1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::{elf_load, elf_parse, process_args, util};
use anyhow::{anyhow, Context};
use fidl::endpoints::{ClientEnd, Proxy};
use fuchsia_async::{self as fasync, TimeoutExt};
use fuchsia_runtime::{HandleInfo, HandleType};
use fuchsia_zircon::{self as zx, AsHandleRef, DurationNum, HandleBased};
use futures::prelude::*;
use std::ffi::{CStr, CString};
use std::{iter, mem};
use thiserror::Error;
use {fidl_fuchsia_io as fio, fidl_fuchsia_ldsvc as fldsvc};
/// Error type returned by ProcessBuilder methods.
#[derive(Error, Debug)]
pub enum ProcessBuilderError {
#[error("{}", _0)]
InvalidArg(String),
#[error("{}", _0)]
BadHandle(&'static str),
#[error("Failed to create process: {}", _0)]
CreateProcess(zx::Status),
#[error("Failed to create thread: {}", _0)]
CreateThread(zx::Status),
#[error("Failed to start process: {}", _0)]
ProcessStart(zx::Status),
#[error("Failed to parse ELF: {}", _0)]
ElfParse(#[from] elf_parse::ElfParseError),
#[error("Failed to load ELF: {}", _0)]
ElfLoad(#[from] elf_load::ElfLoadError),
#[error("{}", _0)]
ProcessArgs(#[from] process_args::ProcessargsError),
#[error("{}: {}", _0, _1)]
GenericStatus(&'static str, zx::Status),
#[error("{}: {}", _0, _1)]
Internal(&'static str, #[source] anyhow::Error),
#[error("Invalid PT_INTERP header: {}", _0)]
InvalidInterpHeader(#[source] anyhow::Error),
#[error("Failed to build process with dynamic ELF, missing fuchsia.ldsvc.Loader handle")]
LoaderMissing(),
#[error("Failed to load dynamic linker from fuchsia.ldsvc.Loader: {}", _0)]
LoadDynamicLinker(#[source] fidl::Error),
#[error("Timed out loading dynamic linker from fuchsia.ldsvc.Loader")]
LoadDynamicLinkerTimeout(),
#[error("Failed to write bootstrap message to channel: {}", _0)]
WriteBootstrapMessage(zx::Status),
#[error("Failed to destroy reservation VMAR: {}", _0)]
DestroyReservationVMAR(zx::Status),
#[error("Failed to duplicate handle of type {:?}: {}", _0, _1)]
DuplicateHandle(HandleType, zx::Status),
}
impl ProcessBuilderError {
/// Returns an appropriate zx::Status code for the given error.
pub fn as_zx_status(&self) -> zx::Status {
match self {
ProcessBuilderError::InvalidArg(_)
| ProcessBuilderError::InvalidInterpHeader(_)
| ProcessBuilderError::LoaderMissing() => zx::Status::INVALID_ARGS,
ProcessBuilderError::BadHandle(_) => zx::Status::BAD_HANDLE,
ProcessBuilderError::CreateProcess(s)
| ProcessBuilderError::CreateThread(s)
| ProcessBuilderError::ProcessStart(s)
| ProcessBuilderError::GenericStatus(_, s)
| ProcessBuilderError::WriteBootstrapMessage(s)
| ProcessBuilderError::DestroyReservationVMAR(s) => *s,
ProcessBuilderError::ElfParse(e) => e.as_zx_status(),
ProcessBuilderError::ElfLoad(e) => e.as_zx_status(),
ProcessBuilderError::ProcessArgs(e) => e.as_zx_status(),
ProcessBuilderError::Internal(_, _) => zx::Status::INTERNAL,
ProcessBuilderError::LoadDynamicLinker(_) => zx::Status::NOT_FOUND,
ProcessBuilderError::LoadDynamicLinkerTimeout() => zx::Status::TIMED_OUT,
ProcessBuilderError::DuplicateHandle(_, s) => *s,
}
}
}
/// A container for a single namespace entry, containing a path and a directory handle. Used as an
/// input to [ProcessBuilder::add_namespace_entries()].
pub struct NamespaceEntry {
/// Namespace path.
pub path: CString,
/// Namespace directory handle.
pub directory: ClientEnd<fio::DirectoryMarker>,
}
/// The main builder type for this crate. Collects inputs and creates a new process.
///
/// See top-level crate documentation for a usage example.
pub struct ProcessBuilder {
/// The ELF binary for the new process.
executable: zx::Vmo,
/// The fuchsia.ldsvc.Loader service to use for the new process, if dynamically linked.
ldsvc: Option<fldsvc::LoaderProxy>,
/// A non-default vDSO to use for the new process, if any.
non_default_vdso: Option<zx::Vmo>,
/// The contents of the main process_args message to be sent to the new process.
msg_contents: process_args::MessageContents,
/// Handles that are common to both the linker and main process_args messages, wrapped in an
/// inner struct for code organization and clarity around borrows.
common: CommonMessageHandles,
/// Minimum size of the stack for the new process, in bytes.
min_stack_size: usize,
/// The default system vDSO.
system_vdso_vmo: zx::Vmo,
}
struct CommonMessageHandles {
process: zx::Process,
thread: zx::Thread,
root_vmar: zx::Vmar,
}
/// A container for a fully built but not yet started (as in, its initial thread is not yet
/// running) process, with all related handles and metadata. Output of [ProcessBuilder::build()].
///
/// You can use this struct to start the process with [BuiltProcess::start()], which is a simple
/// wrapper around the [zx_process_start] syscall. You can optionally use the handles and
/// information in this struct to manipulate the process or its address space before starting it,
/// such as when creating a process in a debugger.
///
/// [zx_process_start]: https://fuchsia.dev/fuchsia-src/reference/syscalls/process_start.md
pub struct BuiltProcess {
/// The newly created process.
pub process: zx::Process,
/// The root VMAR for the created process.
pub root_vmar: zx::Vmar,
/// The process's initial thread.
pub thread: zx::Thread,
/// The process's entry point.
pub entry: usize,
/// The initial thread's stack pointer.
pub stack: usize,
/// The base address of the stack for the initial thread.
pub stack_base: usize,
/// The VMO of the stack for the initial thread.
pub stack_vmo: zx::Vmo,
/// The bootstrap channel, to be passed to the process on start as arg1 in zx_process_start /
/// zx::Process::start.
pub bootstrap: zx::Channel,
/// The base address of the VDSO in the process's VMAR, to be passed to the process on start as
/// arg2 in zx_process_start / zx::Process::start.
pub vdso_base: usize,
/// The base address where the ELF executable, or the dynamic linker if the ELF was dynamically
/// linked, was loaded in the process's VMAR.
pub elf_base: usize,
/// The ELF headers of the main module of the newly created process.
pub elf_headers: elf_parse::Elf64Headers,
}
struct StackInfo {
/// The initial thread's stack pointer.
pub stack_ptr: usize,
/// The base address of the stack for the initial thread.
pub stack_base: usize,
/// The VMO of the stack for the initial thread.
pub stack_vmo: zx::Vmo,
}
impl ProcessBuilder {
/// Create a new ProcessBuilder that can be used to create a new process under the given job
/// with the given name and ELF64 executable (as a VMO).
///
/// This job is only used to create the process and thus is not taken ownership of. To provide
/// a default job handle to be passed to the new process, use [ProcessBuilder::add_handles()]
/// with [HandleType::DefaultJob].
///
/// The provided VMO must have the [zx::Rights::EXECUTE] right.
///
/// # Errors
///
/// Returns Err([ProcessBuilderError::CreateProcess]) if process creation fails, such as if the
/// process using this is disallowed direct process creation rights through job policy. See
/// top-level crate documentation for more details.
pub fn new(
name: &CStr,
job: &zx::Job,
options: zx::ProcessOptions,
executable: zx::Vmo,
system_vdso_vmo: zx::Vmo,
) -> Result<ProcessBuilder, ProcessBuilderError> {
if job.is_invalid_handle() {
return Err(ProcessBuilderError::BadHandle("Invalid job handle"));
}
if executable.is_invalid_handle() {
return Err(ProcessBuilderError::BadHandle("Invalid executable handle"));
}
// Creating the process immediately has the benefit that we fail fast if the calling
// process does not have permission to create processes directly.
let (process, root_vmar) = job
.create_child_process(options, name.to_bytes())
.map_err(ProcessBuilderError::CreateProcess)?;
// Create the initial thread.
let thread =
process.create_thread(b"initial-thread").map_err(ProcessBuilderError::CreateThread)?;
// Add duplicates of the process, VMAR, and thread handles to the bootstrap message.
let msg_contents = process_args::MessageContents::default();
let mut pb = ProcessBuilder {
executable,
ldsvc: None,
non_default_vdso: None,
msg_contents,
common: CommonMessageHandles { process, thread, root_vmar },
min_stack_size: 0,
system_vdso_vmo,
};
pb.common.add_process_self(&mut pb.msg_contents)?;
pb.common.add_thread_self(&mut pb.msg_contents)?;
pb.common.add_root_vmar(&mut pb.msg_contents)?;
Ok(pb)
}
/// Sets the fuchsia.ldsvc.Loader service for the process.
///
/// The loader service is used to load dynamic libraries if the executable is a dynamically
/// linked ELF file (i.e. if it contains a PT_INTERP header), and is required for such
/// executables. It will only be provided to the new process in this case. Otherwise, it is
/// unused and has no effect.
///
/// If no loader service has been provided and it is needed, process creation will fail. Note
/// that this differs from the automatic fallback behavior of previous process creation
/// libraries, which would clone the loader of the current process. This fallback is likely to
/// fail in subtle and confusing ways. An appropriate loader service that has access to the
/// libraries or interpreter must be provided.
///
/// Note that [ProcessBuilder::add_handles()] will automatically pass a handle with type
/// [HandleType::LdsvcLoader] to this function.
///
/// If called multiple times (e.g. if a loader was initially provided through
/// [ProcessBuilder::add_handles()] and you want to replace it), the new loader replaces the
/// previous and the handle to the previous loader is dropped.
pub fn set_loader_service(
&mut self,
ldsvc: ClientEnd<fldsvc::LoaderMarker>,
) -> Result<(), ProcessBuilderError> {
if ldsvc.is_invalid_handle() {
return Err(ProcessBuilderError::BadHandle("Invalid loader service handle"));
}
self.ldsvc =
Some(ldsvc.into_proxy().map_err(|e| {
ProcessBuilderError::Internal("Failed to get LoaderProxy", e.into())
})?);
Ok(())
}
/// Sets the vDSO VMO for the process.
pub fn set_vdso_vmo(&mut self, vdso: zx::Vmo) {
self.non_default_vdso = Some(vdso);
}
/// Add arguments to the process's bootstrap message. Successive calls append (not replace)
/// arguments.
pub fn add_arguments(&mut self, mut args: Vec<CString>) {
self.msg_contents.args.append(&mut args);
}
/// Add environment variables to the process's bootstrap message. Successive calls append (not
/// replace) environment variables.
pub fn add_environment_variables(&mut self, mut vars: Vec<CString>) {
self.msg_contents.environment_vars.append(&mut vars);
}
/// Set the minimum size of the stack for the new process, in bytes.
pub fn set_min_stack_size(&mut self, size: usize) {
self.min_stack_size = size;
}
/// Add handles to the process's bootstrap message. Successive calls append (not replace)
/// handles.
///
/// Each [process_args::StartupHandle] contains a [zx::Handle] object accompanied by a [HandleInfo] object
/// that includes the handle type and a type/context-dependent argument.
///
/// A [HandleType::LdsvcLoader] handle will automatically be passed along to
/// [ProcessBuilder::set_loader_service()] if provided through this function.
///
/// # Errors
///
/// [HandleType::NamespaceDirectory] handles should not be added through this function since
/// they must be accompanied with a path. Use [ProcessBuilder::add_namespace_entries()] for
/// that instead.
///
/// The following handle types cannot be added through this, as they are added automatically by
/// the ProcessBuilder:
/// * [HandleType::ProcessSelf]
/// * [HandleType::ThreadSelf]
/// * [HandleType::RootVmar]
/// * [HandleType::LoadedVmar]
/// * [HandleType::StackVmo]
/// * [HandleType::ExecutableVmo]
pub fn add_handles(
&mut self,
startup_handles: Vec<process_args::StartupHandle>,
) -> Result<(), ProcessBuilderError> {
// Do a bit of validation before adding to the bootstrap handles.
for h in &startup_handles {
if h.handle.is_invalid() {
return Err(ProcessBuilderError::BadHandle("Invalid handle in startup handles"));
}
let t = h.info.handle_type();
match t {
HandleType::NamespaceDirectory => {
return Err(ProcessBuilderError::InvalidArg(
"Cannot add NamespaceDirectory handles directly, use add_namespace_entries"
.into(),
));
}
HandleType::ProcessSelf
| HandleType::ThreadSelf
| HandleType::RootVmar
| HandleType::LoadedVmar
| HandleType::StackVmo
| HandleType::ExecutableVmo => {
return Err(ProcessBuilderError::InvalidArg(format!(
"Cannot add a {:?} handle directly, it will be automatically added",
t,
)));
}
_ => {}
}
}
// Intentionally separate from validation so that we don't partially add namespace entries.
for h in startup_handles {
match h.info.handle_type() {
HandleType::LdsvcLoader => {
// Automatically pass this to |set_loader_service| instead.
self.set_loader_service(ClientEnd::from(h.handle))?;
}
HandleType::VdsoVmo => {
if h.info.arg() == 0 {
self.set_vdso_vmo(h.handle.into());
} else {
// Pass any additional vDSOs.
self.msg_contents.handles.push(h);
}
}
_ => {
self.msg_contents.handles.push(h);
}
}
}
Ok(())
}
/// Add directories to the process's namespace.
///
/// Successive calls append new namespace entries, not replace previous entries.
///
/// Each [NamespaceEntry] contains a client connection to a fuchsia.io.Directory FIDL service
/// and a path to add that directory to the process's namespace as.
///
/// # Errors
///
/// Returns Err([ProcessBuilderError::InvalidArg]) if the maximum number of namespace entries
/// (2^16) was reached and the entry could not be added. This is exceedingly unlikely, and most
/// likely if you are anywhere near this limit [ProcessBuilder::build()] will fail because the
/// process's process_args startup message is over its own length limit.
pub fn add_namespace_entries(
&mut self,
mut entries: Vec<NamespaceEntry>,
) -> Result<(), ProcessBuilderError> {
// Namespace entries are split into a namespace path, that is included in the bootstrap
// message (as the so-called "namespace table"), plus a NamespaceDirectory handle, where the arg
// value is the index of the path in the namespace table.
//
// Check that the namespace table doesn't exceed 2^16 entries, since the HandleInfo arg is
// only 16-bits. Realistically this will never matter - if you're anywhere near this
// many entries, you're going to exceed the bootstrap message length limit - but Rust
// encourages us (and makes it easy) to be safe about the edge case here.
let mut idx = u16::try_from(self.msg_contents.namespace_paths.len())
.expect("namespace_paths.len should never be larger than a u16");
let num_entries = u16::try_from(entries.len())
.map_err(|_| ProcessBuilderError::InvalidArg("Too many namespace entries".into()))?;
if idx.checked_add(num_entries).is_none() {
return Err(ProcessBuilderError::InvalidArg(
"Can't add namespace entries, limit reached".into(),
));
}
for entry in &entries {
if entry.directory.is_invalid_handle() {
return Err(ProcessBuilderError::BadHandle("Invalid handle in namespace entry"));
}
}
// Intentionally separate from validation so that we don't partially add namespace entries=
for entry in entries.drain(..) {
self.msg_contents.namespace_paths.push(entry.path);
self.msg_contents.handles.push(process_args::StartupHandle {
handle: zx::Handle::from(entry.directory),
info: HandleInfo::new(HandleType::NamespaceDirectory, idx),
});
idx += 1;
}
Ok(())
}
/// Build the new process using the data and handles provided to the ProcessBuilder.
///
/// The return value of this function is a [BuiltProcess] struct which contains the new process
/// and all the handles and data needed to start it, but the process' initial thread is not yet
/// started. Use [BuiltProcess::start()] or the [zx_process_start] syscall to actually start
/// it.
///
/// # Errors
///
/// There are many errors that could result during process loading and only some are listed
/// here. See [ProcessBuilderError] for the various error types that can be returned.
///
/// Returns Err([ProcessBuilderError::LoaderMissing]) if the ELF executable is dynamically
/// linked (has a PT_INTERP program header) but no loader service has been provided through
/// [ProcessBuilder::set_loader_service()] or [ProcessBuilder::add_handles()].
///
/// [zx_process_start]: https://fuchsia.dev/fuchsia-src/reference/syscalls/process_start.md
pub async fn build(mut self) -> Result<BuiltProcess, ProcessBuilderError> {
// Parse the executable as an ELF64 file, reading in the headers we need. Done first since
// this is most likely to be invalid and error out.
let elf_headers = elf_parse::Elf64Headers::from_vmo(&self.executable)?;
// Create bootstrap message channel.
let (bootstrap_rd, bootstrap_wr) = zx::Channel::create();
// Check if main executable is dynamically linked, and handle appropriately.
let loaded_elf;
let mut reserve_vmar = None;
let dynamic;
if let Some(interp_hdr) =
elf_headers.program_header_with_type(elf_parse::SegmentType::Interp)?
{
// Dynamically linked so defer loading the main executable to the dynamic
// linker/loader, which we load here instead.
dynamic = true;
// Check that a ldsvc.Loader service was provided.
let ldsvc = self.ldsvc.take().ok_or(ProcessBuilderError::LoaderMissing())?;
// A process using PT_INTERP might be loading a libc.so that supports sanitizers;
// reserve the low address region for sanitizers to allocate shadow memory.
//
// The reservation VMAR ensures that the initial allocations & mappings made in this
// function stay out of this area. It is destroyed below before returning and the
// process's own allocations can use the full address space.
//
// !! WARNING: This makes a specific address VMAR allocation, so it must come before
// any elf_load::load_elf calls. !!
reserve_vmar =
Some(ReservationVmar::reserve_low_address_space(&self.common.root_vmar)?);
// Get the dynamic linker and map it into the process's address space.
let ld_vmo = get_dynamic_linker(&ldsvc, &self.executable, interp_hdr).await?;
let ld_headers = elf_parse::Elf64Headers::from_vmo(&ld_vmo)?;
loaded_elf = elf_load::load_elf(&ld_vmo, &ld_headers, &self.common.root_vmar)?;
// Build the dynamic linker bootstrap message and write it to the bootstrap channel.
// This message is written before the primary bootstrap message since it is consumed
// first in the dynamic linker.
let executable = mem::replace(&mut self.executable, zx::Handle::invalid().into());
let msg = self.build_linker_message(ldsvc, executable, loaded_elf.vmar)?;
msg.write(&bootstrap_wr).map_err(ProcessBuilderError::WriteBootstrapMessage)?;
} else {
// Statically linked but still position-independent (ET_DYN) ELF, load directly.
dynamic = false;
loaded_elf =
elf_load::load_elf(&self.executable, &elf_headers, &self.common.root_vmar)?;
self.msg_contents.handles.push(process_args::StartupHandle {
handle: loaded_elf.vmar.into_handle(),
info: HandleInfo::new(HandleType::LoadedVmar, 0),
});
}
// Load the vDSO - either the default system vDSO, or the user-provided one - into the
// process's address space and a handle to it to the bootstrap message.
let vdso_base = self.load_vdso()?;
// Calculate initial stack size.
let mut stack_size;
let stack_vmo_name;
if dynamic {
// Calculate the initial stack size for the dynamic linker. This factors in the size of
// an extra handle for the stack that hasn't yet been added to the message contents,
// since creating the stack requires this size.
stack_size = calculate_initial_linker_stack_size(&mut self.msg_contents, 1)?;
stack_vmo_name = format!("stack: msg of {:#x?}", stack_size);
} else {
// Set stack size from PT_GNU_STACK header, if present, or use the default. The dynamic
// linker handles this for dynamically linked ELFs (above case).
const ZIRCON_DEFAULT_STACK_SIZE: usize = 256 << 10; // 256KiB
let mut ss = ("default", ZIRCON_DEFAULT_STACK_SIZE);
if let Some(stack_hdr) =
elf_headers.program_header_with_type(elf_parse::SegmentType::GnuStack)?
{
if stack_hdr.memsz > 0 {
ss = ("explicit", stack_hdr.memsz as usize);
}
}
// Stack size must be page aligned.
stack_size = util::page_end(ss.1);
stack_vmo_name = format!("stack: {} {:#x?}", ss.0, stack_size);
}
if stack_size < self.min_stack_size {
stack_size = util::page_end(self.min_stack_size);
}
// Allocate the initial thread's stack, map it, and add a handle to the bootstrap message.
let stack_vmo_name =
zx::Name::new(&stack_vmo_name).expect("Stack VMO name must be less than 31 bytes");
let stack_info = self.create_stack(stack_size, &stack_vmo_name)?;
// Build and send the primary bootstrap message.
let msg = process_args::Message::build(self.msg_contents)?;
msg.write(&bootstrap_wr).map_err(ProcessBuilderError::WriteBootstrapMessage)?;
// Explicitly destroy the reservation VMAR before returning so that we can be sure it is
// gone (so we don't end up with a process with half its address space gone).
if let Some(mut r) = reserve_vmar {
r.destroy().map_err(ProcessBuilderError::DestroyReservationVMAR)?;
}
Ok(BuiltProcess {
process: self.common.process,
root_vmar: self.common.root_vmar,
thread: self.common.thread,
entry: loaded_elf.entry,
stack: stack_info.stack_ptr,
stack_base: stack_info.stack_base,
stack_vmo: stack_info.stack_vmo,
bootstrap: bootstrap_rd,
vdso_base: vdso_base,
elf_base: loaded_elf.vmar_base,
elf_headers,
})
}
/// Build the bootstrap message for the dynamic linker, which uses the same process_args
/// protocol as the message for the main process but somewhat different contents.
///
/// The LoaderProxy provided must be ready to be converted to a Handle with into_channel(). In
/// other words, there must be no other active clones of the proxy, no open requests, etc. The
/// intention is that the user provides a handle only (perhaps wrapped in a ClientEnd) through
/// [ProcessBuilder::set_loader_service()], not a Proxy, so the library can be sure this
/// invariant is maintained and a failure is a library bug.
fn build_linker_message(
&self,
ldsvc: fldsvc::LoaderProxy,
executable: zx::Vmo,
loaded_vmar: zx::Vmar,
) -> Result<process_args::Message, ProcessBuilderError> {
// Don't need to use the ldsvc.Loader anymore; turn it back into into a raw handle so
// we can pass it along in the dynamic linker bootstrap message.
let ldsvc_hnd =
ldsvc.into_channel().expect("Failed to get channel from LoaderProxy").into_zx_channel();
// The linker message only needs a subset of argv and envvars.
let args = extract_ld_arguments(&self.msg_contents.args);
let environment_vars =
extract_ld_environment_variables(&self.msg_contents.environment_vars);
let mut linker_msg_contents = process_args::MessageContents {
// Argument strings are sent to the linker so that it can use argv[0] in messages it
// prints.
args,
// Environment variables are sent to the linker so that it can see vars like LD_DEBUG.
environment_vars,
// Process namespace is not set up or used in the linker.
namespace_paths: vec![],
// Loader message includes a few special handles needed to do its job, plus a set of
// handles common to both messages which are generated by this library.
handles: vec![
process_args::StartupHandle {
handle: ldsvc_hnd.into_handle(),
info: HandleInfo::new(HandleType::LdsvcLoader, 0),
},
process_args::StartupHandle {
handle: executable.into_handle(),
info: HandleInfo::new(HandleType::ExecutableVmo, 0),
},
process_args::StartupHandle {
handle: loaded_vmar.into_handle(),
info: HandleInfo::new(HandleType::LoadedVmar, 0),
},
],
};
self.common.add_process_self(&mut linker_msg_contents)?;
self.common.add_root_vmar(&mut linker_msg_contents)?;
Ok(process_args::Message::build(linker_msg_contents)?)
}
/// Load the vDSO VMO into the process's address space and a handle to it to the bootstrap
/// message. If a vDSO VMO is provided, loads that one, otherwise loads the default system
/// vDSO, invaliding the duplicate default system vDSO handle stored in this object.
/// Returns the base address that the vDSO was mapped into.
fn load_vdso(&mut self) -> Result<usize, ProcessBuilderError> {
let vdso = match self.non_default_vdso.take() {
Some(vmo) => vmo,
None => mem::replace(&mut self.system_vdso_vmo, zx::Handle::invalid().into()),
};
let vdso_headers = elf_parse::Elf64Headers::from_vmo(&vdso)?;
let loaded_vdso = elf_load::load_elf(&vdso, &vdso_headers, &self.common.root_vmar)?;
self.msg_contents.handles.push(process_args::StartupHandle {
handle: vdso.into_handle(),
info: HandleInfo::new(HandleType::VdsoVmo, 0),
});
Ok(loaded_vdso.vmar_base)
}
/// Allocate the initial thread's stack, map it, and add a handle to the bootstrap message.
/// Returns the initial stack pointer for the process.
///
/// Note that launchpad supported not allocating a stack at all, but that only happened if an
/// explicit stack size of 0 is set. ProcessBuilder does not support overriding the stack size
/// so a stack is always created.
fn create_stack(
&mut self,
stack_size: usize,
vmo_name: &zx::Name,
) -> Result<StackInfo, ProcessBuilderError> {
let stack_vmo = zx::Vmo::create(stack_size as u64).map_err(|s| {
ProcessBuilderError::GenericStatus("Failed to create VMO for initial thread stack", s)
})?;
stack_vmo
.set_name(vmo_name)
.map_err(|s| ProcessBuilderError::GenericStatus("Failed to set stack VMO name", s))?;
let stack_flags = zx::VmarFlags::PERM_READ | zx::VmarFlags::PERM_WRITE;
let stack_base =
self.common.root_vmar.map(0, &stack_vmo, 0, stack_size, stack_flags).map_err(|s| {
ProcessBuilderError::GenericStatus("Failed to map initial stack", s)
})?;
let stack_ptr = compute_initial_stack_pointer(stack_base, stack_size);
let dup_stack_vmo = stack_vmo.duplicate_handle(zx::Rights::SAME_RIGHTS).map_err(|s| {
ProcessBuilderError::GenericStatus("Failed to duplicate initial stack", s)
})?;
// Pass the stack VMO to the process. Our protocol with the new process is that we warrant
// that this is the VMO from which the initial stack is mapped and that we've exactly
// mapped the entire thing, so vm_object_get_size on this in concert with the initial SP
// value tells it the exact bounds of its stack.
self.msg_contents.handles.push(process_args::StartupHandle {
handle: dup_stack_vmo.into_handle(),
info: HandleInfo::new(HandleType::StackVmo, 0),
});
Ok(StackInfo { stack_ptr, stack_base, stack_vmo })
}
}
/// Calculate the size of the initial stack to allocate for the dynamic linker, based on the given
/// process_args message contents.
///
/// The initial stack is used just for startup work in the dynamic linker and to hold the bootstrap
/// message, so we only attempt to make it only as big as needed. The size returned is based on the
/// stack space needed to read the bootstrap message with zx_channel_read, and thus includes the
/// message data itself plus the size of the handles (i.e. the size of N zx_handle_t's).
///
/// This also allows the caller to specify an number of "extra handles" to factor into the size
/// calculation. This allows the size to be calculated before all the real handles have been added
/// to the contents, for example if the size is needed to create those handles.
pub fn calculate_initial_linker_stack_size(
msg_contents: &mut process_args::MessageContents,
extra_handles: usize,
) -> Result<usize, ProcessBuilderError> {
// Add N placeholder handles temporarily to factor in the size of handles that are not yet
// added to the message contents.
msg_contents.handles.extend(
iter::repeat_with(|| process_args::StartupHandle {
handle: zx::Handle::invalid(),
info: HandleInfo::new(HandleType::User0, 0),
})
.take(extra_handles),
);
// Include both the message data size and the size of the handles since we're calculating the
// stack space required to read the message.
let num_handles = msg_contents.handles.len();
let msg_stack_size = process_args::Message::calculate_size(msg_contents)?
+ num_handles * mem::size_of::<zx::sys::zx_handle_t>();
msg_contents.handles.truncate(num_handles - extra_handles);
// PTHREAD_STACK_MIN is defined by the C library in
// //zircon/third_party/ulib/musl/include/limits.h. It is tuned enough to cover the dynamic
// linker and C library startup code's stack usage (up until the point it switches to its own
// stack in __libc_start_main), but leave a little space so for small bootstrap message sizes
// the stack needs only one page.
const PTHREAD_STACK_MIN: usize = 3072;
Ok(util::page_end(msg_stack_size + PTHREAD_STACK_MIN))
}
/// Extract only the arguments that are needed for a linker message.
fn extract_ld_arguments(arguments: &[CString]) -> Vec<CString> {
let mut extracted = vec![];
if let Some(argument) = arguments.get(0) {
extracted.push(argument.clone())
}
extracted
}
/// Extract only the environment variables that are needed for a linker message.
fn extract_ld_environment_variables(envvars: &[CString]) -> Vec<CString> {
let prefixes = ["LD_DEBUG=", "LD_TRACE="];
let mut extracted = vec![];
for envvar in envvars {
for prefix in &prefixes {
let envvar_bytes: &[u8] = envvar.to_bytes();
let prefix_bytes: &[u8] = prefix.as_bytes();
if envvar_bytes.starts_with(prefix_bytes) {
extracted.push(envvar.clone());
continue;
}
}
}
extracted
}
impl CommonMessageHandles {
fn add_process_self(
&self,
msg: &mut process_args::MessageContents,
) -> Result<(), ProcessBuilderError> {
Self::add_to_message(msg, self.process.as_handle_ref(), HandleType::ProcessSelf)
}
fn add_thread_self(
&self,
msg: &mut process_args::MessageContents,
) -> Result<(), ProcessBuilderError> {
Self::add_to_message(msg, self.thread.as_handle_ref(), HandleType::ThreadSelf)
}
fn add_root_vmar(
&self,
msg: &mut process_args::MessageContents,
) -> Result<(), ProcessBuilderError> {
Self::add_to_message(msg, self.root_vmar.as_handle_ref(), HandleType::RootVmar)
}
/// Add a handle to the procargs message with `0` for its `arg`.
fn add_to_message(
msg: &mut process_args::MessageContents,
handle: zx::HandleRef<'_>,
handle_type: HandleType,
) -> Result<(), ProcessBuilderError> {
let dup = handle
.duplicate(zx::Rights::SAME_RIGHTS)
.map_err(|s| ProcessBuilderError::DuplicateHandle(handle_type, s))?;
msg.handles.push(process_args::StartupHandle {
handle: dup,
info: HandleInfo::new(handle_type, 0),
});
Ok(())
}
}
/// Given the base and size of the stack block, compute the appropriate initial
/// SP value for an initial thread according to the C calling convention for the
/// machine.
///
/// Copied from, and must be kept in sync with:
/// //zircon/system/ulib/elf-psabi/include/lib/elf-psabi/sp.h
pub fn compute_initial_stack_pointer(base: usize, size: usize) -> usize {
// Assume stack grows down.
let mut sp = base.checked_add(size).expect("Overflow in stack pointer calculation");
// The x86-64 and AArch64 ABIs require 16-byte alignment.
// The 32-bit ARM ABI only requires 8-byte alignment, but 16-byte alignment is preferable for
// NEON so use it there too.
// RISC-V ABIs also require 16-byte alignment.
sp &= 16usize.wrapping_neg();
// The x86-64 ABI requires %rsp % 16 = 8 on entry. The zero word at (%rsp) serves as the
// return address for the outermost frame.
#[cfg(target_arch = "x86_64")]
{
sp -= 8;
}
// The ARMv7 and ARMv8 ABIs both just require that SP be aligned, so just catch unknown archs.
#[cfg(not(any(
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64",
target_arch = "riscv64"
)))]
{
compile_error!("Unknown target_arch");
}
sp
}
/// Load the dynamic linker/loader specified in the PT_INTERP header via the fuchsia.ldsvc.Loader
/// handle.
pub async fn get_dynamic_linker<'a>(
ldsvc: &'a fldsvc::LoaderProxy,
executable: &'a zx::Vmo,
interp_hdr: &'a elf_parse::Elf64ProgramHeader,
) -> Result<zx::Vmo, ProcessBuilderError> {
// Read the dynamic linker name from the main VMO, based on the PT_INTERP header.
let mut interp = vec![0u8; interp_hdr.filesz as usize];
executable
.read(&mut interp[..], interp_hdr.offset as u64)
.map_err(|s| ProcessBuilderError::GenericStatus("Failed to read from VMO", s))?;
// Trim null terminator included in filesz.
match interp.pop() {
Some(b'\0') => Ok(()),
_ => Err(ProcessBuilderError::InvalidInterpHeader(anyhow!("Missing null terminator"))),
}?;
let interp_str = std::str::from_utf8(&interp)
.context("Invalid UTF8")
.map_err(ProcessBuilderError::InvalidInterpHeader)?;
// Retrieve the dynamic linker as a VMO from fuchsia.ldsvc.Loader
const LDSO_LOAD_TIMEOUT_SEC: i64 = 30;
let load_fut = ldsvc
.load_object(interp_str)
.map_err(ProcessBuilderError::LoadDynamicLinker)
.on_timeout(fasync::Time::after(LDSO_LOAD_TIMEOUT_SEC.seconds()), || {
Err(ProcessBuilderError::LoadDynamicLinkerTimeout())
});
let (status, ld_vmo) = load_fut.await?;
zx::Status::ok(status).map_err(|s| {
ProcessBuilderError::GenericStatus(
"Failed to load dynamic linker from fuchsia.ldsvc.Loader",
s,
)
})?;
Ok(ld_vmo.ok_or(ProcessBuilderError::GenericStatus(
"load_object status was OK but no VMO",
zx::Status::INTERNAL,
))?)
}
impl BuiltProcess {
/// Start an already built process.
///
/// This is a simple wrapper around the [zx_process_start] syscall that consumes the handles
/// and data in the BuiltProcess struct as needed.
///
/// [zx_process_start]: https://fuchsia.dev/fuchsia-src/reference/syscalls/process_start.md
pub fn start(self) -> Result<zx::Process, ProcessBuilderError> {
self.process
.start(
&self.thread,
self.entry,
self.stack,
self.bootstrap.into_handle(),
self.vdso_base,
)
.map_err(ProcessBuilderError::ProcessStart)?;
Ok(self.process)
}
}
struct ReservationVmar(Option<zx::Vmar>);
impl ReservationVmar {
/// Reserve the lower half of the address space of the given VMAR by allocating another VMAR.
///
/// The VMAR wrapped by this reservation is automatically destroyed when the reservation
/// is dropped.
fn reserve_low_address_space(vmar: &zx::Vmar) -> Result<ReservationVmar, ProcessBuilderError> {
let info = vmar
.info()
.map_err(|s| ProcessBuilderError::GenericStatus("Failed to get VMAR info", s))?;
// Reserve the lower half of the full address space, not just half of the VMAR length.
// (base+len) represents the full address space, assuming this is used with a root VMAR and
// length extends to the end of the address space, including a region the kernel reserves
// at the start of the space.
// TODO(https://fxbug.dev/42099306): Clean up address space reservation to avoid unnecessary
// reservations, which should also avoid the "fake" reservation in the else-clause.
if let Some(reserve_size) =
util::page_end((info.base + info.len) / 2).checked_sub(info.base)
{
let (reserve_vmar, reserve_base) =
vmar.allocate(0, reserve_size, zx::VmarFlags::SPECIFIC).map_err(|s| {
ProcessBuilderError::GenericStatus("Failed to allocate reservation VMAR", s)
})?;
assert_eq!(reserve_base, info.base, "Reservation VMAR allocated at wrong address");
Ok(ReservationVmar(Some(reserve_vmar)))
} else {
// The VMAR does not intersect the "bottom half," so return a success but without an
// actual reservation.
Ok(ReservationVmar(None))
}
}
/// Destroy the reservation. The reservation is also automatically destroyed when
/// ReservationVmar is dropped.
///
/// VMARs are not destroyed when the handle is closed (by dropping), so we must explicit destroy
/// it to release the reservation and allow the created process to use the full address space.
fn destroy(&mut self) -> Result<(), zx::Status> {
match self.0.take() {
Some(vmar) => {
// This is safe because there are no mappings in the region and it is not a region
// in the current process.
unsafe { vmar.destroy() }
}
None => Ok(()),
}
}
}
// This is probably unnecessary, but it feels wrong to rely on the side effect of the process's
// root VMAR going away. We explicitly call destroy if ProcessBuilder.build() succeeds and returns
// a BuiltProcess, in which case this will do nothing, and if build() fails then the new process
// and its root VMAR will get cleaned up along with this sub-VMAR.
impl Drop for ReservationVmar {
fn drop(&mut self) {
_ = self.destroy();
}
}
#[cfg(test)]
mod tests {
use super::*;
use anyhow::Error;
use assert_matches::assert_matches;
use fidl::endpoints::ServerEnd;
use fidl::prelude::*;
use fidl_test_processbuilder::{UtilMarker, UtilProxy};
use lazy_static::lazy_static;
use vfs::directory::entry_container::Directory;
use vfs::execution_scope::ExecutionScope;
use vfs::file::vmo::read_only;
use vfs::pseudo_directory;
use zerocopy::Ref;
use {fidl_fuchsia_io as fio, fuchsia_async as fasync};
extern "C" {
fn dl_clone_loader_service(handle: *mut zx::sys::zx_handle_t) -> zx::sys::zx_status_t;
}
fn get_system_vdso_vmo() -> Result<zx::Vmo, ProcessBuilderError> {
lazy_static! {
static ref VDSO_VMO: zx::Vmo = {
zx::Vmo::from(
fuchsia_runtime::take_startup_handle(HandleInfo::new(HandleType::VdsoVmo, 0))
.expect("Failed to take VDSO VMO startup handle"),
)
};
}
let vdso_dup = VDSO_VMO
.duplicate_handle(zx::Rights::SAME_RIGHTS)
.map_err(|s| ProcessBuilderError::GenericStatus("Failed to dup vDSO VMO handle", s))?;
Ok(vdso_dup)
}
// Clone the current loader service to provide to the new test processes.
fn clone_loader_service() -> Result<ClientEnd<fldsvc::LoaderMarker>, zx::Status> {
let mut raw = 0;
let status = unsafe { dl_clone_loader_service(&mut raw) };
zx::Status::ok(status)?;
let handle = unsafe { zx::Handle::from_raw(raw) };
Ok(ClientEnd::new(zx::Channel::from(handle)))
}
fn connect_util(client: &zx::Channel) -> Result<UtilProxy, Error> {
let (proxy, server) = zx::Channel::create();
fdio::service_connect_at(&client, UtilMarker::PROTOCOL_NAME, server)
.context("failed to connect to util service")?;
Ok(UtilProxy::from_channel(fasync::Channel::from_channel(proxy)))
}
fn create_test_util_builder() -> Result<ProcessBuilder, Error> {
const TEST_UTIL_BIN: &'static str = "/pkg/bin/process_builder_test_util";
let file = fdio::open_fd(
TEST_UTIL_BIN,
fio::OpenFlags::RIGHT_READABLE | fio::OpenFlags::RIGHT_EXECUTABLE,
)?;
let vmo = fdio::get_vmo_exec_from_file(&file)?;
let job = fuchsia_runtime::job_default();
let procname = CString::new(TEST_UTIL_BIN.to_owned())?;
Ok(ProcessBuilder::new(
&procname,
&job,
zx::ProcessOptions::empty(),
vmo,
get_system_vdso_vmo().unwrap(),
)?)
}
// Common builder setup for all tests that start a test util process.
fn setup_test_util_builder(set_loader: bool) -> Result<(ProcessBuilder, UtilProxy), Error> {
let mut builder = create_test_util_builder()?;
if set_loader {
builder.add_handles(vec![process_args::StartupHandle {
handle: clone_loader_service()?.into_handle(),
info: HandleInfo::new(HandleType::LdsvcLoader, 0),
}])?;
}
let (dir_client, dir_server) = zx::Channel::create();
builder.add_handles(vec![process_args::StartupHandle {
handle: dir_server.into_handle(),
info: HandleInfo::new(HandleType::DirectoryRequest, 0),
}])?;
let proxy = connect_util(&dir_client)?;
Ok((builder, proxy))
}
fn check_process_running(process: &zx::Process) -> Result<(), Error> {
let info = process.info()?;
const STARTED: u32 = zx::ProcessInfoFlags::STARTED.bits();
assert_matches!(
info,
zx::ProcessInfo {
return_code: 0,
start_time,
flags: STARTED,
} if start_time > 0
);
Ok(())
}
async fn check_process_exited_ok(process: &zx::Process) -> Result<(), Error> {
fasync::OnSignals::new(process, zx::Signals::PROCESS_TERMINATED).await?;
let info = process.info()?;
const STARTED_AND_EXITED: u32 =
zx::ProcessInfoFlags::STARTED.bits() | zx::ProcessInfoFlags::EXITED.bits();
assert_matches!(
info,
zx::ProcessInfo {
return_code: 0,
start_time,
flags: STARTED_AND_EXITED,
} if start_time > 0
);
Ok(())
}
// These start_util_with_* tests cover the most common paths through ProcessBuilder and
// exercise most of its functionality. They verify that we can create a new process for a
// "standard" dynamically linked executable and that we can provide arguments, environment
// variables, namespace entries, and other handles to it through the startup process_args
// message. The test communicates with the test util process it creates over a test-only FIDL
// API to verify that arguments and whatnot were passed correctly.
#[fasync::run_singlethreaded(test)]
async fn start_util_with_args() -> Result<(), Error> {
let test_args = vec!["arg0", "arg1", "arg2"];
let test_args_cstr =
test_args.iter().map(|&s| CString::new(s)).collect::<Result<_, _>>()?;
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.add_arguments(test_args_cstr);
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// Use the util protocol to confirm that the new process was set up correctly. A successful
// connection to the util validates that handles are passed correctly to the new process,
// since the DirectoryRequest handle made it.
let proc_args = proxy.get_arguments().await.context("failed to get args from util")?;
assert_eq!(proc_args, test_args);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn start_util_with_huge_args() -> Result<(), Error> {
// This test is partially designed to probe the stack usage of
// code processing the initial loader message. Such processing
// is on a stack of limited size, a few pages, and well
// smaller than a maximally large channel packet. Each
// instance of "arg" takes 4 bytes (counting the separating
// '\0' byte), so let's send 10k of them to be well larger
// than the initial stack but well within the 64k channel size.
let test_args = vec!["arg"; 10 * 1000];
let test_args_cstr =
test_args.iter().map(|&s| CString::new(s)).collect::<Result<_, _>>()?;
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.add_arguments(test_args_cstr);
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// Use the util protocol to confirm that the new process was set up correctly. A successful
// connection to the util validates that handles are passed correctly to the new process,
// since the DirectoryRequest handle made it.
// We can't use get_arguments() here because the FIDL response will be bigger than the
// maximum message size[1] and cause the process to crash. Instead, we just check the number
// of environment variables and assume that if that's correct we're good to go.
// Size of each vector entry: (length = 8, pointer = 8) = 16 + (string size = 8) = 24
// Message size = (10k * vector entry size) = 240,000 > 65,536
let proc_args =
proxy.get_argument_count().await.context("failed to get arg count from util")?;
assert_eq!(proc_args, test_args.len() as u64);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
// Verify that the lifecycle channel can be passed through the bootstrap
// channel. This test checks by creating a channel, passing it through,
// asking the remote process for the lifecycle channel's koid, and then
// comparing that koid to the one the test recorded.
#[fasync::run_singlethreaded(test)]
async fn start_util_with_lifecycle_channel() -> Result<(), Error> {
let (mut builder, proxy) = setup_test_util_builder(true)?;
let (lifecycle_server, _lifecycle_client) = zx::Channel::create();
let koid = lifecycle_server
.as_handle_ref()
.basic_info()
.expect("error getting server handle info")
.koid
.raw_koid();
builder.add_handles(vec![process_args::StartupHandle {
handle: lifecycle_server.into_handle(),
info: HandleInfo::new(HandleType::Lifecycle, 0),
}])?;
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// Use the util protocol to confirm that the new process received the
// lifecycle channel
let reported_koid =
proxy.get_lifecycle_koid().await.context("failed getting koid from util")?;
assert_eq!(koid, reported_koid);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
// Verify that if no lifecycle channel is sent via the bootstrap channel
// that the remote process reports ZX_KOID_INVALID for the channel koid.
#[fasync::run_singlethreaded(test)]
async fn start_util_with_no_lifecycle_channel() -> Result<(), Error> {
let (builder, proxy) = setup_test_util_builder(true)?;
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// Use the util protocol to confirm that the new process received the
// lifecycle channel
let reported_koid =
proxy.get_lifecycle_koid().await.context("failed getting koid from util")?;
assert_eq!(zx::sys::ZX_KOID_INVALID, reported_koid);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn start_util_with_big_stack() -> Result<(), Error> {
let stack_size: usize = zx::system_get_page_size() as usize * 10;
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.set_min_stack_size(stack_size);
let built = builder.build().await?;
assert!(built.stack_vmo.get_size()? >= stack_size as u64);
let process = built.start()?;
check_process_running(&process)?;
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn elf_headers() -> Result<(), Error> {
let (builder, _) = setup_test_util_builder(true)?;
let built = builder.build().await?;
assert!(
built.elf_headers.file_header().phnum
== built.elf_headers.program_headers().len() as u16
);
Ok(())
}
// Verify that a loader service handle is properly handled if passed directly to
// set_loader_service instead of through add_handles. Otherwise this test is identical to
// start_util_with_args.
#[fasync::run_singlethreaded(test)]
async fn set_loader_directly() -> Result<(), Error> {
let test_args = vec!["arg0", "arg1", "arg2"];
let test_args_cstr =
test_args.iter().map(|&s| CString::new(s)).collect::<Result<_, _>>()?;
let (mut builder, proxy) = setup_test_util_builder(false)?;
builder.set_loader_service(clone_loader_service()?)?;
builder.add_arguments(test_args_cstr);
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// Use the util protocol to confirm that the new process was set up correctly. A successful
// connection to the util validates that handles are passed correctly to the new process,
// since the DirectoryRequest handle made it.
let proc_args = proxy.get_arguments().await.context("failed to get args from util")?;
assert_eq!(proc_args, test_args);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
// Verify that a vDSO handle is properly handled if passed directly to set_vdso_vmo instead of
// relying on the default value.
// Note: There isn't a great way to tell here whether the vDSO VMO we passed in was used
// instead of the default (because the kernel only allows use of vDSOs that it created for
// security, so we can't make a fake vDSO with a different name or something), so that isn't
// checked explicitly. The failure tests below make sure we don't ignore the provided vDSO VMO
// completely.
#[fasync::run_singlethreaded(test)]
async fn set_vdso_directly() -> Result<(), Error> {
let test_args = vec!["arg0", "arg1", "arg2"];
let test_args_cstr =
test_args.iter().map(|&s| CString::new(s)).collect::<Result<_, _>>()?;
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.set_vdso_vmo(get_system_vdso_vmo()?);
builder.add_arguments(test_args_cstr);
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// Use the util protocol to confirm that the new process was set up correctly.
let proc_args = proxy.get_arguments().await.context("failed to get args from util")?;
assert_eq!(proc_args, test_args);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
// Verify that a vDSO handle is properly handled if passed directly to set_vdso_vmo instead of
// relying on the default value, this time by providing an invalid VMO (something that isn't
// ELF and will fail to parse). This also indirectly tests that the reservation VMAR cleanup
// happens properly by testing a failure after it has been created.
#[fasync::run_singlethreaded(test)]
async fn set_invalid_vdso_directly_fails() -> Result<(), Error> {
let bad_vdso = zx::Vmo::create(1)?;
let (mut builder, _) = setup_test_util_builder(true)?;
builder.set_vdso_vmo(bad_vdso);
let result = builder.build().await;
match result {
Err(ProcessBuilderError::ElfParse(elf_parse::ElfParseError::InvalidFileHeader(_))) => {}
Err(err) => {
panic!("Unexpected error type: {}", err);
}
Ok(_) => {
panic!("Unexpectedly succeeded to build process with invalid vDSO");
}
}
Ok(())
}
// Verify that a vDSO handle is properly handled if passed through add_handles instead of
// relying on the default value, this time by providing an invalid VMO (something that isn't
// ELF and will fail to parse). This also indirectly tests that the reservation VMAR cleanup
// happens properly by testing a failure after it has been created.
#[fasync::run_singlethreaded(test)]
async fn set_invalid_vdso_fails() -> Result<(), Error> {
let bad_vdso = zx::Vmo::create(1)?;
let (mut builder, _) = setup_test_util_builder(true)?;
builder.add_handles(vec![process_args::StartupHandle {
handle: bad_vdso.into_handle(),
info: HandleInfo::new(HandleType::VdsoVmo, 0),
}])?;
let result = builder.build().await;
match result {
Err(ProcessBuilderError::ElfParse(elf_parse::ElfParseError::InvalidFileHeader(_))) => {}
Err(err) => {
panic!("Unexpected error type: {}", err);
}
Ok(_) => {
panic!("Unexpectedly succeeded to build process with invalid vDSO");
}
}
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn add_additional_vdso() -> Result<(), Error> {
let mut builder = create_test_util_builder()?;
builder.set_loader_service(clone_loader_service()?)?;
builder.add_handles(vec![process_args::StartupHandle {
handle: get_system_vdso_vmo().unwrap().into_handle(),
info: HandleInfo::new(HandleType::VdsoVmo, 1),
}])?;
let built = builder.build().await?;
// Ignore linker message handles.
let mut msg_buf = zx::MessageBuf::new();
built.bootstrap.read(&mut msg_buf)?;
// Validate main message handles.
let mut msg_buf = zx::MessageBuf::new();
built.bootstrap.read(&mut msg_buf)?;
let handle_info = parse_handle_info_from_message(&msg_buf)?
.drain(..)
.filter(|info| info.handle_type() == HandleType::VdsoVmo)
.collect::<Vec<_>>();
assert_eq!(2, handle_info.len());
for (i, info) in handle_info.iter().rev().enumerate() {
assert_eq!(HandleType::VdsoVmo, info.handle_type());
assert_eq!(i as u16, info.arg());
}
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn start_util_with_env() -> Result<(), Error> {
let test_env = vec![("VAR1", "value2"), ("VAR2", "value2")];
let test_env_cstr = test_env
.iter()
.map(|v| CString::new(format!("{}={}", v.0, v.1)))
.collect::<Result<_, _>>()?;
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.add_environment_variables(test_env_cstr);
let process = builder.build().await?.start()?;
check_process_running(&process)?;
let proc_env = proxy.get_environment().await.context("failed to get env from util")?;
let proc_env_tuple: Vec<(&str, &str)> =
proc_env.iter().map(|v| (&*v.key, &*v.value)).collect();
assert_eq!(proc_env_tuple, test_env);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn start_util_with_huge_env() -> Result<(), Error> {
// This test is partially designed to probe the stack usage of
// code processing the initial loader message. Such processing
// is on a stack of limited size, a few pages, and well
// smaller than a maximally large channel packet. Each
// instance of "a=b" takes 4 bytes (counting the separating
// '\0' byte), so let's send 10k of them to be well larger
// than the initial stack but well within the 64k channel size.
let test_env = vec!["a=b"; 10 * 1000];
let test_env_cstr = test_env.iter().map(|&s| CString::new(s)).collect::<Result<_, _>>()?;
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.add_environment_variables(test_env_cstr);
let process = builder.build().await?.start()?;
check_process_running(&process)?;
// We can't use get_environment() here because the FIDL response will be bigger than the
// maximum message size and cause the process to crash. Instead, we just check the number
// of environment variables and assume that if that's correct we're good to go.
let proc_env =
proxy.get_environment_count().await.context("failed to get env from util")?;
assert_eq!(proc_env, test_env.len() as u64);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn start_util_with_namespace_entries() -> Result<(), Error> {
let mut randbuf = [0; 8];
zx::cprng_draw(&mut randbuf);
let test_content1 = format!("test content 1 {}", u64::from_le_bytes(randbuf));
zx::cprng_draw(&mut randbuf);
let test_content2 = format!("test content 2 {}", u64::from_le_bytes(randbuf));
let (dir1_server, dir1_client) = zx::Channel::create();
let dir_scope = ExecutionScope::new();
let dir1 = pseudo_directory! {
"test_file1" => read_only(test_content1.clone()),
};
dir1.open(
dir_scope.clone(),
fio::OpenFlags::RIGHT_READABLE | fio::OpenFlags::DIRECTORY,
vfs::path::Path::dot(),
ServerEnd::new(dir1_server),
);
let (dir2_server, dir2_client) = zx::Channel::create();
let dir2 = pseudo_directory! {
"test_file2" => read_only(test_content2.clone()),
};
dir2.open(
dir_scope.clone(),
fio::OpenFlags::RIGHT_READABLE | fio::OpenFlags::DIRECTORY,
vfs::path::Path::dot(),
ServerEnd::new(dir2_server),
);
let (mut builder, proxy) = setup_test_util_builder(true)?;
builder.add_namespace_entries(vec![
NamespaceEntry { path: CString::new("/dir1")?, directory: ClientEnd::new(dir1_client) },
NamespaceEntry { path: CString::new("/dir2")?, directory: ClientEnd::new(dir2_client) },
])?;
let process = builder.build().await?.start()?;
check_process_running(&process)?;
let namespace_dump = proxy.dump_namespace().await.context("failed to dump namespace")?;
assert_eq!(namespace_dump, "/dir1, /dir1/test_file1, /dir2, /dir2/test_file2");
let dir1_contents =
proxy.read_file("/dir1/test_file1").await.context("failed to read file via util")?;
assert_eq!(dir1_contents, test_content1);
let dir2_contents =
proxy.read_file("/dir2/test_file2").await.context("failed to read file via util")?;
assert_eq!(dir2_contents, test_content2);
mem::drop(proxy);
check_process_exited_ok(&process).await?;
Ok(())
}
// Trying to start a dynamically linked process without providing a loader service should
// fail. This verifies that nothing is automatically cloning a loader.
#[fasync::run_singlethreaded(test)]
async fn start_util_with_no_loader_fails() -> Result<(), Error> {
let (builder, _) = setup_test_util_builder(false)?;
let result = builder.build().await;
match result {
Err(ProcessBuilderError::LoaderMissing()) => {}
Err(err) => {
panic!("Unexpected error type: {}", err);
}
Ok(_) => {
panic!("Unexpectedly succeeded to build process without loader");
}
}
Ok(())
}
// Checks that, for dynamically linked binaries, the lower half of the address space has been
// reserved for sanitizers.
#[fasync::run_singlethreaded(test)]
async fn verify_low_address_range_reserved() -> Result<(), Error> {
let (builder, _) = setup_test_util_builder(true)?;
let built = builder.build().await?;
// This ends up being the same thing ReservationVmar does, but it's not reused here so that
// this catches bugs or bad changes to ReservationVmar itself.
let info = built.root_vmar.info()?;
let lower_half_len = util::page_end((info.base + info.len) / 2) - info.base;
built
.root_vmar
.allocate(0, lower_half_len, zx::VmarFlags::SPECIFIC)
.context("Unable to allocate lower address range of new process")?;
Ok(())
}
// Parses the given channel message as a process_args message and returns the HandleInfo's
// contained in it.
fn parse_handle_info_from_message(message: &zx::MessageBuf) -> Result<Vec<HandleInfo>, Error> {
let bytes = message.bytes();
let header = Ref::<&[u8], process_args::MessageHeader>::new_from_prefix(bytes)
.ok_or(anyhow!("Failed to parse process_args header"))?
.0;
let offset = header.handle_info_off as usize;
let len = mem::size_of::<u32>() * message.n_handles();
let info_bytes = &bytes[offset..offset + len];
let raw_info = Ref::<&[u8], [u32]>::new_slice(info_bytes)
.ok_or(anyhow!("Failed to parse raw handle info"))?;
Ok(raw_info.iter().map(|raw| HandleInfo::try_from(*raw)).collect::<Result<_, _>>()?)
}
const LINKER_MESSAGE_HANDLES: &[HandleType] = &[
HandleType::ProcessSelf,
HandleType::RootVmar,
HandleType::LdsvcLoader,
HandleType::LoadedVmar,
HandleType::ExecutableVmo,
];
const MAIN_MESSAGE_HANDLES: &[HandleType] = &[
HandleType::ProcessSelf,
HandleType::ThreadSelf,
HandleType::RootVmar,
HandleType::VdsoVmo,
HandleType::StackVmo,
];
#[fasync::run_singlethreaded(test)]
async fn correct_handles_present() -> Result<(), Error> {
let mut builder = create_test_util_builder()?;
builder.set_loader_service(clone_loader_service()?)?;
let built = builder.build().await?;
for correct in &[LINKER_MESSAGE_HANDLES, MAIN_MESSAGE_HANDLES] {
let mut msg_buf = zx::MessageBuf::new();
built.bootstrap.read(&mut msg_buf)?;
let handle_info = parse_handle_info_from_message(&msg_buf)?;
assert_eq!(handle_info.len(), correct.len());
for correct_type in *correct {
// Should only be one of each of these handles present.
assert_eq!(
1,
handle_info.iter().filter(|info| &info.handle_type() == correct_type).count()
);
}
}
Ok(())
}
// Verify that [ProcessBuilder::add_handles()] rejects handle types that are added
// automatically by the builder.
#[fasync::run_singlethreaded(test)]
async fn add_handles_rejects_automatic_handle_types() -> Result<(), Error> {
// The VMO doesn't need to be valid since we're not calling build.
let vmo = zx::Vmo::create(1)?;
let job = fuchsia_runtime::job_default();
let procname = CString::new("test_vmo")?;
let mut builder = ProcessBuilder::new(
&procname,
&job,
zx::ProcessOptions::empty(),
vmo,
get_system_vdso_vmo().unwrap(),
)?;
// There's some duplicates between these slices but just checking twice is easier than
// deduping these.
for handle_type in LINKER_MESSAGE_HANDLES.iter().chain(MAIN_MESSAGE_HANDLES) {
if *handle_type == HandleType::LdsvcLoader {
// Skip LdsvcLoader, which is required in the linker message but is not added
// automatically. The user must supply it.
continue;
}
if *handle_type == HandleType::VdsoVmo {
// Skip VdsoVmo, which may be supplied by the user.
continue;
}
// Another VMO, just to have a valid handle.
let vmo = zx::Vmo::create(1)?;
let result = builder.add_handles(vec![process_args::StartupHandle {
handle: vmo.into_handle(),
info: HandleInfo::new(*handle_type, 0),
}]);
match result {
Err(ProcessBuilderError::InvalidArg(_)) => {}
Err(err) => {
panic!("Unexpected error type, should be invalid arg: {}", err);
}
Ok(_) => {
panic!("add_handle unexpectedly succeeded for type {:?}", handle_type);
}
}
}
Ok(())
}
// Verify that invalid handles are correctly rejected.
#[fasync::run_singlethreaded(test)]
async fn rejects_invalid_handles() -> Result<(), Error> {
let invalid = || zx::Handle::invalid();
let assert_invalid_arg = |result| match result {
Err(ProcessBuilderError::BadHandle(_)) => {}
Err(err) => {
panic!("Unexpected error type, should be BadHandle: {}", err);
}
Ok(_) => {
panic!("API unexpectedly accepted invalid handle");
}
};
// The VMO doesn't need to be valid since we're not calling build with this.
let vmo = zx::Vmo::create(1)?;
let job = fuchsia_runtime::job_default();
let procname = CString::new("test_vmo")?;
assert_invalid_arg(
ProcessBuilder::new(
&procname,
&invalid().into(),
zx::ProcessOptions::empty(),
vmo,
get_system_vdso_vmo().unwrap(),
)
.map(|_| ()),
);
assert_invalid_arg(
ProcessBuilder::new(
&procname,
&job,
zx::ProcessOptions::empty(),
invalid().into(),
get_system_vdso_vmo().unwrap(),
)
.map(|_| ()),
);
let (mut builder, _) = setup_test_util_builder(true)?;
assert_invalid_arg(builder.set_loader_service(invalid().into()));
assert_invalid_arg(builder.add_handles(vec![process_args::StartupHandle {
handle: invalid().into(),
info: HandleInfo::new(HandleType::User0, 0),
}]));
assert_invalid_arg(builder.add_handles(vec![process_args::StartupHandle {
handle: invalid().into(),
info: HandleInfo::new(HandleType::User0, 0),
}]));
assert_invalid_arg(builder.add_namespace_entries(vec![NamespaceEntry {
path: CString::new("/dir")?,
directory: invalid().into(),
}]));
Ok(())
}
#[fasync::run_singlethreaded]
#[test]
async fn start_static_pie_binary() -> Result<(), Error> {
const TEST_BIN: &'static str = "/pkg/bin/static_pie_test_util";
let file = fdio::open_fd(
TEST_BIN,
fio::OpenFlags::RIGHT_READABLE | fio::OpenFlags::RIGHT_EXECUTABLE,
)?;
let vmo = fdio::get_vmo_exec_from_file(&file)?;
let job = fuchsia_runtime::job_default();
let procname = CString::new(TEST_BIN.to_owned())?;
let mut builder = ProcessBuilder::new(
&procname,
&job,
zx::ProcessOptions::empty(),
vmo,
get_system_vdso_vmo().unwrap(),
)?;
// We pass the program a channel with handle type User0 which we send a message on and
// expect it to echo back the message on the same channel.
let (local, remote) = zx::Channel::create();
builder.add_handles(vec![process_args::StartupHandle {
handle: remote.into_handle(),
info: HandleInfo::new(HandleType::User0, 0),
}])?;
let mut randbuf = [0; 8];
zx::cprng_draw(&mut randbuf);
let test_message = format!("test content 1 {}", u64::from_le_bytes(randbuf)).into_bytes();
local.write(&test_message, &mut vec![])?;
// Start process and wait for channel to have a message to read or be closed.
builder.build().await?.start()?;
let signals = fasync::OnSignals::new(
&local,
zx::Signals::CHANNEL_READABLE | zx::Signals::CHANNEL_PEER_CLOSED,
)
.await?;
assert!(signals.contains(zx::Signals::CHANNEL_READABLE));
let mut echoed = zx::MessageBuf::new();
local.read(&mut echoed)?;
assert_eq!(echoed.bytes(), test_message.as_slice());
assert_eq!(echoed.n_handles(), 0);
Ok(())
}
}