ppp_packet/records.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A copy of `src/connectivity/network/netstack3/core/src/wire/util/records.rs`,
// until it can be pulled out.
#![allow(missing_docs)]
//! Utilities for parsing sequential records.
//!
//! This module provides utilities for parsing sequential records. IGMP message
//! parsing is built using these utilities, as is another set of general
//! utilities for IPv4, TCP, and NDP options parsing, provided in the
//! [`options`] submodule.
//!
//! [`options`]: crate::wire::util::records::options
use packet::{BufferView, BufferViewMut, InnerPacketBuilder};
use std::marker::PhantomData;
use std::ops::Deref;
use zerocopy::SplitByteSlice;
/// A parsed set of arbitrary sequential records.
///
/// `Records` represents a pre-parsed set of records whose structure is enforced
/// by the impl in `O`.
#[derive(Debug)]
pub struct Records<B, R: RecordsImplLayout> {
bytes: B,
context: R::Context,
}
/// An iterator over the records contained inside a `Records` instance.
pub struct RecordsIter<'a, R: RecordsImpl<'a>> {
bytes: &'a [u8],
context: R::Context,
}
/// The context kept while performing records parsing.
///
/// Types which implement `RecordsContext` can be used as the long-lived
/// context which is kept during records parsing. This context allows
/// parsers to keep running computations over the span of multiple records.
pub trait RecordsContext: Sized + Clone {
/// Clone a context for iterator purposes.
///
/// `clone_for_iter` is useful for cloning a context to be
/// used by `RecordsIter`. Since `Records::parse_with_context`
/// will do a full pass over all the records to check for errors,
/// a `RecordsIter` should never error. Thereforce, instead of doing
/// checks when iterating (if a context was used for checks), a
/// clone of a context can be made specifically for iterator purposes
/// that does not do checks (which may be expensive).
///
/// By default, just do a normal clone.
fn clone_for_iter(&self) -> Self {
self.clone()
}
}
// Implement the `RecordsContext` trait for `usize` which will be used by
// record limiting contexts (see [`LimitedRecordsImpl`]) and for `()`
// which is to represent an empty/no context-type.
impl RecordsContext for usize {}
impl RecordsContext for () {}
/// Basic associated types used by a `RecordsImpl`.
///
/// This trait is kept separate from `RecordsImpl` to keep the lifetimes
/// separated.
pub trait RecordsImplLayout {
/// The type of errors that may be returned by a `RecordsImpl::parse_with_context`.
type Error;
/// A context type that can be used to maintain state or do checks.
type Context: RecordsContext;
}
/// An implementation of a records parser.
///
/// `RecordsImpl` provides functions to parse sequential records. It is required
/// in order to construct a `Records` or `RecordsIter`.
pub trait RecordsImpl<'a>: RecordsImplLayout {
/// The type of a single record; the output from the `parse_with_context` function.
///
/// For long or variable-length data, the user is advised to make `Record` a
/// reference into the bytes passed to `parse_with_context`. This is achievable
/// because of the lifetime parameter to this trait.
type Record;
/// Parse a record with some context.
///
/// `parse_with_context` takes a variable-length `data` and a `context` to
/// maintain state, and returns `Ok(Some(Some(o)))` if the the record is
/// successfully parsed as `o`, `Ok(Some(None))` if data is not malformed
/// but the implementer can't extract a concrete object (e.g. record is an
/// unimplemented enumeration, but we can still safely "skip" it), Ok(None)
/// if `parse_with_context` is unable to parse more records, and `Err(err)`
/// if the `data` was malformed for the attempted record parsing.
///
/// `data` MAY be empty. It is up to the implementer to handle an exhausted
/// `data`.
///
/// When returning `Ok(Some(None))` it's the implementer's responsibility to
/// nonetheless skip the record (which may not be possible for some
/// implementations, in which case it should return an `Err`).
///
/// `parse_with_context` must be deterministic, or else
/// `Records::parse_with_context` cannot guarantee that future iterations
/// will not produce errors (and panic).
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
context: &mut Self::Context,
) -> Result<Option<Option<Self::Record>>, Self::Error>;
}
/// A limited parsed set of records.
///
/// `LimitedRecords` represents a parsed set of records that can be limited to a
/// certain number of records. Unlike records with accepts a `RecordsImpl`,
/// `LimitedRecords` accepts a type that implements `LimitedRecordsImpl` for `O`.
pub type LimitedRecords<B, O> = Records<B, LimitedRecordsImplBridge<O>>;
/// Create a bridge to `RecordsImplLayout` and `RecordsImpl` from an `O` that
/// implements `LimitedRecordsImplLayout`. This is required so we can have a single
/// implementation of `parse_with_context` and definition of `Context` that
/// all implementers of `LimitedRecordsImpl` will get for free.
#[derive(Debug)]
pub struct LimitedRecordsImplBridge<O>(PhantomData<O>);
impl<O> RecordsImplLayout for LimitedRecordsImplBridge<O>
where
O: LimitedRecordsImplLayout,
{
type Error = O::Error;
// All LimitedRecords get a context type of usize.
type Context = usize;
}
impl<'a, O> RecordsImpl<'a> for LimitedRecordsImplBridge<O>
where
O: LimitedRecordsImpl<'a>,
{
type Record = O::Record;
/// Parse some bytes with a given `context` as a limit.
///
/// `parse_with_context` accepts a `bytes` buffer and limit `context`
/// and verifies that the limit has not been reached and that bytes is not empty.
/// See [`EXACT_LIMIT_ERROR`] for information about exact limiting. If the limit
/// has not been reached and `bytes` has not been exhausted, `LimitedRecordsImpl::parse`
/// will be called to do the actual parsing of a record.
///
/// [`EXACT_LIMIT_ERROR`]: LimitedRecordsImplLayout::EXACT_LIMIT_ERROR
fn parse_with_context<BV: BufferView<&'a [u8]>>(
bytes: &mut BV,
context: &mut Self::Context,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
let limit_hit = *context == 0;
if bytes.is_empty() || limit_hit {
return match O::EXACT_LIMIT_ERROR {
Some(_) if bytes.is_empty() ^ limit_hit => Err(O::EXACT_LIMIT_ERROR.unwrap()),
_ => Ok(None),
};
}
*context = context.checked_sub(1).expect("Can't decrement counter below 0");
O::parse(bytes)
}
}
/// Trait that provides implementations to limit the amount of records read from
/// a buffer. Some protocols will have some sort of header preceding the records
/// that will indicate the number of records to follow (e.g. IGMP), while others
/// will have that information inline (e.g. IPv4 options).
///
/// If the implementer of this trait wishes to impose an Exact Limit constraint,
/// they should supply a value for `EXACT_LIMIT_ERROR`.
///
/// Note that implementations of `LimitedRecordsImpl` cannot be used in place of
/// implementations of `RecordsImpl` directly as this does not implement
/// `RecordsImpl`. Implementers will need to use the `LimitedRecordsImplBridge`
/// to create bindings to a `RecordsImpl`. Alternatively, instead of using
/// `Records<_, O>` where `O` is a type that implements `RecordsImpl`, implementers
/// can use `LimitedRecords<_, P>` where `P` is a type that implements
/// `LimitedRecordsImpl`. See [`LimitedRecords`].
pub trait LimitedRecordsImplLayout {
/// See `RecordsImplLayout::Error` as this will be bound to a `RecordsImplLayout::Error`
/// associated type directly.
type Error;
/// If `Some(E)`, `parse_with_context` of `LimitedRecordsImplBridge` will emit the
/// provided constant as an error if the provided buffer is exhausted while `context`
/// is not 0, or if the `context` reaches 0 but the provided buffer is not empty.
const EXACT_LIMIT_ERROR: Option<Self::Error> = None;
}
pub trait LimitedRecordsImpl<'a>: LimitedRecordsImplLayout {
/// See [`RecordsImpl::Record`] as this will be bound to a `RecordsImpl::Record`
/// associated type directly.
type Record;
/// Parse a record after limit check has completed.
///
/// `parse` will be called by a `LimitedRecordsImpl::parse_with_context` after
/// doing limit checks. When this method is called, it is guaranteed by
/// `LimitedRecordsImpl::parse_with_context` that the limit has not been reached,
/// so `parse` should parse exactly one record (if possible).
///
/// For information about return values, see [`RecordsImpl::parse_with_context`].
fn parse<BV: BufferView<&'a [u8]>>(
bytes: &mut BV,
) -> Result<Option<Option<Self::Record>>, Self::Error>;
}
/// An implementation of a records serializer.
///
/// `RecordsSerializerImpl` provides functions to serialize sequential records.
/// It is required in order to construct a [`RecordsSerializer`].
pub trait RecordsSerializerImpl<'a> {
/// The input type to this serializer.
///
/// This is the analogous serializing version of `Record` in
/// [`RecordsImpl`]. Records serialization expects an `Iterator` of objects
/// of type `Record`.
type Record;
/// Provides the serialized length of a record.
///
/// Returns the total length, in bytes, of `record`.
fn record_length(record: &Self::Record) -> usize;
/// Serializes `record`. into buffer `data`.
///
/// The provided `data` buffer will **always** be sized to the value
/// returned by `record_length`.
fn serialize(data: &mut [u8], record: &Self::Record);
}
/// An instance of records serialization.
///
/// `RecordsSerializer` is instantiated with an `Iterator` that provides
/// items to be serialized by a `RecordsSerializerImpl`.
#[derive(Debug)]
pub struct RecordsSerializer<'a, S, R: 'a, I>
where
S: RecordsSerializerImpl<'a, Record = R>,
I: Iterator<Item = &'a R> + Clone,
{
records: I,
_marker: PhantomData<S>,
}
impl<'a, S, R: 'a, I> RecordsSerializer<'a, S, R, I>
where
S: RecordsSerializerImpl<'a, Record = R>,
I: Iterator<Item = &'a R> + Clone,
{
/// Creates a new `RecordsSerializer` with given `records`.
///
/// `records` must produce the same sequence of values from every iterator,
/// even if cloned. Serialization typically performed with two passes on
/// `records`: one to calculate the total length in bytes
/// (`records_bytes_len`) and another one to serialize to a buffer
/// (`serialize_records`). Violating this rule may cause panics or malformed
/// packets.
pub fn new(records: I) -> Self {
Self { records, _marker: PhantomData }
}
/// Returns the total length, in bytes, of the serialized records contained
/// within the `RecordsSerializer`.
fn records_bytes_len(&self) -> usize {
self.records.clone().map(|r| S::record_length(r)).sum()
}
/// `serialize_records` serializes all the records contained within the
/// `RecordsSerializer`.
///
/// # Panics
///
/// `serialize_records` expects that `buffer` has enough bytes to serialize
/// the contained records (as obtained from `records_bytes_len`, otherwise
/// it's considered a violation of the API contract and the call will panic.
fn serialize_records(&self, buffer: &mut [u8]) {
let mut b = &mut &mut buffer[..];
for r in self.records.clone() {
// SECURITY: Take a zeroed buffer from b to prevent leaking
// information from packets previously stored in this buffer.
S::serialize(b.take_front_zero(S::record_length(r)).unwrap(), r);
}
}
}
impl<'a, S, R: 'a, I> InnerPacketBuilder for RecordsSerializer<'a, S, R, I>
where
S: RecordsSerializerImpl<'a, Record = R>,
I: Iterator<Item = &'a R> + Clone,
{
fn bytes_len(&self) -> usize {
self.records_bytes_len()
}
fn serialize(&self, buffer: &mut [u8]) {
self.serialize_records(buffer)
}
}
impl<B, R> Records<B, R>
where
B: SplitByteSlice,
R: for<'a> RecordsImpl<'a>,
{
/// Parse a set of records with a context.
///
/// See `parse_with_mut_context` for details on `bytes`, `context`, and
/// return value. `parse_with_context` just calls `parse_with_mut_context`
/// with a mutable reference to the `context` (which is owned).
pub fn parse_with_context(
bytes: B,
mut context: R::Context,
) -> Result<Records<B, R>, R::Error> {
Self::parse_with_mut_context(bytes, &mut context)
}
/// Parse a set of records with a mutable context.
///
/// `parse_with_mut_context` parses `bytes` as a sequence of records. `context`
/// may be used by implementers to maintain state and do checks.
///
/// `parse_with_mut_context` performs a single pass over all of the records to
/// verify that they are well-formed. Once `parse_with_context` returns
/// successfully, the resulting `Records` can be used to construct
/// infallible iterators.
pub fn parse_with_mut_context(
bytes: B,
context: &mut R::Context,
) -> Result<Records<B, R>, R::Error> {
// First, do a single pass over the bytes to detect any errors up front.
// Once this is done, since we have a reference to `bytes`, these bytes
// can't change out from under us, and so we can treat any iterator over
// these bytes as infallible. This makes a few assumptions, but none of
// them are that big of a deal. In all cases, breaking these assumptions
// would just result in a runtime panic.
// - B could return different bytes each time
// - R::parse could be non-deterministic
let c = context.clone();
let mut b = LongLivedBuff::new(bytes.deref());
while next::<_, R>(&mut b, context)?.is_some() {}
Ok(Records { bytes, context: c })
}
/// Parse a set of records with a context, using a `BufferView`.
///
/// See `parse_bv_with_mut_context` for details on `bytes`, `context`, and
/// return value. `parse_bv_with_context` just calls `parse_bv_with_mut_context`
/// with a mutable reference to the `context` (which is owned).
pub fn parse_bv_with_context<BV: BufferView<B>>(
bytes: &mut BV,
mut context: R::Context,
) -> Result<Records<B, R>, R::Error> {
Self::parse_bv_with_mut_context(bytes, &mut context)
}
/// Parse a set of records with a mutable context, using a `BufferView`.
///
/// This function is exactly the same as `parse_with_mut_context` except instead
/// of operating on a `ByteSlice`, we operate on a `BufferView<B>` where `B`
/// is a `ByteSlice`. `parse_bv_with_mut_context` enables parsing records without
/// knowing the size of all records beforehand (unlike `parse_with_mut_context`
/// where callers need to pass in a `ByteSlice` of some predetermined sized).
/// Since callers will provide a mutable reference to a `BufferView`,
/// `parse_bv_with_mut_context` will take only the amount of bytes it needs to
/// parse records, leaving the rest in the `BufferView` object. That is, when
/// `parse_bv_with_mut_context` returns, the `BufferView` object provided will be
/// x bytes smaller, where x is the number of bytes required to parse the records.
pub fn parse_bv_with_mut_context<BV: BufferView<B>>(
bytes: &mut BV,
context: &mut R::Context,
) -> Result<Records<B, R>, R::Error> {
let c = context.clone();
let mut b = LongLivedBuff::new(bytes.as_ref());
while next::<_, R>(&mut b, context)?.is_some() {}
// When we get here, we know that whatever is left in `b` is not needed
// so we only take the amount of bytes we actually need from `bytes`,
// leaving the rest alone for the caller to continue parsing with.
let bytes_len = bytes.len();
let b_len = b.len();
Ok(Records { bytes: bytes.take_front(bytes_len - b_len).unwrap(), context: c })
}
}
impl<B, R> Records<B, R>
where
B: SplitByteSlice,
R: for<'a> RecordsImpl<'a, Context = ()>,
{
/// Parses a set of records.
///
/// Equivalent to calling `parse_with_context` with `context = ()`.
pub fn parse(bytes: B) -> Result<Records<B, R>, R::Error> {
Self::parse_with_context(bytes, ())
}
}
impl<B: Deref<Target = [u8]>, R> Records<B, R>
where
R: for<'a> RecordsImpl<'a>,
{
/// Get the underlying bytes.
///
/// `bytes` returns a reference to the byte slice backing this `Options`.
pub fn bytes(&self) -> &[u8] {
&self.bytes
}
}
impl<'a, B, R> Records<B, R>
where
B: 'a + SplitByteSlice,
R: RecordsImpl<'a>,
{
/// Create an iterator over options.
///
/// `iter` constructs an iterator over the records. Since the records were
/// validated in `parse`, then so long as `from_kind` and `from_data` are
/// deterministic, the iterator is infallible.
pub fn iter(&'a self) -> RecordsIter<'a, R> {
RecordsIter { bytes: &self.bytes, context: self.context.clone_for_iter() }
}
}
impl<'a, R> Iterator for RecordsIter<'a, R>
where
R: RecordsImpl<'a>,
{
type Item = R::Record;
fn next(&mut self) -> Option<R::Record> {
let mut bytes = LongLivedBuff::new(self.bytes);
// use match rather than expect because expect requires that Err: Debug
#[allow(clippy::match_wild_err_arm)]
let result = match next::<_, R>(&mut bytes, &mut self.context) {
Ok(o) => o,
Err(_) => panic!("already-validated options should not fail to parse"),
};
self.bytes = bytes.into_rest();
result
}
}
/// Gets the next entry for a set of sequential records in `bytes`.
///
/// On return, `bytes` will be pointing to the start of where a next record
/// would be.
fn next<'a, BV, R>(bytes: &mut BV, context: &mut R::Context) -> Result<Option<R::Record>, R::Error>
where
R: RecordsImpl<'a>,
BV: BufferView<&'a [u8]>,
{
loop {
match R::parse_with_context(bytes, context) {
// `parse_with_context` cannot parse any more, return
// Ok(None) to let the caller know that we have parsed
// all possible records for a given `bytes`.
Ok(None) => return Ok(None),
// `parse_with_context` was unable to parse a record, not
// because `bytes` was malformed but for other non fatal
// reasons, so we can skip.
Ok(Some(None)) => {}
// `parse_with_context` was able to parse a record, so
// return it.
Ok(Some(Some(o))) => return Ok(Some(o)),
// `parse_with_context` had an error so pass that error
// to the caller.
Err(err) => return Err(err),
}
}
}
/// A wrapper around the implementation of `BufferView` for slices.
///
/// `LongLivedBuff` is a thin wrapper around `&[u8]` meant to provide an
/// implementation of `BufferView` that returns slices tied to the same lifetime
/// as the slice that `LongLivedBuff` was created with. This is in contrast to
/// the more widely used `&'b mut &'a [u8]` `BufferView` implementer that
/// returns slice references tied to lifetime `b`.
struct LongLivedBuff<'a>(&'a [u8]);
impl<'a> LongLivedBuff<'a> {
/// Creates a new `LongLivedBuff` around a slice reference with lifetime
/// `a`.
///
/// All slices returned by the `BufferView` impl of `LongLivedBuff` are
/// guaranteed to return slice references tied to the same lifetime `a`.
pub fn new(data: &'a [u8]) -> LongLivedBuff<'a> {
LongLivedBuff::<'a>(data)
}
}
impl<'a> AsRef<[u8]> for LongLivedBuff<'a> {
fn as_ref(&self) -> &[u8] {
self.0
}
}
impl<'a> packet::BufferView<&'a [u8]> for LongLivedBuff<'a> {
fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
if self.0.len() >= n {
let (prefix, rest) = std::mem::replace(&mut self.0, &[]).split_at(n);
self.0 = rest;
Some(prefix)
} else {
None
}
}
fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
if self.0.len() >= n {
let (rest, suffix) = std::mem::replace(&mut self.0, &[]).split_at(n);
self.0 = rest;
Some(suffix)
} else {
None
}
}
fn into_rest(self) -> &'a [u8] {
self.0
}
}
#[cfg(test)]
mod test {
use super::*;
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Ref, Unaligned};
const DUMMY_BYTES: [u8; 16] = [
0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03,
0x04,
];
#[derive(Debug, IntoBytes, KnownLayout, FromBytes, Immutable, Unaligned)]
#[repr(C)]
struct DummyRecord {
a: [u8; 2],
b: u8,
c: u8,
}
fn parse_dummy_rec<'a, BV>(
data: &mut BV,
) -> Result<Option<Option<Ref<&'a [u8], DummyRecord>>>, ()>
where
BV: BufferView<&'a [u8]>,
{
if data.is_empty() {
return Ok(None);
}
match data.take_obj_front::<DummyRecord>() {
Some(res) => Ok(Some(Some(res))),
None => Err(()),
}
}
//
// Context-less records
//
#[derive(Debug)]
struct ContextlessRecordImpl;
impl RecordsImplLayout for ContextlessRecordImpl {
type Context = ();
type Error = ();
}
impl<'a> RecordsImpl<'a> for ContextlessRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
_context: &mut Self::Context,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
parse_dummy_rec(data)
}
}
//
// Limit context records
//
#[derive(Debug)]
struct LimitContextRecordImpl;
impl LimitedRecordsImplLayout for LimitContextRecordImpl {
type Error = ();
}
impl<'a> LimitedRecordsImpl<'a> for LimitContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse<BV: BufferView<&'a [u8]>>(
data: &mut BV,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
parse_dummy_rec(data)
}
}
//
// Exact limit context records
//
#[derive(Debug)]
struct ExactLimitContextRecordImpl;
impl LimitedRecordsImplLayout for ExactLimitContextRecordImpl {
type Error = ();
const EXACT_LIMIT_ERROR: Option<()> = Some(());
}
impl<'a> LimitedRecordsImpl<'a> for ExactLimitContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse<BV: BufferView<&'a [u8]>>(
data: &mut BV,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
parse_dummy_rec(data)
}
}
//
// Filter context records
//
#[derive(Debug)]
struct FilterContextRecordImpl;
#[derive(Clone)]
struct FilterContext {
pub disallowed: [bool; 256],
}
impl RecordsContext for FilterContext {}
impl RecordsImplLayout for FilterContextRecordImpl {
type Context = FilterContext;
type Error = ();
}
impl std::fmt::Debug for FilterContext {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "FilterContext{{disallowed:{:?}}}", &self.disallowed[..])
}
}
impl<'a> RecordsImpl<'a> for FilterContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
bytes: &mut BV,
context: &mut Self::Context,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
if bytes.len() < std::mem::size_of::<DummyRecord>() {
Ok(None)
} else if bytes.as_ref()[0..std::mem::size_of::<DummyRecord>()]
.iter()
.any(|x| context.disallowed[*x as usize])
{
Err(())
} else {
parse_dummy_rec(bytes)
}
}
}
//
// Stateful context records
//
#[derive(Debug)]
struct StatefulContextRecordImpl;
#[derive(Clone, Debug)]
struct StatefulContext {
pub pre_parse_counter: usize,
pub parse_counter: usize,
pub post_parse_counter: usize,
pub iter: bool,
}
impl RecordsImplLayout for StatefulContextRecordImpl {
type Context = StatefulContext;
type Error = ();
}
impl StatefulContext {
pub fn new() -> StatefulContext {
StatefulContext {
pre_parse_counter: 0,
parse_counter: 0,
post_parse_counter: 0,
iter: false,
}
}
}
impl RecordsContext for StatefulContext {
fn clone_for_iter(&self) -> Self {
let mut x = self.clone();
x.iter = true;
x
}
}
impl<'a> RecordsImpl<'a> for StatefulContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
context: &mut Self::Context,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
if !context.iter {
context.pre_parse_counter += 1;
}
let ret = parse_dummy_rec_with_context(data, context);
match ret {
Ok(Some(Some(_))) if !context.iter => {
context.post_parse_counter += 1;
}
_ => {}
}
ret
}
}
fn parse_dummy_rec_with_context<'a, BV>(
data: &mut BV,
context: &mut StatefulContext,
) -> Result<Option<Option<Ref<&'a [u8], DummyRecord>>>, ()>
where
BV: BufferView<&'a [u8]>,
{
if data.is_empty() {
return Ok(None);
}
if !context.iter {
context.parse_counter += 1;
}
match data.take_obj_front::<DummyRecord>() {
Some(res) => Ok(Some(Some(res))),
None => Err(()),
}
}
fn check_parsed_record(rec: &DummyRecord) {
assert_eq!(rec.a[0], 0x01);
assert_eq!(rec.a[1], 0x02);
assert_eq!(rec.b, 0x03);
}
fn validate_parsed_stateful_context_records<B: SplitByteSlice>(
records: Records<B, StatefulContextRecordImpl>,
context: StatefulContext,
) {
// Should be 5 because on the last iteration, we should realize
// that we have no more bytes left and end before parsing (also
// explaining why `parse_counter` should only be 4.
assert_eq!(context.pre_parse_counter, 5);
assert_eq!(context.parse_counter, 4);
assert_eq!(context.post_parse_counter, 4);
let mut iter = records.iter();
let context = &iter.context;
assert_eq!(context.pre_parse_counter, 0);
assert_eq!(context.parse_counter, 0);
assert_eq!(context.post_parse_counter, 0);
assert_eq!(context.iter, true);
// Manually iterate over `iter` so as to not move it.
let mut count = 0;
while let Some(_) = iter.next() {
count += 1;
}
assert_eq!(count, 4);
// Check to see that when iterating, the context doesn't update counters
// as that is how we implemented our StatefulContextRecordImpl..
let context = &iter.context;
assert_eq!(context.pre_parse_counter, 0);
assert_eq!(context.parse_counter, 0);
assert_eq!(context.post_parse_counter, 0);
assert_eq!(context.iter, true);
}
#[test]
fn all_records_parsing() {
let _test = Records::<_, ContextlessRecordImpl>::parse(&DUMMY_BYTES[..]);
let parsed = Records::<_, ContextlessRecordImpl>::parse(&DUMMY_BYTES[..]).unwrap();
assert_eq!(parsed.iter().count(), 4);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
}
#[test]
fn limit_records_parsing() {
// Test without mutable limit/context
let limit = 2;
let parsed = LimitedRecords::<_, LimitContextRecordImpl>::parse_with_context(
&DUMMY_BYTES[..],
limit,
)
.unwrap();
assert_eq!(parsed.iter().count(), limit);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
// Test with mutable limit/context
let mut mut_limit = limit;
let parsed = LimitedRecords::<_, LimitContextRecordImpl>::parse_with_mut_context(
&DUMMY_BYTES[..],
&mut mut_limit,
)
.unwrap();
assert_eq!(mut_limit, 0);
assert_eq!(parsed.iter().count(), limit);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
}
#[test]
fn limit_records_parsing_with_bv() {
// Test without mutable limit/context
let limit = 2;
let mut bv = &mut &DUMMY_BYTES[..];
let parsed =
LimitedRecords::<_, LimitContextRecordImpl>::parse_bv_with_context(&mut bv, limit)
.unwrap();
assert_eq!(bv.len(), DUMMY_BYTES.len() - std::mem::size_of::<DummyRecord>() * limit);
assert_eq!(parsed.iter().count(), limit);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
// Test with mutable limit context
let mut mut_limit = limit;
let mut bv = &mut &DUMMY_BYTES[..];
let parsed = LimitedRecords::<_, LimitContextRecordImpl>::parse_bv_with_mut_context(
&mut bv,
&mut mut_limit,
)
.unwrap();
assert_eq!(mut_limit, 0);
assert_eq!(bv.len(), DUMMY_BYTES.len() - std::mem::size_of::<DummyRecord>() * limit);
assert_eq!(parsed.iter().count(), limit);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
}
#[test]
fn exact_limit_records_parsing() {
LimitedRecords::<_, ExactLimitContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], 2)
.expect_err("fails if all the buffer hasn't been parsed");
LimitedRecords::<_, ExactLimitContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], 5)
.expect_err("fails if can't extract enough records");
}
#[test]
fn context_filtering_some_byte_records_parsing() {
// Do not disallow any bytes
let context = FilterContext { disallowed: [false; 256] };
let parsed =
Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
.unwrap();
assert_eq!(parsed.iter().count(), 4);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
// Do not allow byte value 0x01
let mut context = FilterContext { disallowed: [false; 256] };
context.disallowed[1] = true;
Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
.expect_err("fails if the buffer has an element with value 0x01");
}
#[test]
fn context_filtering_some_byte_records_parsing_with_bv() {
// Do not disallow any bytes
let context = FilterContext { disallowed: [false; 256] };
let mut bv = &mut &DUMMY_BYTES[..];
let parsed =
Records::<_, FilterContextRecordImpl>::parse_bv_with_context(&mut bv, context).unwrap();
assert_eq!(bv.len(), 0);
assert_eq!(parsed.iter().count(), 4);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
// Do not allow byte value 0x01
let mut bv = &mut &DUMMY_BYTES[..];
let mut context = FilterContext { disallowed: [false; 256] };
context.disallowed[1] = true;
Records::<_, FilterContextRecordImpl>::parse_bv_with_context(&mut bv, context)
.expect_err("fails if the buffer has an element with value 0x01");
assert_eq!(bv.len(), DUMMY_BYTES.len());
}
#[test]
fn stateful_context_records_parsing() {
let mut context = StatefulContext::new();
let parsed = Records::<_, StatefulContextRecordImpl>::parse_with_mut_context(
&DUMMY_BYTES[..],
&mut context,
)
.unwrap();
validate_parsed_stateful_context_records(parsed, context);
}
#[test]
fn stateful_context_records_parsing_with_bv() {
let mut context = StatefulContext::new();
let mut bv = &mut &DUMMY_BYTES[..];
let parsed = Records::<_, StatefulContextRecordImpl>::parse_bv_with_mut_context(
&mut bv,
&mut context,
)
.unwrap();
assert_eq!(bv.len(), 0);
validate_parsed_stateful_context_records(parsed, context);
}
}
/// Header options for IPv4 and TCP, and NDP.
///
/// This module provides a parser for the options formats used by IPv4, TCP, and
/// NDP. These formats are not identical, but share enough in common that they
/// can be implemented using the same utility with a bit of customization.
pub mod options {
use super::*;
/// A parsed set of header options.
///
/// `Options` represents a parsed set of options from an IPv4 or TCP header
/// or an NDP packet. `Options` uses [`Records`] below the surface.
///
/// [`Records`]: crate::wire::util::records::Records
pub type Options<B, O> = Records<B, OptionsImplBridge<O>>;
/// An instance of options serialization.
///
/// `OptionsSerializer` is instantiated with an `Iterator` that provides
/// items to be serialized by an [`OptionsSerializerImpl`].
pub type OptionsSerializer<'a, S, O, I> = RecordsSerializer<'a, S, O, I>;
/// Create a bridge to `RecordsImplLayout` and `RecordsImpl` traits from an `O`
/// that implements `OptionsImpl`. This is required so we can have a single
/// implementation of `parse_with_context` and definition of `Context` that
/// all implementers of `OptionsImpl` will get for free.
#[derive(Debug)]
pub struct OptionsImplBridge<O>(PhantomData<O>);
impl<O> RecordsImplLayout for OptionsImplBridge<O>
where
O: OptionsImplLayout,
{
type Error = OptionParseErr<O::Error>;
type Context = ();
}
impl<'a, O> RecordsImpl<'a> for OptionsImplBridge<O>
where
O: OptionsImpl<'a>,
{
type Record = O::Option;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
_context: &mut Self::Context,
) -> Result<Option<Option<Self::Record>>, Self::Error> {
next::<_, O>(data)
}
}
impl<'a, O> RecordsSerializerImpl<'a> for O
where
O: OptionsSerializerImpl<'a>,
{
type Record = O::Option;
fn record_length(record: &Self::Record) -> usize {
let base = 2 + O::get_option_length(record);
// Pad up to option_len_multiplier:
(base + O::OPTION_LEN_MULTIPLIER - 1) / O::OPTION_LEN_MULTIPLIER
* O::OPTION_LEN_MULTIPLIER
}
fn serialize(data: &mut [u8], record: &Self::Record) {
// NOTE(brunodalbo) we don't currently support serializing the two
// single-byte options used in tcp and ip: NOP and END_OF_OPTIONS.
// If it is necessary to support those as part of TLV options
// serialization, some changes will be required here.
// data not having enough space is a contract violation, so we
// panic in that case.
data[0] = O::get_option_kind(record);
let length = Self::record_length(record) / O::OPTION_LEN_MULTIPLIER;
// option length not fitting in u8 is a contract violation. Without
// debug assertions on, this will cause the packet to be malformed.
debug_assert!(length <= std::u8::MAX.into());
data[1] = length as u8;
// because padding may have occurred, we zero-fill data before
// passing it along
for b in data[2..].iter_mut() {
*b = 0;
}
O::serialize(&mut data[2..], record)
}
}
/// Errors returned from parsing options.
///
/// `OptionParseErr` is either `Internal`, which indicates that this module
/// encountered a malformed sequence of options (likely with a length field
/// larger than the remaining bytes in the options buffer), or `External`,
/// which indicates that the `OptionsImpl::parse` callback returned an error.
#[derive(Debug, Eq, PartialEq)]
pub enum OptionParseErr<E> {
Internal,
External(E),
}
// End of Options List in both IPv4 and TCP
const END_OF_OPTIONS: u8 = 0;
// NOP in both IPv4 and TCP
const NOP: u8 = 1;
/// Common traits of option parsing and serialization.
///
/// This is split from `OptionsImpl` and `OptionsSerializerImpl` so that
/// the associated types do not depend on the lifetime parameter to
/// `OptionsImpl` and provide common behavior to parsers and serializers.
pub trait OptionsImplLayout {
/// The error type that can be returned in Options parsing.
type Error;
/// The value to multiply read lengths by.
///
/// By default, this value is 1, but for some protocols (such as NDP)
/// this may be different.
const OPTION_LEN_MULTIPLIER: usize = 1;
/// The End of options type (if one exists).
const END_OF_OPTIONS: Option<u8> = Some(END_OF_OPTIONS);
/// The No-op type (if one exists).
const NOP: Option<u8> = Some(NOP);
}
/// An implementation of an options parser.
///
/// `OptionsImpl` provides functions to parse fixed- and variable-length
/// options. It is required in order to construct an `Options`.
pub trait OptionsImpl<'a>: OptionsImplLayout {
/// The type of an option; the output from the `parse` function.
///
/// For long or variable-length data, the user is advised to make
/// `Option` a reference into the bytes passed to `parse`. This is
/// achievable because of the lifetime parameter to this trait.
type Option;
/// Parse an option.
///
/// `parse` takes a kind byte and variable-length data associated and
/// returns `Ok(Some(o))` if the option successfully parsed as `o`,
/// `Ok(None)` if the kind byte was unrecognized, and `Err(err)` if the
/// kind byte was recognized but `data` was malformed for that option
/// kind. `parse` is allowed to not recognize certain option kinds, as
/// the length field can still be used to safely skip over them.
///
/// `parse` must be deterministic, or else `Options::parse` cannot
/// guarantee that future iterations will not produce errors (and
/// panic).
fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, Self::Error>;
}
/// An implementation of an options serializer.
///
/// `OptionsSerializerImpl` provides to functions to serialize fixed- and
/// variable-length options. It is required in order to construct an
/// `OptionsSerializer`.
pub trait OptionsSerializerImpl<'a>: OptionsImplLayout {
/// The input type to this serializer.
///
/// This is the analogous serializing version of `Option` in
/// [`OptionsImpl`]. Options serialization expects an `Iterator` of
/// objects of type `Option`.
type Option;
/// Returns the serialized length, in bytes, of the given `option`.
///
///
/// Implementers must return the length, in bytes, of the **data***
/// portion of the option field (not counting the type and length
/// bytes). The internal machinery of options serialization takes care
/// of aligning options to their `OPTION_LEN_MULTIPLIER` boundaries,
/// adding padding bytes if necessary.
fn get_option_length(option: &Self::Option) -> usize;
/// Returns the wire value for this option kind.
fn get_option_kind(option: &Self::Option) -> u8;
/// Serializes `option` into `data`.
///
/// Implementers must write the **data** portion of `option` into
/// `data` (not the type or length octets, those are extracted through
/// calls to `get_option_kind` and `get_option_length`, respectively).
/// `data` is guaranteed to be long enough to fit `option` based on the
/// value returned by `get_option_length`.
fn serialize(data: &mut [u8], option: &Self::Option);
}
fn next<'a, BV, O>(
bytes: &mut BV,
) -> Result<Option<Option<O::Option>>, OptionParseErr<O::Error>>
where
BV: BufferView<&'a [u8]>,
O: OptionsImpl<'a>,
{
// For an explanation of this format, see the "Options" section of
// https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
loop {
let kind = match bytes.take_front(1).map(|x| x[0]) {
None => return Ok(None),
Some(k) => {
// Can't do pattern matching with associated constants,
// so do it the good-ol' way:
if Some(k) == O::NOP {
continue;
} else if Some(k) == O::END_OF_OPTIONS {
return Ok(None);
}
k
}
};
let len = match bytes.take_front(1).map(|x| x[0]) {
None => return Err(OptionParseErr::Internal),
Some(len) => (len as usize) * O::OPTION_LEN_MULTIPLIER,
};
if len < 2 || (len - 2) > bytes.len() {
log::error!("option length {} is either too short or longer than the total buffer length of {}", len, bytes.len());
return Err(OptionParseErr::Internal);
}
// we can safely unwrap here since we verified the correct length above
let option_data = bytes.take_front(len - 2).unwrap();
match O::parse(kind, option_data) {
Ok(Some(o)) => return Ok(Some(Some(o))),
Ok(None) => {}
Err(err) => return Err(OptionParseErr::External(err)),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use packet::Serializer;
#[derive(Debug)]
struct DummyOptionsImpl;
impl OptionsImplLayout for DummyOptionsImpl {
type Error = ();
}
impl<'a> OptionsImpl<'a> for DummyOptionsImpl {
type Option = (u8, Vec<u8>);
fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, Self::Error> {
let mut v = Vec::new();
v.extend_from_slice(data);
Ok(Some((kind, v)))
}
}
impl<'a> OptionsSerializerImpl<'a> for DummyOptionsImpl {
type Option = (u8, Vec<u8>);
fn get_option_length(option: &Self::Option) -> usize {
option.1.len()
}
fn get_option_kind(option: &Self::Option) -> u8 {
option.0
}
fn serialize(data: &mut [u8], option: &Self::Option) {
data.copy_from_slice(&option.1);
}
}
#[derive(Debug)]
struct AlwaysErrOptionsImpl;
impl OptionsImplLayout for AlwaysErrOptionsImpl {
type Error = ();
}
impl<'a> OptionsImpl<'a> for AlwaysErrOptionsImpl {
type Option = ();
fn parse(_kind: u8, _data: &'a [u8]) -> Result<Option<()>, ()> {
Err(())
}
}
#[derive(Debug)]
struct DummyNdpOptionsImpl;
impl OptionsImplLayout for DummyNdpOptionsImpl {
type Error = ();
const OPTION_LEN_MULTIPLIER: usize = 8;
const END_OF_OPTIONS: Option<u8> = None;
const NOP: Option<u8> = None;
}
impl<'a> OptionsImpl<'a> for DummyNdpOptionsImpl {
type Option = (u8, Vec<u8>);
fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, Self::Error> {
let mut v = Vec::with_capacity(data.len());
v.extend_from_slice(data);
Ok(Some((kind, v)))
}
}
impl<'a> OptionsSerializerImpl<'a> for DummyNdpOptionsImpl {
type Option = (u8, Vec<u8>);
fn get_option_length(option: &Self::Option) -> usize {
option.1.len()
}
fn get_option_kind(option: &Self::Option) -> u8 {
option.0
}
fn serialize(data: &mut [u8], option: &Self::Option) {
data.copy_from_slice(&option.1)
}
}
#[test]
fn test_empty_options() {
// all END_OF_OPTIONS
let bytes = [END_OF_OPTIONS; 64];
let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
assert_eq!(options.iter().count(), 0);
// all NOP
let bytes = [NOP; 64];
let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
assert_eq!(options.iter().count(), 0);
}
#[test]
fn test_parse() {
// Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
// 3, 2], etc. The second byte is the length byte, so these are all
// valid options (with data [], [2], [3, 2], etc).
let mut bytes = Vec::new();
for i in 4..16 {
// from the user's perspective, these NOPs should be transparent
bytes.push(NOP);
for j in (2..i).rev() {
bytes.push(j);
}
// from the user's perspective, these NOPs should be transparent
bytes.push(NOP);
}
let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();
for (idx, (kind, data)) in options.iter().enumerate() {
assert_eq!(kind as usize, idx + 3);
assert_eq!(data.len(), idx);
let mut bytes = Vec::new();
for i in (2..(idx + 2)).rev() {
bytes.push(i as u8);
}
assert_eq!(data, bytes);
}
// Test that we get no parse errors so long as
// AlwaysErrOptionsImpl::parse is never called.
let bytes = [NOP; 64];
let options = Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap();
assert_eq!(options.iter().count(), 0);
}
#[test]
fn test_parse_ndp_options() {
let mut bytes = Vec::new();
for i in 0..16 {
bytes.push(i);
// NDP uses len*8 for the actual length.
bytes.push(i + 1);
// Write remaining 6 bytes.
for j in 2..((i + 1) * 8) {
bytes.push(j)
}
}
let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
for (idx, (kind, data)) in options.iter().enumerate() {
assert_eq!(kind as usize, idx);
assert_eq!(data.len(), ((idx + 1) * 8) - 2);
let mut bytes = Vec::new();
for i in 2..((idx + 1) * 8) {
bytes.push(i as u8);
}
assert_eq!(data, bytes);
}
}
#[test]
fn test_parse_err() {
// the length byte is too short
let bytes = [2, 1];
assert_eq!(
Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr::Internal
);
// the length byte is 0 (similar check to above, but worth
// explicitly testing since this was a bug in the Linux kernel:
// https://bugzilla.redhat.com/show_bug.cgi?id=1622404)
let bytes = [2, 0];
assert_eq!(
Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr::Internal
);
// the length byte is too long
let bytes = [2, 3];
assert_eq!(
Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr::Internal
);
// the buffer is fine, but the implementation returns a parse error
let bytes = [2, 2];
assert_eq!(
Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr::External(())
);
}
#[test]
fn test_missing_length_bytes() {
// Construct a sequence with a valid record followed by an
// incomplete one, where `kind` is specified but `len` is missing.
// So we can assert that we'll fail cleanly in that case.
//
// Added as part of Change-Id
// Ibd46ac7384c7c5e0d74cb344b48c88876c351b1a
//
// Before the small refactor in the Change-Id above, there was a
// check during parsing that guaranteed that the length of the
// remaining buffer was >= 1, but it should've been a check for
// >= 2, and the case below would have caused it to panic while
// trying to access the length byte, which was a DoS vulnerability.
Options::<_, DummyOptionsImpl>::parse(&[0x03, 0x03, 0x01, 0x03][..])
.expect_err("Can detect malformed length bytes");
}
#[test]
fn test_parse_and_serialize() {
// Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
// 3, 2], etc. The second byte is the length byte, so these are all
// valid options (with data [], [2], [3, 2], etc).
let mut bytes = Vec::new();
for i in 4..16 {
// from the user's perspective, these NOPs should be transparent
for j in (2..i).rev() {
bytes.push(j);
}
}
let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();
let collected = options
.iter()
.collect::<Vec<<DummyOptionsImpl as OptionsSerializerImpl<'_>>::Option>>();
let ser = OptionsSerializer::<DummyOptionsImpl, _, _>::new(collected.iter());
let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();
assert_eq!(serialized, bytes);
}
#[test]
fn test_parse_and_serialize_ndp() {
let mut bytes = Vec::new();
for i in 0..16 {
bytes.push(i);
// NDP uses len*8 for the actual length.
bytes.push(i + 1);
// Write remaining 6 bytes.
for j in 2..((i + 1) * 8) {
bytes.push(j)
}
}
let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
let collected = options
.iter()
.collect::<Vec<<DummyNdpOptionsImpl as OptionsSerializerImpl<'_>>::Option>>();
let ser = OptionsSerializer::<DummyNdpOptionsImpl, _, _>::new(collected.iter());
let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();
assert_eq!(serialized, bytes);
}
}
}