I)]
fn sources_truncate<I: Ip>() {
let iter = group_record_split_iterator(
GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>(),
GROUP_RECORD_HEADER,
[
(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..0)),
(mcast_addr::<I>(2), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(0..2)),
(mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(2..3)),
]
.into_iter(),
)
.unwrap();
let report1 = vec![(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, vec![])];
// Only one report for the exclude mode is generated, sources are
// truncated.
let report2 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsExclude,
addr_iter_range::<I>(0..1).collect::<Vec<_>>(),
)];
let report3 = vec![(
mcast_addr::<I>(3),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(2..3).collect::<Vec<_>>(),
)];
assert_eq!(collect(iter), vec![report1, report2, report3]);
}
/// Tests for a current limitation of the iterator. We don't attempt to pack
/// split sources, but rather possibly generate a short report.
#[ip_test(I)]
fn odd_split<I: Ip>() {
let iter = group_record_split_iterator(
GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>() * 4,
GROUP_RECORD_HEADER,
[
(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..5)),
(mcast_addr::<I>(2), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(5..6)),
]
.into_iter(),
)
.unwrap();
let report1 = vec![(
mcast_addr::<I>(1),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(0..4).collect::<Vec<_>>(),
)];
let report2 = vec![(
mcast_addr::<I>(1),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(4..5).collect::<Vec<_>>(),
)];
let report3 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsExclude,
addr_iter_range::<I>(5..6).collect::<Vec<_>>(),
)];
assert_eq!(collect(iter), vec![report1, report2, report3]);
}
/// Tests that we prefer to keep a group together if we can, i.e., avoid
/// splitting off a group that is not the first in a message.
#[ip_test(I)]
fn split_off_large_group<I: Ip>() {
let iter = group_record_split_iterator(
(GROUP_RECORD_HEADER + core::mem::size_of::<I::Addr>()) * 2,
GROUP_RECORD_HEADER,
[
(mcast_addr::<I>(1), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(0..1)),
// The beginning of this group should be in its own message.
(mcast_addr::<I>(2), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(1..3)),
(mcast_addr::<I>(3), GroupRecordType::ModeIsInclude, addr_iter_range::<I>(3..4)),
// This group should be in its own message as opposed to
// truncating together with the previous one.
(mcast_addr::<I>(4), GroupRecordType::ModeIsExclude, addr_iter_range::<I>(4..6)),
]
.into_iter(),
)
.unwrap();
let report1 = vec![(
mcast_addr::<I>(1),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(0..1).collect::<Vec<_>>(),
)];
let report2 = vec![(
mcast_addr::<I>(2),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(1..3).collect::<Vec<_>>(),
)];
let report3 = vec![(
mcast_addr::<I>(3),
GroupRecordType::ModeIsInclude,
addr_iter_range::<I>(3..4).collect::<Vec<_>>(),
)];
let report4 = vec![(
mcast_addr::<I>(4),
GroupRecordType::ModeIsExclude,
addr_iter_range::<I>(4..6).collect::<Vec<_>>(),
)];
assert_eq!(collect(iter), vec![report1, report2, report3, report4]);
}
}