1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Support for creating futures that represent timers.
//!
//! This module contains the `Timer` type which is a future that will resolve
//! at a particular point in the future.

use crate::runtime::{EHandle, Time, WakeupTime};
use fuchsia_zircon as zx;
use futures::{
    stream::FusedStream,
    task::{AtomicWaker, Context},
    FutureExt, Stream,
};
use std::{
    cmp,
    collections::BinaryHeap,
    future::Future,
    pin::Pin,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc, Weak,
    },
    task::Poll,
};

impl WakeupTime for std::time::Instant {
    fn into_time(self) -> Time {
        let now_as_instant = std::time::Instant::now();
        let now_as_time = Time::now();
        now_as_time + self.saturating_duration_since(now_as_instant).into()
    }
}

impl WakeupTime for Time {
    fn into_time(self) -> Time {
        self
    }
}

impl WakeupTime for zx::Time {
    fn into_time(self) -> Time {
        self.into()
    }
}

/// An asynchronous timer.
#[derive(Debug)]
#[must_use = "futures do nothing unless polled"]
pub struct Timer {
    waker_and_bool: Arc<(AtomicWaker, AtomicBool)>,
}

impl Unpin for Timer {}

impl Timer {
    /// Create a new timer scheduled to fire at `time`.
    pub fn new<WT>(time: WT) -> Self
    where
        WT: WakeupTime,
    {
        let waker_and_bool = Arc::new((AtomicWaker::new(), AtomicBool::new(false)));
        let this = Timer { waker_and_bool };
        EHandle::register_timer(time.into_time(), this.handle());
        this
    }

    fn handle(&self) -> TimerHandle {
        TimerHandle { inner: Arc::downgrade(&self.waker_and_bool) }
    }

    /// Reset the `Timer` to a fire at a new time.
    /// The `Timer` must have already fired since last being reset.
    pub fn reset(&mut self, time: Time) {
        assert!(self.did_fire());
        self.waker_and_bool.1.store(false, Ordering::SeqCst);
        EHandle::register_timer(time, self.handle());
    }

    fn did_fire(&self) -> bool {
        self.waker_and_bool.1.load(Ordering::SeqCst)
    }

    fn register_task(&self, cx: &mut Context<'_>) {
        self.waker_and_bool.0.register(cx.waker());
    }
}

impl Future for Timer {
    type Output = ();
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // See https://docs.rs/futures/0.3.5/futures/task/struct.AtomicWaker.html
        // for more information.
        // quick check to avoid registration if already done.
        if self.did_fire() {
            return Poll::Ready(());
        }

        self.register_task(cx);

        // Need to check condition **after** `register` to avoid a race
        // condition that would result in lost notifications.
        if self.did_fire() {
            Poll::Ready(())
        } else {
            Poll::Pending
        }
    }
}

pub(crate) struct TimerHandle {
    inner: Weak<(AtomicWaker, AtomicBool)>,
}

impl TimerHandle {
    pub fn is_defunct(&self) -> bool {
        self.inner.upgrade().is_none()
    }

    pub fn wake(&self) {
        if let Some(wb) = self.inner.upgrade() {
            wb.1.store(true, Ordering::SeqCst);
            wb.0.wake();
        }
    }
}

/// An asynchronous interval timer.
/// This is a stream of events resolving at a rate of once-per interval.
#[derive(Debug)]
#[must_use = "streams do nothing unless polled"]
pub struct Interval {
    timer: Timer,
    next: Time,
    duration: zx::Duration,
}

impl Interval {
    /// Create a new `Interval` which yields every `duration`.
    pub fn new(duration: zx::Duration) -> Self {
        let next = Time::after(duration);
        Interval { timer: Timer::new(next), next, duration }
    }
}

impl Unpin for Interval {}

impl FusedStream for Interval {
    fn is_terminated(&self) -> bool {
        // `Interval` never yields `None`
        false
    }
}

impl Stream for Interval {
    type Item = ();
    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = &mut *self;
        match this.timer.poll_unpin(cx) {
            Poll::Ready(()) => {
                this.timer.register_task(cx);
                this.next += this.duration;
                this.timer.reset(this.next);
                Poll::Ready(Some(()))
            }
            Poll::Pending => {
                this.timer.register_task(cx);
                Poll::Pending
            }
        }
    }
}

#[derive(Default)]
pub(crate) struct TimerHeap {
    inner: BinaryHeap<TimeWaker>,
}

impl TimerHeap {
    pub fn add_timer(&mut self, time: Time, handle: TimerHandle) {
        self.inner.push(TimeWaker { time, handle })
    }

    pub fn next_deadline(&mut self) -> Option<&TimeWaker> {
        while self.inner.peek().map(|t| t.handle.is_defunct()).unwrap_or_default() {
            self.inner.pop();
        }
        self.inner.peek()
    }

    pub fn pop(&mut self) -> Option<TimeWaker> {
        self.inner.pop()
    }
}

pub(crate) struct TimeWaker {
    time: Time,
    handle: TimerHandle,
}

impl TimeWaker {
    pub fn wake(&self) {
        self.handle.wake();
    }

    pub fn time(&self) -> Time {
        self.time
    }
}

impl Ord for TimeWaker {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.time.cmp(&other.time).reverse() // Reverse to get min-heap rather than max
    }
}

impl PartialOrd for TimeWaker {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for TimeWaker {
    /// BinaryHeap requires `TimeWaker: Ord` above so that there's a total ordering between
    /// elements, and `T: Ord` requires `T: Eq` even we don't actually need to check these for
    /// equality. We could use `Weak::ptr_eq` to check the handles here, but then that would cause
    /// the `PartialEq` implementation to return false in some cases where `Ord` returns
    /// `Ordering::Equal`, which is asking for logic errors down the line.
    fn eq(&self, other: &Self) -> bool {
        self.time == other.time
    }
}
impl Eq for TimeWaker {}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{LocalExecutor, SendExecutor, TestExecutor};
    use assert_matches::assert_matches;
    use fuchsia_zircon::prelude::*;
    use fuchsia_zircon::Duration;
    use futures::future::Either;
    use futures::prelude::*;

    #[test]
    fn shorter_fires_first() {
        let mut exec = LocalExecutor::new();
        let shorter = Timer::new(Time::after(100.millis()));
        let longer = Timer::new(Time::after(1.second()));
        match exec.run_singlethreaded(future::select(shorter, longer)) {
            Either::Left(_) => {}
            Either::Right(_) => panic!("wrong timer fired"),
        }
    }

    #[test]
    fn shorter_fires_first_multithreaded() {
        let mut exec = SendExecutor::new(4);
        let shorter = Timer::new(Time::after(100.millis()));
        let longer = Timer::new(Time::after(1.second()));
        match exec.run(future::select(shorter, longer)) {
            Either::Left(_) => {}
            Either::Right(_) => panic!("wrong timer fired"),
        }
    }

    #[test]
    fn fires_after_timeout() {
        let mut exec = TestExecutor::new_with_fake_time();
        exec.set_fake_time(Time::from_nanos(0));
        let deadline = Time::after(5.seconds());
        let mut future = Timer::new(deadline);
        assert_eq!(Poll::Pending, exec.run_until_stalled(&mut future));
        exec.set_fake_time(deadline);
        assert_eq!(Poll::Ready(()), exec.run_until_stalled(&mut future));
    }

    #[test]
    fn timer_before_now_fires_immediately() {
        let mut exec = TestExecutor::new();
        let now = Time::now();
        let before = Timer::new(now - Duration::from_nanos(1));
        let after = Timer::new(now + Duration::from_nanos(1));
        assert_matches!(
            exec.run_singlethreaded(futures::future::select(before, after)),
            Either::Left(_),
            "Timer in the past should fire first"
        );
    }

    #[test]
    fn interval() {
        let mut exec = TestExecutor::new_with_fake_time();
        let start = Time::from_nanos(0);
        exec.set_fake_time(start);

        let counter = Arc::new(::std::sync::atomic::AtomicUsize::new(0));
        let mut future = {
            let counter = counter.clone();
            Interval::new(5.seconds())
                .map(move |()| {
                    counter.fetch_add(1, Ordering::SeqCst);
                })
                .collect::<()>()
        };

        // PollResult for the first time before the timer runs
        assert_eq!(Poll::Pending, exec.run_until_stalled(&mut future));
        assert_eq!(0, counter.load(Ordering::SeqCst));

        // Pretend to wait until the next timer
        let first_deadline = TestExecutor::next_timer().expect("Expected a pending timeout (1)");
        assert!(first_deadline >= 5.seconds() + start);
        exec.set_fake_time(first_deadline);
        assert_eq!(Poll::Pending, exec.run_until_stalled(&mut future));
        assert_eq!(1, counter.load(Ordering::SeqCst));

        // PollResulting again before the timer runs shouldn't produce another item from the stream
        assert_eq!(Poll::Pending, exec.run_until_stalled(&mut future));
        assert_eq!(1, counter.load(Ordering::SeqCst));

        // "Wait" until the next timeout and poll again: expect another item from the stream
        let second_deadline = TestExecutor::next_timer().expect("Expected a pending timeout (2)");
        exec.set_fake_time(second_deadline);
        assert_eq!(Poll::Pending, exec.run_until_stalled(&mut future));
        assert_eq!(2, counter.load(Ordering::SeqCst));

        assert_eq!(second_deadline, first_deadline + 5.seconds());
    }

    #[test]
    fn timer_fake_time() {
        let mut exec = TestExecutor::new_with_fake_time();
        exec.set_fake_time(Time::from_nanos(0));

        let mut timer = Timer::new(Time::after(1.seconds()));
        assert_eq!(Poll::Pending, exec.run_until_stalled(&mut timer));

        exec.set_fake_time(Time::after(1.seconds()));
        assert_eq!(Poll::Ready(()), exec.run_until_stalled(&mut timer));
    }
}