ppp_packet/
records.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// A copy of `src/connectivity/network/netstack3/core/src/wire/util/records.rs`,
// until it can be pulled out.

#![allow(missing_docs)]

//! Utilities for parsing sequential records.
//!
//! This module provides utilities for parsing sequential records. IGMP message
//! parsing is built using these utilities, as is another set of general
//! utilities for IPv4, TCP, and NDP options parsing, provided in the
//! [`options`] submodule.
//!
//! [`options`]: crate::wire::util::records::options

use packet::{BufferView, BufferViewMut, InnerPacketBuilder};
use std::marker::PhantomData;
use std::ops::Deref;
use zerocopy::SplitByteSlice;

/// A parsed set of arbitrary sequential records.
///
/// `Records` represents a pre-parsed set of records whose structure is enforced
/// by the impl in `O`.
#[derive(Debug)]
pub struct Records<B, R: RecordsImplLayout> {
    bytes: B,
    context: R::Context,
}

/// An iterator over the records contained inside a `Records` instance.
pub struct RecordsIter<'a, R: RecordsImpl<'a>> {
    bytes: &'a [u8],
    context: R::Context,
}

/// The context kept while performing records parsing.
///
/// Types which implement `RecordsContext` can be used as the long-lived
/// context which is kept during records parsing. This context allows
/// parsers to keep running computations over the span of multiple records.
pub trait RecordsContext: Sized + Clone {
    /// Clone a context for iterator purposes.
    ///
    /// `clone_for_iter` is useful for cloning a context to be
    /// used by `RecordsIter`. Since `Records::parse_with_context`
    /// will do a full pass over all the records to check for errors,
    /// a `RecordsIter` should never error. Thereforce, instead of doing
    /// checks when iterating (if a context was used for checks), a
    /// clone of a context can be made specifically for iterator purposes
    /// that does not do checks (which may be expensive).
    ///
    /// By default, just do a normal clone.
    fn clone_for_iter(&self) -> Self {
        self.clone()
    }
}

// Implement the `RecordsContext` trait for `usize` which will be used by
// record limiting contexts (see [`LimitedRecordsImpl`]) and for `()`
// which is to represent an empty/no context-type.
impl RecordsContext for usize {}
impl RecordsContext for () {}

/// Basic associated types used by a `RecordsImpl`.
///
/// This trait is kept separate from `RecordsImpl` to keep the lifetimes
/// separated.
pub trait RecordsImplLayout {
    /// The type of errors that may be returned by a `RecordsImpl::parse_with_context`.
    type Error;

    /// A context type that can be used to maintain state or do checks.
    type Context: RecordsContext;
}

/// An implementation of a records parser.
///
/// `RecordsImpl` provides functions to parse sequential records. It is required
///  in order to construct a `Records` or `RecordsIter`.
pub trait RecordsImpl<'a>: RecordsImplLayout {
    /// The type of a single record; the output from the `parse_with_context` function.
    ///
    /// For long or variable-length data, the user is advised to make `Record` a
    /// reference into the bytes passed to `parse_with_context`. This is achievable
    /// because of the lifetime parameter to this trait.
    type Record;

    /// Parse a record with some context.
    ///
    /// `parse_with_context` takes a variable-length `data` and a `context` to
    /// maintain state, and returns `Ok(Some(Some(o)))` if the the record is
    /// successfully parsed as `o`, `Ok(Some(None))` if data is not malformed
    /// but the implementer can't extract a concrete object (e.g. record is an
    /// unimplemented enumeration, but we can still safely "skip" it), Ok(None)
    /// if `parse_with_context` is unable to parse more records, and `Err(err)`
    /// if the `data` was malformed for the attempted record parsing.
    ///
    /// `data` MAY be empty. It is up to the implementer to handle an exhausted
    /// `data`.
    ///
    /// When returning `Ok(Some(None))` it's the implementer's responsibility to
    /// nonetheless skip the record (which may not be possible for some
    /// implementations, in which case it should return an `Err`).
    ///
    /// `parse_with_context` must be deterministic, or else
    /// `Records::parse_with_context` cannot guarantee that future iterations
    /// will not produce errors (and panic).
    fn parse_with_context<BV: BufferView<&'a [u8]>>(
        data: &mut BV,
        context: &mut Self::Context,
    ) -> Result<Option<Option<Self::Record>>, Self::Error>;
}

/// A limited parsed set of records.
///
/// `LimitedRecords` represents a parsed set of records that can be limited to a
/// certain number of records. Unlike records with accepts a `RecordsImpl`,
/// `LimitedRecords` accepts a type that implements `LimitedRecordsImpl` for `O`.
pub type LimitedRecords<B, O> = Records<B, LimitedRecordsImplBridge<O>>;

/// Create a bridge to `RecordsImplLayout` and `RecordsImpl` from an `O` that
/// implements `LimitedRecordsImplLayout`. This is required so we can have a single
/// implementation of `parse_with_context` and definition of `Context` that
/// all implementers of `LimitedRecordsImpl` will get for free.
#[derive(Debug)]
pub struct LimitedRecordsImplBridge<O>(PhantomData<O>);

impl<O> RecordsImplLayout for LimitedRecordsImplBridge<O>
where
    O: LimitedRecordsImplLayout,
{
    type Error = O::Error;

    // All LimitedRecords get a context type of usize.
    type Context = usize;
}

impl<'a, O> RecordsImpl<'a> for LimitedRecordsImplBridge<O>
where
    O: LimitedRecordsImpl<'a>,
{
    type Record = O::Record;

    /// Parse some bytes with a given `context` as a limit.
    ///
    /// `parse_with_context` accepts a `bytes` buffer and limit `context`
    /// and verifies that the limit has not been reached and that bytes is not empty.
    /// See [`EXACT_LIMIT_ERROR`] for information about exact limiting. If the limit
    /// has not been reached and `bytes` has not been exhausted, `LimitedRecordsImpl::parse`
    /// will be called to do the actual parsing of a record.
    ///
    /// [`EXACT_LIMIT_ERROR`]: LimitedRecordsImplLayout::EXACT_LIMIT_ERROR
    fn parse_with_context<BV: BufferView<&'a [u8]>>(
        bytes: &mut BV,
        context: &mut Self::Context,
    ) -> Result<Option<Option<Self::Record>>, Self::Error> {
        let limit_hit = *context == 0;

        if bytes.is_empty() || limit_hit {
            return match O::EXACT_LIMIT_ERROR {
                Some(_) if bytes.is_empty() ^ limit_hit => Err(O::EXACT_LIMIT_ERROR.unwrap()),
                _ => Ok(None),
            };
        }

        *context = context.checked_sub(1).expect("Can't decrement counter below 0");

        O::parse(bytes)
    }
}

/// Trait that provides implementations to limit the amount of records read from
/// a buffer. Some protocols will have some sort of header preceding the records
/// that will indicate the number of records to follow (e.g. IGMP), while others
/// will have that information inline (e.g. IPv4 options).
///
/// If the implementer of this trait wishes to impose an Exact Limit constraint,
/// they should supply a value for `EXACT_LIMIT_ERROR`.
///
/// Note that implementations of `LimitedRecordsImpl` cannot be used in place of
/// implementations of `RecordsImpl` directly as this does not implement
/// `RecordsImpl`. Implementers will need to use the `LimitedRecordsImplBridge`
/// to create bindings to a `RecordsImpl`. Alternatively, instead of using
/// `Records<_, O>` where `O` is a type that implements `RecordsImpl`, implementers
/// can use `LimitedRecords<_, P>` where `P` is a type that implements
/// `LimitedRecordsImpl`. See [`LimitedRecords`].
pub trait LimitedRecordsImplLayout {
    /// See `RecordsImplLayout::Error` as this will be bound to a `RecordsImplLayout::Error`
    /// associated type directly.
    type Error;

    /// If `Some(E)`, `parse_with_context` of `LimitedRecordsImplBridge` will emit the
    /// provided constant as an error if the provided buffer is exhausted while `context`
    /// is not 0, or if the `context` reaches 0 but the provided buffer is not empty.
    const EXACT_LIMIT_ERROR: Option<Self::Error> = None;
}

pub trait LimitedRecordsImpl<'a>: LimitedRecordsImplLayout {
    /// See [`RecordsImpl::Record`] as this will be bound to a `RecordsImpl::Record`
    /// associated type directly.
    type Record;

    /// Parse a record after limit check has completed.
    ///
    /// `parse` will be called by a `LimitedRecordsImpl::parse_with_context` after
    /// doing limit checks. When this method is called, it is guaranteed by
    /// `LimitedRecordsImpl::parse_with_context` that the limit has not been reached,
    /// so `parse` should parse exactly one record (if possible).
    ///
    /// For information about return values, see [`RecordsImpl::parse_with_context`].
    fn parse<BV: BufferView<&'a [u8]>>(
        bytes: &mut BV,
    ) -> Result<Option<Option<Self::Record>>, Self::Error>;
}

/// An implementation of a records serializer.
///
/// `RecordsSerializerImpl` provides functions to serialize sequential records.
/// It is required in order to construct a [`RecordsSerializer`].
pub trait RecordsSerializerImpl<'a> {
    /// The input type to this serializer.
    ///
    /// This is the analogous serializing version of `Record` in
    /// [`RecordsImpl`]. Records serialization expects an `Iterator` of objects
    /// of type `Record`.
    type Record;
    /// Provides the serialized length of a record.
    ///
    /// Returns the total length, in bytes, of `record`.
    fn record_length(record: &Self::Record) -> usize;
    /// Serializes `record`. into buffer `data`.
    ///
    /// The provided `data` buffer will **always** be sized to the value
    /// returned by `record_length`.
    fn serialize(data: &mut [u8], record: &Self::Record);
}

/// An instance of records serialization.
///
/// `RecordsSerializer` is instantiated with an `Iterator` that provides
/// items to be serialized by a `RecordsSerializerImpl`.
#[derive(Debug)]
pub struct RecordsSerializer<'a, S, R: 'a, I>
where
    S: RecordsSerializerImpl<'a, Record = R>,
    I: Iterator<Item = &'a R> + Clone,
{
    records: I,
    _marker: PhantomData<S>,
}

impl<'a, S, R: 'a, I> RecordsSerializer<'a, S, R, I>
where
    S: RecordsSerializerImpl<'a, Record = R>,
    I: Iterator<Item = &'a R> + Clone,
{
    /// Creates a new `RecordsSerializer` with given `records`.
    ///
    /// `records` must produce the same sequence of values from every iterator,
    /// even if cloned. Serialization typically performed with two passes on
    /// `records`: one to calculate the total length in bytes
    /// (`records_bytes_len`) and another one to serialize to a buffer
    /// (`serialize_records`). Violating this rule may cause panics or malformed
    /// packets.
    pub fn new(records: I) -> Self {
        Self { records, _marker: PhantomData }
    }

    /// Returns the total length, in bytes, of the serialized records contained
    /// within the `RecordsSerializer`.
    fn records_bytes_len(&self) -> usize {
        self.records.clone().map(|r| S::record_length(r)).sum()
    }

    /// `serialize_records` serializes all the records contained within the
    /// `RecordsSerializer`.
    ///
    /// # Panics
    ///
    /// `serialize_records` expects that `buffer` has enough bytes to serialize
    /// the contained records (as obtained from `records_bytes_len`, otherwise
    /// it's considered a violation of the API contract and the call will panic.
    fn serialize_records(&self, buffer: &mut [u8]) {
        let mut b = &mut &mut buffer[..];
        for r in self.records.clone() {
            // SECURITY: Take a zeroed buffer from b to prevent leaking
            // information from packets previously stored in this buffer.
            S::serialize(b.take_front_zero(S::record_length(r)).unwrap(), r);
        }
    }
}

impl<'a, S, R: 'a, I> InnerPacketBuilder for RecordsSerializer<'a, S, R, I>
where
    S: RecordsSerializerImpl<'a, Record = R>,
    I: Iterator<Item = &'a R> + Clone,
{
    fn bytes_len(&self) -> usize {
        self.records_bytes_len()
    }

    fn serialize(&self, buffer: &mut [u8]) {
        self.serialize_records(buffer)
    }
}

impl<B, R> Records<B, R>
where
    B: SplitByteSlice,
    R: for<'a> RecordsImpl<'a>,
{
    /// Parse a set of records with a context.
    ///
    /// See `parse_with_mut_context` for details on `bytes`, `context`, and
    /// return value. `parse_with_context` just calls `parse_with_mut_context`
    /// with a mutable reference to the `context` (which is owned).
    pub fn parse_with_context(
        bytes: B,
        mut context: R::Context,
    ) -> Result<Records<B, R>, R::Error> {
        Self::parse_with_mut_context(bytes, &mut context)
    }

    /// Parse a set of records with a mutable context.
    ///
    /// `parse_with_mut_context` parses `bytes` as a sequence of records. `context`
    /// may be used by implementers to maintain state and do checks.
    ///
    /// `parse_with_mut_context` performs a single pass over all of the records to
    /// verify that they are well-formed. Once `parse_with_context` returns
    /// successfully, the resulting `Records` can be used to construct
    /// infallible iterators.
    pub fn parse_with_mut_context(
        bytes: B,
        context: &mut R::Context,
    ) -> Result<Records<B, R>, R::Error> {
        // First, do a single pass over the bytes to detect any errors up front.
        // Once this is done, since we have a reference to `bytes`, these bytes
        // can't change out from under us, and so we can treat any iterator over
        // these bytes as infallible. This makes a few assumptions, but none of
        // them are that big of a deal. In all cases, breaking these assumptions
        // would just result in a runtime panic.
        // - B could return different bytes each time
        // - R::parse could be non-deterministic
        let c = context.clone();
        let mut b = LongLivedBuff::new(bytes.deref());
        while next::<_, R>(&mut b, context)?.is_some() {}
        Ok(Records { bytes, context: c })
    }

    /// Parse a set of records with a context, using a `BufferView`.
    ///
    /// See `parse_bv_with_mut_context` for details on `bytes`, `context`, and
    /// return value. `parse_bv_with_context` just calls `parse_bv_with_mut_context`
    /// with a mutable reference to the `context` (which is owned).
    pub fn parse_bv_with_context<BV: BufferView<B>>(
        bytes: &mut BV,
        mut context: R::Context,
    ) -> Result<Records<B, R>, R::Error> {
        Self::parse_bv_with_mut_context(bytes, &mut context)
    }

    /// Parse a set of records with a mutable context, using a `BufferView`.
    ///
    /// This function is exactly the same as `parse_with_mut_context` except instead
    /// of operating on a `ByteSlice`, we operate on a `BufferView<B>` where `B`
    /// is a `ByteSlice`. `parse_bv_with_mut_context` enables parsing records without
    /// knowing the size of all records beforehand (unlike `parse_with_mut_context`
    /// where callers need to pass in a `ByteSlice` of some predetermined sized).
    /// Since callers will provide a mutable reference to a `BufferView`,
    /// `parse_bv_with_mut_context` will take only the amount of bytes it needs to
    /// parse records, leaving the rest in the `BufferView` object. That is, when
    /// `parse_bv_with_mut_context` returns, the `BufferView` object provided will be
    /// x bytes smaller, where x is the number of bytes required to parse the records.
    pub fn parse_bv_with_mut_context<BV: BufferView<B>>(
        bytes: &mut BV,
        context: &mut R::Context,
    ) -> Result<Records<B, R>, R::Error> {
        let c = context.clone();
        let mut b = LongLivedBuff::new(bytes.as_ref());
        while next::<_, R>(&mut b, context)?.is_some() {}

        // When we get here, we know that whatever is left in `b` is not needed
        // so we only take the amount of bytes we actually need from `bytes`,
        // leaving the rest alone for the caller to continue parsing with.
        let bytes_len = bytes.len();
        let b_len = b.len();
        Ok(Records { bytes: bytes.take_front(bytes_len - b_len).unwrap(), context: c })
    }
}

impl<B, R> Records<B, R>
where
    B: SplitByteSlice,
    R: for<'a> RecordsImpl<'a, Context = ()>,
{
    /// Parses a set of records.
    ///
    /// Equivalent to calling `parse_with_context` with `context = ()`.
    pub fn parse(bytes: B) -> Result<Records<B, R>, R::Error> {
        Self::parse_with_context(bytes, ())
    }
}

impl<B: Deref<Target = [u8]>, R> Records<B, R>
where
    R: for<'a> RecordsImpl<'a>,
{
    /// Get the underlying bytes.
    ///
    /// `bytes` returns a reference to the byte slice backing this `Options`.
    pub fn bytes(&self) -> &[u8] {
        &self.bytes
    }
}

impl<'a, B, R> Records<B, R>
where
    B: 'a + SplitByteSlice,
    R: RecordsImpl<'a>,
{
    /// Create an iterator over options.
    ///
    /// `iter` constructs an iterator over the records. Since the records were
    /// validated in `parse`, then so long as `from_kind` and `from_data` are
    /// deterministic, the iterator is infallible.
    pub fn iter(&'a self) -> RecordsIter<'a, R> {
        RecordsIter { bytes: &self.bytes, context: self.context.clone_for_iter() }
    }
}

impl<'a, R> Iterator for RecordsIter<'a, R>
where
    R: RecordsImpl<'a>,
{
    type Item = R::Record;

    fn next(&mut self) -> Option<R::Record> {
        let mut bytes = LongLivedBuff::new(self.bytes);
        // use match rather than expect because expect requires that Err: Debug
        #[allow(clippy::match_wild_err_arm)]
        let result = match next::<_, R>(&mut bytes, &mut self.context) {
            Ok(o) => o,
            Err(_) => panic!("already-validated options should not fail to parse"),
        };
        self.bytes = bytes.into_rest();
        result
    }
}

/// Gets the next entry for a set of sequential records in `bytes`.
///
/// On return, `bytes` will be pointing to the start of where a next record
/// would be.
fn next<'a, BV, R>(bytes: &mut BV, context: &mut R::Context) -> Result<Option<R::Record>, R::Error>
where
    R: RecordsImpl<'a>,
    BV: BufferView<&'a [u8]>,
{
    loop {
        match R::parse_with_context(bytes, context) {
            // `parse_with_context` cannot parse any more, return
            // Ok(None) to let the caller know that we have parsed
            // all possible records for a given `bytes`.
            Ok(None) => return Ok(None),

            // `parse_with_context` was unable to parse a record, not
            // because `bytes` was malformed but for other non fatal
            // reasons, so we can skip.
            Ok(Some(None)) => {}

            // `parse_with_context` was able to parse a record, so
            // return it.
            Ok(Some(Some(o))) => return Ok(Some(o)),

            // `parse_with_context` had an error so pass that error
            // to the caller.
            Err(err) => return Err(err),
        }
    }
}

/// A wrapper around the implementation of `BufferView` for slices.
///
/// `LongLivedBuff` is a thin wrapper around `&[u8]` meant to provide an
/// implementation of `BufferView` that returns slices tied to the same lifetime
/// as the slice that `LongLivedBuff` was created with. This is in contrast to
/// the more widely used `&'b mut &'a [u8]` `BufferView` implementer that
/// returns slice references tied to lifetime `b`.
struct LongLivedBuff<'a>(&'a [u8]);

impl<'a> LongLivedBuff<'a> {
    /// Creates a new `LongLivedBuff` around a slice reference with lifetime
    /// `a`.
    ///
    /// All slices returned by the `BufferView` impl of `LongLivedBuff` are
    /// guaranteed to return slice references tied to the same lifetime `a`.
    pub fn new(data: &'a [u8]) -> LongLivedBuff<'a> {
        LongLivedBuff::<'a>(data)
    }
}

impl<'a> AsRef<[u8]> for LongLivedBuff<'a> {
    fn as_ref(&self) -> &[u8] {
        self.0
    }
}

impl<'a> packet::BufferView<&'a [u8]> for LongLivedBuff<'a> {
    fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.0.len() >= n {
            let (prefix, rest) = std::mem::replace(&mut self.0, &[]).split_at(n);
            self.0 = rest;
            Some(prefix)
        } else {
            None
        }
    }

    fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.0.len() >= n {
            let (rest, suffix) = std::mem::replace(&mut self.0, &[]).split_at(n);
            self.0 = rest;
            Some(suffix)
        } else {
            None
        }
    }

    fn into_rest(self) -> &'a [u8] {
        self.0
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Ref, Unaligned};

    const DUMMY_BYTES: [u8; 16] = [
        0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03,
        0x04,
    ];

    #[derive(Debug, IntoBytes, KnownLayout, FromBytes, Immutable, Unaligned)]
    #[repr(C)]
    struct DummyRecord {
        a: [u8; 2],
        b: u8,
        c: u8,
    }

    fn parse_dummy_rec<'a, BV>(
        data: &mut BV,
    ) -> Result<Option<Option<Ref<&'a [u8], DummyRecord>>>, ()>
    where
        BV: BufferView<&'a [u8]>,
    {
        if data.is_empty() {
            return Ok(None);
        }

        match data.take_obj_front::<DummyRecord>() {
            Some(res) => Ok(Some(Some(res))),
            None => Err(()),
        }
    }

    //
    // Context-less records
    //

    #[derive(Debug)]
    struct ContextlessRecordImpl;

    impl RecordsImplLayout for ContextlessRecordImpl {
        type Context = ();
        type Error = ();
    }

    impl<'a> RecordsImpl<'a> for ContextlessRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            _context: &mut Self::Context,
        ) -> Result<Option<Option<Self::Record>>, Self::Error> {
            parse_dummy_rec(data)
        }
    }

    //
    // Limit context records
    //

    #[derive(Debug)]
    struct LimitContextRecordImpl;

    impl LimitedRecordsImplLayout for LimitContextRecordImpl {
        type Error = ();
    }

    impl<'a> LimitedRecordsImpl<'a> for LimitContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
        ) -> Result<Option<Option<Self::Record>>, Self::Error> {
            parse_dummy_rec(data)
        }
    }

    //
    // Exact limit context records
    //

    #[derive(Debug)]
    struct ExactLimitContextRecordImpl;

    impl LimitedRecordsImplLayout for ExactLimitContextRecordImpl {
        type Error = ();

        const EXACT_LIMIT_ERROR: Option<()> = Some(());
    }

    impl<'a> LimitedRecordsImpl<'a> for ExactLimitContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
        ) -> Result<Option<Option<Self::Record>>, Self::Error> {
            parse_dummy_rec(data)
        }
    }

    //
    // Filter context records
    //

    #[derive(Debug)]
    struct FilterContextRecordImpl;

    #[derive(Clone)]
    struct FilterContext {
        pub disallowed: [bool; 256],
    }

    impl RecordsContext for FilterContext {}

    impl RecordsImplLayout for FilterContextRecordImpl {
        type Context = FilterContext;
        type Error = ();
    }

    impl std::fmt::Debug for FilterContext {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "FilterContext{{disallowed:{:?}}}", &self.disallowed[..])
        }
    }

    impl<'a> RecordsImpl<'a> for FilterContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            bytes: &mut BV,
            context: &mut Self::Context,
        ) -> Result<Option<Option<Self::Record>>, Self::Error> {
            if bytes.len() < std::mem::size_of::<DummyRecord>() {
                Ok(None)
            } else if bytes.as_ref()[0..std::mem::size_of::<DummyRecord>()]
                .iter()
                .any(|x| context.disallowed[*x as usize])
            {
                Err(())
            } else {
                parse_dummy_rec(bytes)
            }
        }
    }

    //
    // Stateful context records
    //

    #[derive(Debug)]
    struct StatefulContextRecordImpl;

    #[derive(Clone, Debug)]
    struct StatefulContext {
        pub pre_parse_counter: usize,
        pub parse_counter: usize,
        pub post_parse_counter: usize,
        pub iter: bool,
    }

    impl RecordsImplLayout for StatefulContextRecordImpl {
        type Context = StatefulContext;
        type Error = ();
    }

    impl StatefulContext {
        pub fn new() -> StatefulContext {
            StatefulContext {
                pre_parse_counter: 0,
                parse_counter: 0,
                post_parse_counter: 0,
                iter: false,
            }
        }
    }

    impl RecordsContext for StatefulContext {
        fn clone_for_iter(&self) -> Self {
            let mut x = self.clone();
            x.iter = true;
            x
        }
    }

    impl<'a> RecordsImpl<'a> for StatefulContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            context: &mut Self::Context,
        ) -> Result<Option<Option<Self::Record>>, Self::Error> {
            if !context.iter {
                context.pre_parse_counter += 1;
            }

            let ret = parse_dummy_rec_with_context(data, context);

            match ret {
                Ok(Some(Some(_))) if !context.iter => {
                    context.post_parse_counter += 1;
                }
                _ => {}
            }

            ret
        }
    }

    fn parse_dummy_rec_with_context<'a, BV>(
        data: &mut BV,
        context: &mut StatefulContext,
    ) -> Result<Option<Option<Ref<&'a [u8], DummyRecord>>>, ()>
    where
        BV: BufferView<&'a [u8]>,
    {
        if data.is_empty() {
            return Ok(None);
        }

        if !context.iter {
            context.parse_counter += 1;
        }

        match data.take_obj_front::<DummyRecord>() {
            Some(res) => Ok(Some(Some(res))),
            None => Err(()),
        }
    }

    fn check_parsed_record(rec: &DummyRecord) {
        assert_eq!(rec.a[0], 0x01);
        assert_eq!(rec.a[1], 0x02);
        assert_eq!(rec.b, 0x03);
    }

    fn validate_parsed_stateful_context_records<B: SplitByteSlice>(
        records: Records<B, StatefulContextRecordImpl>,
        context: StatefulContext,
    ) {
        // Should be 5 because on the last iteration, we should realize
        // that we have no more bytes left and end before parsing (also
        // explaining why `parse_counter` should only be 4.
        assert_eq!(context.pre_parse_counter, 5);
        assert_eq!(context.parse_counter, 4);
        assert_eq!(context.post_parse_counter, 4);

        let mut iter = records.iter();
        let context = &iter.context;
        assert_eq!(context.pre_parse_counter, 0);
        assert_eq!(context.parse_counter, 0);
        assert_eq!(context.post_parse_counter, 0);
        assert_eq!(context.iter, true);

        // Manually iterate over `iter` so as to not move it.
        let mut count = 0;
        while let Some(_) = iter.next() {
            count += 1;
        }
        assert_eq!(count, 4);

        // Check to see that when iterating, the context doesn't update counters
        // as that is how we implemented our StatefulContextRecordImpl..
        let context = &iter.context;
        assert_eq!(context.pre_parse_counter, 0);
        assert_eq!(context.parse_counter, 0);
        assert_eq!(context.post_parse_counter, 0);
        assert_eq!(context.iter, true);
    }

    #[test]
    fn all_records_parsing() {
        let _test = Records::<_, ContextlessRecordImpl>::parse(&DUMMY_BYTES[..]);
        let parsed = Records::<_, ContextlessRecordImpl>::parse(&DUMMY_BYTES[..]).unwrap();
        assert_eq!(parsed.iter().count(), 4);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }
    }

    #[test]
    fn limit_records_parsing() {
        // Test without mutable limit/context
        let limit = 2;
        let parsed = LimitedRecords::<_, LimitContextRecordImpl>::parse_with_context(
            &DUMMY_BYTES[..],
            limit,
        )
        .unwrap();
        assert_eq!(parsed.iter().count(), limit);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }

        // Test with mutable limit/context
        let mut mut_limit = limit;
        let parsed = LimitedRecords::<_, LimitContextRecordImpl>::parse_with_mut_context(
            &DUMMY_BYTES[..],
            &mut mut_limit,
        )
        .unwrap();
        assert_eq!(mut_limit, 0);
        assert_eq!(parsed.iter().count(), limit);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }
    }

    #[test]
    fn limit_records_parsing_with_bv() {
        // Test without mutable limit/context
        let limit = 2;
        let mut bv = &mut &DUMMY_BYTES[..];
        let parsed =
            LimitedRecords::<_, LimitContextRecordImpl>::parse_bv_with_context(&mut bv, limit)
                .unwrap();
        assert_eq!(bv.len(), DUMMY_BYTES.len() - std::mem::size_of::<DummyRecord>() * limit);
        assert_eq!(parsed.iter().count(), limit);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }

        // Test with mutable limit context
        let mut mut_limit = limit;
        let mut bv = &mut &DUMMY_BYTES[..];
        let parsed = LimitedRecords::<_, LimitContextRecordImpl>::parse_bv_with_mut_context(
            &mut bv,
            &mut mut_limit,
        )
        .unwrap();
        assert_eq!(mut_limit, 0);
        assert_eq!(bv.len(), DUMMY_BYTES.len() - std::mem::size_of::<DummyRecord>() * limit);
        assert_eq!(parsed.iter().count(), limit);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }
    }

    #[test]
    fn exact_limit_records_parsing() {
        LimitedRecords::<_, ExactLimitContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], 2)
            .expect_err("fails if all the buffer hasn't been parsed");
        LimitedRecords::<_, ExactLimitContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], 5)
            .expect_err("fails if can't extract enough records");
    }

    #[test]
    fn context_filtering_some_byte_records_parsing() {
        // Do not disallow any bytes
        let context = FilterContext { disallowed: [false; 256] };
        let parsed =
            Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
                .unwrap();
        assert_eq!(parsed.iter().count(), 4);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }

        // Do not allow byte value 0x01
        let mut context = FilterContext { disallowed: [false; 256] };
        context.disallowed[1] = true;
        Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
            .expect_err("fails if the buffer has an element with value 0x01");
    }

    #[test]
    fn context_filtering_some_byte_records_parsing_with_bv() {
        // Do not disallow any bytes
        let context = FilterContext { disallowed: [false; 256] };
        let mut bv = &mut &DUMMY_BYTES[..];
        let parsed =
            Records::<_, FilterContextRecordImpl>::parse_bv_with_context(&mut bv, context).unwrap();
        assert_eq!(bv.len(), 0);
        assert_eq!(parsed.iter().count(), 4);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }

        // Do not allow byte value 0x01
        let mut bv = &mut &DUMMY_BYTES[..];
        let mut context = FilterContext { disallowed: [false; 256] };
        context.disallowed[1] = true;
        Records::<_, FilterContextRecordImpl>::parse_bv_with_context(&mut bv, context)
            .expect_err("fails if the buffer has an element with value 0x01");
        assert_eq!(bv.len(), DUMMY_BYTES.len());
    }

    #[test]
    fn stateful_context_records_parsing() {
        let mut context = StatefulContext::new();
        let parsed = Records::<_, StatefulContextRecordImpl>::parse_with_mut_context(
            &DUMMY_BYTES[..],
            &mut context,
        )
        .unwrap();
        validate_parsed_stateful_context_records(parsed, context);
    }

    #[test]
    fn stateful_context_records_parsing_with_bv() {
        let mut context = StatefulContext::new();
        let mut bv = &mut &DUMMY_BYTES[..];
        let parsed = Records::<_, StatefulContextRecordImpl>::parse_bv_with_mut_context(
            &mut bv,
            &mut context,
        )
        .unwrap();
        assert_eq!(bv.len(), 0);
        validate_parsed_stateful_context_records(parsed, context);
    }
}

/// Header options for IPv4 and TCP, and NDP.
///
/// This module provides a parser for the options formats used by IPv4, TCP, and
/// NDP. These formats are not identical, but share enough in common that they
/// can be implemented using the same utility with a bit of customization.
pub mod options {
    use super::*;

    /// A parsed set of header options.
    ///
    /// `Options` represents a parsed set of options from an IPv4 or TCP header
    /// or an NDP packet. `Options` uses [`Records`] below the surface.
    ///
    /// [`Records`]: crate::wire::util::records::Records
    pub type Options<B, O> = Records<B, OptionsImplBridge<O>>;

    /// An instance of options serialization.
    ///
    /// `OptionsSerializer` is instantiated with an `Iterator` that provides
    /// items to be serialized by an [`OptionsSerializerImpl`].
    pub type OptionsSerializer<'a, S, O, I> = RecordsSerializer<'a, S, O, I>;

    /// Create a bridge to `RecordsImplLayout` and `RecordsImpl` traits from an `O`
    /// that implements `OptionsImpl`. This is required so we can have a single
    /// implementation of `parse_with_context` and definition of `Context` that
    /// all implementers of `OptionsImpl` will get for free.
    #[derive(Debug)]
    pub struct OptionsImplBridge<O>(PhantomData<O>);

    impl<O> RecordsImplLayout for OptionsImplBridge<O>
    where
        O: OptionsImplLayout,
    {
        type Error = OptionParseErr<O::Error>;
        type Context = ();
    }

    impl<'a, O> RecordsImpl<'a> for OptionsImplBridge<O>
    where
        O: OptionsImpl<'a>,
    {
        type Record = O::Option;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            _context: &mut Self::Context,
        ) -> Result<Option<Option<Self::Record>>, Self::Error> {
            next::<_, O>(data)
        }
    }

    impl<'a, O> RecordsSerializerImpl<'a> for O
    where
        O: OptionsSerializerImpl<'a>,
    {
        type Record = O::Option;

        fn record_length(record: &Self::Record) -> usize {
            let base = 2 + O::get_option_length(record);

            // Pad up to option_len_multiplier:
            (base + O::OPTION_LEN_MULTIPLIER - 1) / O::OPTION_LEN_MULTIPLIER
                * O::OPTION_LEN_MULTIPLIER
        }

        fn serialize(data: &mut [u8], record: &Self::Record) {
            // NOTE(brunodalbo) we don't currently support serializing the two
            //  single-byte options used in tcp and ip: NOP and END_OF_OPTIONS.
            //  If it is necessary to support those as part of TLV options
            //  serialization, some changes will be required here.

            // data not having enough space is a contract violation, so we
            // panic in that case.
            data[0] = O::get_option_kind(record);
            let length = Self::record_length(record) / O::OPTION_LEN_MULTIPLIER;
            // option length not fitting in u8 is a contract violation. Without
            // debug assertions on, this will cause the packet to be malformed.
            debug_assert!(length <= std::u8::MAX.into());
            data[1] = length as u8;
            // because padding may have occurred, we zero-fill data before
            // passing it along
            for b in data[2..].iter_mut() {
                *b = 0;
            }
            O::serialize(&mut data[2..], record)
        }
    }

    /// Errors returned from parsing options.
    ///
    /// `OptionParseErr` is either `Internal`, which indicates that this module
    /// encountered a malformed sequence of options (likely with a length field
    /// larger than the remaining bytes in the options buffer), or `External`,
    /// which indicates that the `OptionsImpl::parse` callback returned an error.
    #[derive(Debug, Eq, PartialEq)]
    pub enum OptionParseErr<E> {
        Internal,
        External(E),
    }

    // End of Options List in both IPv4 and TCP
    const END_OF_OPTIONS: u8 = 0;

    // NOP in both IPv4 and TCP
    const NOP: u8 = 1;

    /// Common traits of option parsing and serialization.
    ///
    /// This is split from `OptionsImpl` and `OptionsSerializerImpl` so that
    /// the associated types do not depend on the lifetime parameter to
    /// `OptionsImpl` and provide common behavior to parsers and serializers.
    pub trait OptionsImplLayout {
        /// The error type that can be returned in Options parsing.
        type Error;

        /// The value to multiply read lengths by.
        ///
        /// By default, this value is 1, but for some protocols (such as NDP)
        /// this may be different.
        const OPTION_LEN_MULTIPLIER: usize = 1;

        /// The End of options type (if one exists).
        const END_OF_OPTIONS: Option<u8> = Some(END_OF_OPTIONS);

        /// The No-op type (if one exists).
        const NOP: Option<u8> = Some(NOP);
    }

    /// An implementation of an options parser.
    ///
    /// `OptionsImpl` provides functions to parse fixed- and variable-length
    /// options. It is required in order to construct an `Options`.
    pub trait OptionsImpl<'a>: OptionsImplLayout {
        /// The type of an option; the output from the `parse` function.
        ///
        /// For long or variable-length data, the user is advised to make
        /// `Option` a reference into the bytes passed to `parse`. This is
        /// achievable because of the lifetime parameter to this trait.
        type Option;

        /// Parse an option.
        ///
        /// `parse` takes a kind byte and variable-length data associated and
        /// returns `Ok(Some(o))` if the option successfully parsed as `o`,
        /// `Ok(None)` if the kind byte was unrecognized, and `Err(err)` if the
        /// kind byte was recognized but `data` was malformed for that option
        /// kind. `parse` is allowed to not recognize certain option kinds, as
        /// the length field can still be used to safely skip over them.
        ///
        /// `parse` must be deterministic, or else `Options::parse` cannot
        /// guarantee that future iterations will not produce errors (and
        /// panic).
        fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, Self::Error>;
    }

    /// An implementation of an options serializer.
    ///
    /// `OptionsSerializerImpl` provides to functions to serialize fixed- and
    /// variable-length options. It is required in order to construct an
    /// `OptionsSerializer`.
    pub trait OptionsSerializerImpl<'a>: OptionsImplLayout {
        /// The input type to this serializer.
        ///
        /// This is the analogous serializing version of `Option` in
        /// [`OptionsImpl`]. Options serialization expects an `Iterator` of
        /// objects of type `Option`.
        type Option;

        /// Returns the serialized length, in bytes, of the given `option`.
        ///
        ///
        /// Implementers must return the length, in bytes, of the **data***
        /// portion of the option field (not counting the type and length
        /// bytes). The internal machinery of options serialization takes care
        /// of aligning options to their `OPTION_LEN_MULTIPLIER` boundaries,
        /// adding padding bytes if necessary.
        fn get_option_length(option: &Self::Option) -> usize;

        /// Returns the wire value for this option kind.
        fn get_option_kind(option: &Self::Option) -> u8;

        /// Serializes `option` into `data`.
        ///
        /// Implementers must write the **data** portion of `option` into
        /// `data` (not the type or length octets, those are extracted through
        /// calls to `get_option_kind` and `get_option_length`, respectively).
        /// `data` is guaranteed to be long enough to fit `option` based on the
        /// value returned by `get_option_length`.
        fn serialize(data: &mut [u8], option: &Self::Option);
    }

    fn next<'a, BV, O>(
        bytes: &mut BV,
    ) -> Result<Option<Option<O::Option>>, OptionParseErr<O::Error>>
    where
        BV: BufferView<&'a [u8]>,
        O: OptionsImpl<'a>,
    {
        // For an explanation of this format, see the "Options" section of
        // https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
        loop {
            let kind = match bytes.take_front(1).map(|x| x[0]) {
                None => return Ok(None),
                Some(k) => {
                    // Can't do pattern matching with associated constants,
                    // so do it the good-ol' way:
                    if Some(k) == O::NOP {
                        continue;
                    } else if Some(k) == O::END_OF_OPTIONS {
                        return Ok(None);
                    }
                    k
                }
            };
            let len = match bytes.take_front(1).map(|x| x[0]) {
                None => return Err(OptionParseErr::Internal),
                Some(len) => (len as usize) * O::OPTION_LEN_MULTIPLIER,
            };

            if len < 2 || (len - 2) > bytes.len() {
                tracing::error!("option length {} is either too short or longer than the total buffer length of {}", len, bytes.len());
                return Err(OptionParseErr::Internal);
            }

            // we can safely unwrap here since we verified the correct length above
            let option_data = bytes.take_front(len - 2).unwrap();
            match O::parse(kind, option_data) {
                Ok(Some(o)) => return Ok(Some(Some(o))),
                Ok(None) => {}
                Err(err) => return Err(OptionParseErr::External(err)),
            }
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;
        use packet::Serializer;

        #[derive(Debug)]
        struct DummyOptionsImpl;

        impl OptionsImplLayout for DummyOptionsImpl {
            type Error = ();
        }

        impl<'a> OptionsImpl<'a> for DummyOptionsImpl {
            type Option = (u8, Vec<u8>);

            fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, Self::Error> {
                let mut v = Vec::new();
                v.extend_from_slice(data);
                Ok(Some((kind, v)))
            }
        }

        impl<'a> OptionsSerializerImpl<'a> for DummyOptionsImpl {
            type Option = (u8, Vec<u8>);

            fn get_option_length(option: &Self::Option) -> usize {
                option.1.len()
            }

            fn get_option_kind(option: &Self::Option) -> u8 {
                option.0
            }

            fn serialize(data: &mut [u8], option: &Self::Option) {
                data.copy_from_slice(&option.1);
            }
        }

        #[derive(Debug)]
        struct AlwaysErrOptionsImpl;

        impl OptionsImplLayout for AlwaysErrOptionsImpl {
            type Error = ();
        }

        impl<'a> OptionsImpl<'a> for AlwaysErrOptionsImpl {
            type Option = ();

            fn parse(_kind: u8, _data: &'a [u8]) -> Result<Option<()>, ()> {
                Err(())
            }
        }

        #[derive(Debug)]
        struct DummyNdpOptionsImpl;

        impl OptionsImplLayout for DummyNdpOptionsImpl {
            type Error = ();

            const OPTION_LEN_MULTIPLIER: usize = 8;

            const END_OF_OPTIONS: Option<u8> = None;

            const NOP: Option<u8> = None;
        }

        impl<'a> OptionsImpl<'a> for DummyNdpOptionsImpl {
            type Option = (u8, Vec<u8>);

            fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, Self::Error> {
                let mut v = Vec::with_capacity(data.len());
                v.extend_from_slice(data);
                Ok(Some((kind, v)))
            }
        }

        impl<'a> OptionsSerializerImpl<'a> for DummyNdpOptionsImpl {
            type Option = (u8, Vec<u8>);

            fn get_option_length(option: &Self::Option) -> usize {
                option.1.len()
            }

            fn get_option_kind(option: &Self::Option) -> u8 {
                option.0
            }

            fn serialize(data: &mut [u8], option: &Self::Option) {
                data.copy_from_slice(&option.1)
            }
        }

        #[test]
        fn test_empty_options() {
            // all END_OF_OPTIONS
            let bytes = [END_OF_OPTIONS; 64];
            let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
            assert_eq!(options.iter().count(), 0);

            // all NOP
            let bytes = [NOP; 64];
            let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
            assert_eq!(options.iter().count(), 0);
        }

        #[test]
        fn test_parse() {
            // Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
            // 3, 2], etc. The second byte is the length byte, so these are all
            // valid options (with data [], [2], [3, 2], etc).
            let mut bytes = Vec::new();
            for i in 4..16 {
                // from the user's perspective, these NOPs should be transparent
                bytes.push(NOP);
                for j in (2..i).rev() {
                    bytes.push(j);
                }
                // from the user's perspective, these NOPs should be transparent
                bytes.push(NOP);
            }

            let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();
            for (idx, (kind, data)) in options.iter().enumerate() {
                assert_eq!(kind as usize, idx + 3);
                assert_eq!(data.len(), idx);
                let mut bytes = Vec::new();
                for i in (2..(idx + 2)).rev() {
                    bytes.push(i as u8);
                }
                assert_eq!(data, bytes);
            }

            // Test that we get no parse errors so long as
            // AlwaysErrOptionsImpl::parse is never called.
            let bytes = [NOP; 64];
            let options = Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap();
            assert_eq!(options.iter().count(), 0);
        }

        #[test]
        fn test_parse_ndp_options() {
            let mut bytes = Vec::new();
            for i in 0..16 {
                bytes.push(i);
                // NDP uses len*8 for the actual length.
                bytes.push(i + 1);
                // Write remaining 6 bytes.
                for j in 2..((i + 1) * 8) {
                    bytes.push(j)
                }
            }

            let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
            for (idx, (kind, data)) in options.iter().enumerate() {
                assert_eq!(kind as usize, idx);
                assert_eq!(data.len(), ((idx + 1) * 8) - 2);
                let mut bytes = Vec::new();
                for i in 2..((idx + 1) * 8) {
                    bytes.push(i as u8);
                }
                assert_eq!(data, bytes);
            }
        }

        #[test]
        fn test_parse_err() {
            // the length byte is too short
            let bytes = [2, 1];
            assert_eq!(
                Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr::Internal
            );

            // the length byte is 0 (similar check to above, but worth
            // explicitly testing since this was a bug in the Linux kernel:
            // https://bugzilla.redhat.com/show_bug.cgi?id=1622404)
            let bytes = [2, 0];
            assert_eq!(
                Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr::Internal
            );

            // the length byte is too long
            let bytes = [2, 3];
            assert_eq!(
                Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr::Internal
            );

            // the buffer is fine, but the implementation returns a parse error
            let bytes = [2, 2];
            assert_eq!(
                Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr::External(())
            );
        }

        #[test]
        fn test_missing_length_bytes() {
            // Construct a sequence with a valid record followed by an
            // incomplete one, where `kind` is specified but `len` is missing.
            // So we can assert that we'll fail cleanly in that case.
            //
            // Added as part of Change-Id
            // Ibd46ac7384c7c5e0d74cb344b48c88876c351b1a
            //
            // Before the small refactor in the Change-Id above, there was a
            // check during parsing that guaranteed that the length of the
            // remaining buffer was >= 1, but it should've been a check for
            // >= 2, and the case below would have caused it to panic while
            // trying to access the length byte, which was a DoS vulnerability.
            Options::<_, DummyOptionsImpl>::parse(&[0x03, 0x03, 0x01, 0x03][..])
                .expect_err("Can detect malformed length bytes");
        }

        #[test]
        fn test_parse_and_serialize() {
            // Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
            // 3, 2], etc. The second byte is the length byte, so these are all
            // valid options (with data [], [2], [3, 2], etc).
            let mut bytes = Vec::new();
            for i in 4..16 {
                // from the user's perspective, these NOPs should be transparent
                for j in (2..i).rev() {
                    bytes.push(j);
                }
            }

            let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();

            let collected = options
                .iter()
                .collect::<Vec<<DummyOptionsImpl as OptionsSerializerImpl<'_>>::Option>>();
            let ser = OptionsSerializer::<DummyOptionsImpl, _, _>::new(collected.iter());

            let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();

            assert_eq!(serialized, bytes);
        }

        #[test]
        fn test_parse_and_serialize_ndp() {
            let mut bytes = Vec::new();
            for i in 0..16 {
                bytes.push(i);
                // NDP uses len*8 for the actual length.
                bytes.push(i + 1);
                // Write remaining 6 bytes.
                for j in 2..((i + 1) * 8) {
                    bytes.push(j)
                }
            }
            let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
            let collected = options
                .iter()
                .collect::<Vec<<DummyNdpOptionsImpl as OptionsSerializerImpl<'_>>::Option>>();
            let ser = OptionsSerializer::<DummyNdpOptionsImpl, _, _>::new(collected.iter());

            let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();

            assert_eq!(serialized, bytes);
        }
    }
}