vfs/execution_scope.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Values of this type represent "execution scopes" used by the library to give fine grained
//! control of the lifetimes of the tasks associated with particular connections. When a new
//! connection is attached to a pseudo directory tree, an execution scope is provided. This scope
//! is then used to start any tasks related to this connection. All connections opened as a result
//! of operations on this first connection will also use the same scope, as well as any tasks
//! related to those connections.
//!
//! This way, it is possible to control the lifetime of a group of connections. All connections
//! and their tasks can be shutdown by calling `shutdown` method on the scope that is hosting them.
//! Scope will also shutdown all the tasks when it goes out of scope.
//!
//! Implementation wise, execution scope is just a proxy, that forwards all the tasks to an actual
//! executor, provided as an instance of a [`futures::task::Spawn`] trait.
use crate::token_registry::TokenRegistry;
use fuchsia_async::{JoinHandle, Scope, Task};
use futures::task::{self, Poll};
use futures::Future;
use std::future::{pending, poll_fn};
use std::pin::pin;
use std::sync::{Arc, Mutex, OnceLock};
use std::task::ready;
#[cfg(target_os = "fuchsia")]
use fuchsia_async::EHandle;
pub type SpawnError = task::SpawnError;
/// An execution scope that is hosting tasks for a group of connections. See the module level
/// documentation for details.
///
/// Actual execution will be delegated to an "upstream" executor - something that implements
/// [`futures::task::Spawn`]. In a sense, this is somewhat of an analog of a multithreaded capable
/// [`futures::stream::FuturesUnordered`], but this some additional functionality specific to the
/// vfs library.
///
/// Use [`ExecutionScope::new()`] or [`ExecutionScope::build()`] to construct new
/// `ExecutionScope`es.
#[derive(Clone)]
pub struct ExecutionScope {
executor: Arc<Executor>,
}
struct Executor {
inner: Mutex<Inner>,
token_registry: TokenRegistry,
scope: OnceLock<Scope>,
}
struct Inner {
/// Records the kind of shutdown that has been called on the executor.
shutdown_state: ShutdownState,
/// The number of active tasks preventing shutdown.
active_count: usize,
/// A fake active task that we use when there are no other tasks yet there's still an an active
/// count.
fake_active_task: Option<Task<()>>,
}
#[derive(Copy, Clone, PartialEq)]
enum ShutdownState {
Active,
Shutdown,
ForceShutdown,
}
impl ExecutionScope {
/// Constructs an execution scope. Use [`ExecutionScope::build()`] if you want to specify
/// parameters.
pub fn new() -> Self {
Self::build().new()
}
/// Constructs a new execution scope builder, wrapping the specified executor and optionally
/// accepting additional parameters. Run [`ExecutionScopeParams::new()`] to get an actual
/// [`ExecutionScope`] object.
pub fn build() -> ExecutionScopeParams {
ExecutionScopeParams::default()
}
/// Returns the active count: the number of tasks that are active and will prevent shutdown.
pub fn active_count(&self) -> usize {
self.executor.inner.lock().unwrap().active_count
}
/// Sends a `task` to be executed in this execution scope. This is very similar to
/// [`futures::task::Spawn::spawn_obj()`] with a minor difference that `self` reference is not
/// exclusive.
///
/// If the task needs to prevent itself from being shutdown, then it should use the
/// `try_active_guard` function below.
///
/// For the "vfs" library it is more convenient that this method allows non-exclusive
/// access. And as the implementation is employing internal mutability there are no downsides.
/// This way `ExecutionScope` can actually also implement [`futures::task::Spawn`] - it just was
/// not necessary for now.
pub fn spawn(&self, task: impl Future<Output = ()> + Send + 'static) -> JoinHandle<()> {
let executor = self.executor.clone();
self.executor.scope().spawn(async move {
let mut task = std::pin::pin!(task);
poll_fn(|cx| {
let shutdown_state = executor.inner.lock().unwrap().shutdown_state;
match task.as_mut().poll(cx) {
Poll::Ready(()) => Poll::Ready(()),
Poll::Pending => match shutdown_state {
ShutdownState::Active => Poll::Pending,
ShutdownState::Shutdown
if executor.inner.lock().unwrap().active_count > 0 =>
{
Poll::Pending
}
_ => Poll::Ready(()),
},
}
})
.await;
})
}
pub fn token_registry(&self) -> &TokenRegistry {
&self.executor.token_registry
}
pub fn shutdown(&self) {
self.executor.shutdown();
}
/// Forcibly shut down the executor without respecting the active guards.
pub fn force_shutdown(&self) {
let mut inner = self.executor.inner.lock().unwrap();
inner.shutdown_state = ShutdownState::ForceShutdown;
self.executor.scope().wake_all();
}
/// Restores the executor so that it is no longer in the shut-down state. Any tasks
/// that are still running will continue to run after calling this.
pub fn resurrect(&self) {
self.executor.inner.lock().unwrap().shutdown_state = ShutdownState::Active;
}
/// Wait for all tasks to complete.
pub async fn wait(&self) {
let mut on_no_tasks = pin!(self.executor.scope().on_no_tasks());
poll_fn(|cx| {
// Hold the lock whilst we poll the scope so that the active count can't change.
let mut inner = self.executor.inner.lock().unwrap();
ready!(on_no_tasks.as_mut().poll(cx));
if inner.active_count == 0 {
Poll::Ready(())
} else {
// There are no tasks but there's an active count and we must only finish when there
// are no tasks *and* the active count is zero. To address this, we spawn a fake
// task so that we can just use `on_no_tasks`, and then we'll cancel the task when
// the active count drops to zero.
let scope = self.executor.scope();
inner.fake_active_task = Some(scope.compute(pending::<()>()));
on_no_tasks.set(scope.on_no_tasks());
assert!(on_no_tasks.as_mut().poll(cx).is_pending());
Poll::Pending
}
})
.await;
}
/// Prevents the executor from shutting down whilst the guard is held. Returns None if the
/// executor is shutting down.
pub fn try_active_guard(&self) -> Option<ActiveGuard> {
let mut inner = self.executor.inner.lock().unwrap();
if inner.shutdown_state != ShutdownState::Active {
return None;
}
inner.active_count += 1;
Some(ActiveGuard(self.executor.clone()))
}
/// As above, but succeeds even if the executor is shutting down. This can be used in drop
/// implementations to spawn tasks that *must* run before the executor shuts down.
pub fn active_guard(&self) -> ActiveGuard {
self.executor.inner.lock().unwrap().active_count += 1;
ActiveGuard(self.executor.clone())
}
}
impl PartialEq for ExecutionScope {
fn eq(&self, other: &Self) -> bool {
Arc::as_ptr(&self.executor) == Arc::as_ptr(&other.executor)
}
}
impl Eq for ExecutionScope {}
impl std::fmt::Debug for ExecutionScope {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("ExecutionScope {:?}", Arc::as_ptr(&self.executor)))
}
}
#[derive(Default)]
pub struct ExecutionScopeParams {
#[cfg(target_os = "fuchsia")]
async_executor: Option<EHandle>,
}
impl ExecutionScopeParams {
#[cfg(target_os = "fuchsia")]
pub fn executor(mut self, value: EHandle) -> Self {
assert!(self.async_executor.is_none(), "`executor` is already set");
self.async_executor = Some(value);
self
}
pub fn new(self) -> ExecutionScope {
ExecutionScope {
executor: Arc::new(Executor {
token_registry: TokenRegistry::new(),
inner: Mutex::new(Inner {
shutdown_state: ShutdownState::Active,
active_count: 0,
fake_active_task: None,
}),
#[cfg(target_os = "fuchsia")]
scope: self
.async_executor
.map_or_else(|| OnceLock::new(), |e| e.global_scope().new_child().into()),
#[cfg(not(target_os = "fuchsia"))]
scope: OnceLock::new(),
}),
}
}
}
impl Executor {
fn scope(&self) -> &Scope {
// We lazily initialize the executor rather than at construction time as there are currently
// a few tests that create the ExecutionScope before the async executor has been initialized
// (which means we cannot call EHandle::local()).
self.scope.get_or_init(|| {
#[cfg(target_os = "fuchsia")]
return Scope::global().new_child();
#[cfg(not(target_os = "fuchsia"))]
return Scope::new();
})
}
fn shutdown(&self) {
let wake_all = {
let mut inner = self.inner.lock().unwrap();
inner.shutdown_state = ShutdownState::Shutdown;
inner.active_count == 0
};
if wake_all {
if let Some(scope) = self.scope.get() {
scope.wake_all();
}
}
}
}
impl Drop for Executor {
fn drop(&mut self) {
self.shutdown();
}
}
// ActiveGuard prevents the executor from shutting down until the guard is dropped.
pub struct ActiveGuard(Arc<Executor>);
impl Drop for ActiveGuard {
fn drop(&mut self) {
let wake_all = {
let mut inner = self.0.inner.lock().unwrap();
inner.active_count -= 1;
if inner.active_count == 0 {
if let Some(task) = inner.fake_active_task.take() {
let _ = task.cancel();
}
}
inner.active_count == 0 && inner.shutdown_state == ShutdownState::Shutdown
};
if wake_all {
self.0.scope().wake_all();
}
}
}
/// Yields to the executor, providing an opportunity for other futures to run.
pub async fn yield_to_executor() {
let mut done = false;
poll_fn(|cx| {
if done {
Poll::Ready(())
} else {
done = true;
cx.waker().wake_by_ref();
Poll::Pending
}
})
.await;
}
#[cfg(test)]
mod tests {
use super::{yield_to_executor, ExecutionScope};
use fuchsia_async::{Task, TestExecutor, Timer};
use futures::channel::oneshot;
use futures::stream::FuturesUnordered;
use futures::task::Poll;
use futures::{Future, StreamExt};
use std::pin::pin;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::time::Duration;
#[cfg(target_os = "fuchsia")]
fn run_test<GetTest, GetTestRes>(get_test: GetTest)
where
GetTest: FnOnce(ExecutionScope) -> GetTestRes,
GetTestRes: Future<Output = ()>,
{
let mut exec = TestExecutor::new();
let scope = ExecutionScope::new();
let test = get_test(scope);
assert_eq!(
exec.run_until_stalled(&mut pin!(test)),
Poll::Ready(()),
"Test did not complete"
);
}
#[cfg(not(target_os = "fuchsia"))]
fn run_test<GetTest, GetTestRes>(get_test: GetTest)
where
GetTest: FnOnce(ExecutionScope) -> GetTestRes,
GetTestRes: Future<Output = ()>,
{
use fuchsia_async::TimeoutExt;
let mut exec = TestExecutor::new();
let scope = ExecutionScope::new();
// This isn't a perfect equivalent to the target version, but Tokio
// doesn't have run_until_stalled and it sounds like it's
// architecturally impossible.
let test =
get_test(scope).on_stalled(Duration::from_secs(30), || panic!("Test did not complete"));
exec.run_singlethreaded(&mut pin!(test));
}
#[test]
fn simple() {
run_test(|scope| {
async move {
let (sender, receiver) = oneshot::channel();
let (counters, task) = mocks::ImmediateTask::new(sender);
scope.spawn(task);
// Make sure our task had a chance to execute.
receiver.await.unwrap();
assert_eq!(counters.drop_call(), 1);
assert_eq!(counters.poll_call(), 1);
}
});
}
#[test]
fn simple_drop() {
run_test(|scope| {
async move {
let (poll_sender, poll_receiver) = oneshot::channel();
let (processing_done_sender, processing_done_receiver) = oneshot::channel();
let (drop_sender, drop_receiver) = oneshot::channel();
let (counters, task) =
mocks::ControlledTask::new(poll_sender, processing_done_receiver, drop_sender);
scope.spawn(task);
poll_receiver.await.unwrap();
processing_done_sender.send(()).unwrap();
scope.shutdown();
drop_receiver.await.unwrap();
// poll might be called one or two times depending on the order in which the
// executor decides to poll the two tasks (this one and the one we spawned).
let poll_count = counters.poll_call();
assert!(poll_count >= 1, "poll was not called");
assert_eq!(counters.drop_call(), 1);
}
});
}
#[test]
fn test_wait_waits_for_tasks_to_finish() {
let mut executor = TestExecutor::new();
let scope = ExecutionScope::new();
executor.run_singlethreaded(async {
let (poll_sender, poll_receiver) = oneshot::channel();
let (processing_done_sender, processing_done_receiver) = oneshot::channel();
let (drop_sender, _drop_receiver) = oneshot::channel();
let (_, task) =
mocks::ControlledTask::new(poll_sender, processing_done_receiver, drop_sender);
scope.spawn(task);
poll_receiver.await.unwrap();
// We test that wait is working correctly by concurrently waiting and telling the
// task to complete, and making sure that the order is correct.
let done = std::sync::Mutex::new(false);
futures::join!(
async {
scope.wait().await;
assert_eq!(*done.lock().unwrap(), true);
},
async {
// This is a Turing halting problem so the sleep is justified.
Timer::new(Duration::from_millis(100)).await;
*done.lock().unwrap() = true;
processing_done_sender.send(()).unwrap();
}
);
});
}
#[fuchsia::test]
async fn test_active_guard() {
let scope = ExecutionScope::new();
let (guard_taken_tx, guard_taken_rx) = oneshot::channel();
let (shutdown_triggered_tx, shutdown_triggered_rx) = oneshot::channel();
let (drop_task_tx, drop_task_rx) = oneshot::channel();
let scope_clone = scope.clone();
let done = Arc::new(AtomicBool::new(false));
let done_clone = done.clone();
scope.spawn(async move {
{
struct OnDrop((ExecutionScope, Option<oneshot::Receiver<()>>));
impl Drop for OnDrop {
fn drop(&mut self) {
let guard = self.0 .0.active_guard();
let rx = self.0 .1.take().unwrap();
Task::spawn(async move {
rx.await.unwrap();
std::mem::drop(guard);
})
.detach();
}
}
let _guard = scope_clone.try_active_guard().unwrap();
let _on_drop = OnDrop((scope_clone, Some(drop_task_rx)));
guard_taken_tx.send(()).unwrap();
shutdown_triggered_rx.await.unwrap();
// Stick a timer here and record whether we're done to make sure we get to run to
// completion.
Timer::new(std::time::Duration::from_millis(100)).await;
done_clone.store(true, Ordering::SeqCst);
}
});
guard_taken_rx.await.unwrap();
scope.shutdown();
// The task should keep running whilst it has an active guard. Introduce a timer here to
// make failing more likely if it's broken.
Timer::new(std::time::Duration::from_millis(100)).await;
let mut shutdown_wait = std::pin::pin!(scope.wait());
assert_eq!(futures::poll!(shutdown_wait.as_mut()), Poll::Pending);
shutdown_triggered_tx.send(()).unwrap();
// The drop task should now start running and the executor still shouldn't have finished.
Timer::new(std::time::Duration::from_millis(100)).await;
assert_eq!(futures::poll!(shutdown_wait.as_mut()), Poll::Pending);
drop_task_tx.send(()).unwrap();
shutdown_wait.await;
assert!(done.load(Ordering::SeqCst));
}
#[cfg(target_os = "fuchsia")]
#[fuchsia::test]
async fn test_shutdown_waits_for_channels() {
use fuchsia_async as fasync;
let scope = ExecutionScope::new();
let (rx, tx) = zx::Channel::create();
let received_msg = Arc::new(AtomicBool::new(false));
let (sender, receiver) = futures::channel::oneshot::channel();
{
let received_msg = received_msg.clone();
scope.spawn(async move {
let mut msg_buf = zx::MessageBuf::new();
msg_buf.ensure_capacity_bytes(64);
let _ = sender.send(());
let _ = fasync::Channel::from_channel(rx).recv_msg(&mut msg_buf).await;
received_msg.store(true, Ordering::Relaxed);
});
}
// Wait until the spawned future has been polled once.
let _ = receiver.await;
tx.write(b"hello", &mut []).expect("write failed");
scope.shutdown();
scope.wait().await;
assert!(received_msg.load(Ordering::Relaxed));
}
#[fuchsia::test]
async fn test_force_shutdown() {
let scope = ExecutionScope::new();
let scope_clone = scope.clone();
let ref_count = Arc::new(());
let ref_count_clone = ref_count.clone();
// Spawn a task that holds a reference. When the task is dropped the reference will get
// dropped with it.
scope.spawn(async move {
let _ref_count_clone = ref_count_clone;
// Hold an active guard so that only a forced shutdown will work.
let _guard = scope_clone.active_guard();
let _: () = std::future::pending().await;
});
scope.force_shutdown();
scope.wait().await;
// The task should have been dropped leaving us with the only reference.
assert_eq!(Arc::strong_count(&ref_count), 1);
// Test resurrection...
scope.resurrect();
let ref_count_clone = ref_count.clone();
scope.spawn(async move {
// Yield so that if the executor is in the shutdown state, it will kill this task.
yield_to_executor().await;
// Take another reference count so that we can check we got here below.
let _ref_count = ref_count_clone.clone();
let _: () = std::future::pending().await;
});
while Arc::strong_count(&ref_count) != 3 {
yield_to_executor().await;
}
// Yield some more just to be sure the task isn't killed.
for _ in 0..5 {
yield_to_executor().await;
assert_eq!(Arc::strong_count(&ref_count), 3);
}
}
#[fuchsia::test]
async fn test_task_runs_once() {
let scope = ExecutionScope::new();
// Spawn a task.
scope.spawn(async {});
scope.shutdown();
let polled = Arc::new(AtomicBool::new(false));
let polled_clone = polled.clone();
let scope_clone = scope.clone();
// Use FuturesUnordered so that it uses its own waker.
let mut futures = FuturesUnordered::new();
futures.push(async move { scope_clone.wait().await });
// Poll it now to set up a waker.
assert_eq!(futures::poll!(futures.next()), Poll::Pending);
// Spawn another task. When this task runs, wait still shouldn't be resolved because at
// this point the first task hasn't finished.
scope.spawn(async move {
assert_eq!(futures::poll!(futures.next()), Poll::Pending);
polled_clone.store(true, Ordering::Relaxed);
});
scope.wait().await;
// Make sure the second spawned task actually ran.
assert!(polled.load(Ordering::Relaxed));
}
mod mocks {
use futures::channel::oneshot;
use futures::task::{Context, Poll};
use futures::Future;
use std::pin::Pin;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
pub(super) struct TaskCounters {
poll_call_count: Arc<AtomicUsize>,
drop_call_count: Arc<AtomicUsize>,
}
impl TaskCounters {
fn new() -> (Arc<AtomicUsize>, Arc<AtomicUsize>, Self) {
let poll_call_count = Arc::new(AtomicUsize::new(0));
let drop_call_count = Arc::new(AtomicUsize::new(0));
(
poll_call_count.clone(),
drop_call_count.clone(),
Self { poll_call_count, drop_call_count },
)
}
pub(super) fn poll_call(&self) -> usize {
self.poll_call_count.load(Ordering::Relaxed)
}
pub(super) fn drop_call(&self) -> usize {
self.drop_call_count.load(Ordering::Relaxed)
}
}
pub(super) struct ImmediateTask {
poll_call_count: Arc<AtomicUsize>,
drop_call_count: Arc<AtomicUsize>,
done_sender: Option<oneshot::Sender<()>>,
}
impl ImmediateTask {
pub(super) fn new(done_sender: oneshot::Sender<()>) -> (TaskCounters, Self) {
let (poll_call_count, drop_call_count, counters) = TaskCounters::new();
(
counters,
Self { poll_call_count, drop_call_count, done_sender: Some(done_sender) },
)
}
}
impl Future for ImmediateTask {
type Output = ();
fn poll(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
self.poll_call_count.fetch_add(1, Ordering::Relaxed);
if let Some(sender) = self.done_sender.take() {
sender.send(()).unwrap();
}
Poll::Ready(())
}
}
impl Drop for ImmediateTask {
fn drop(&mut self) {
self.drop_call_count.fetch_add(1, Ordering::Relaxed);
}
}
impl Unpin for ImmediateTask {}
pub(super) struct ControlledTask {
poll_call_count: Arc<AtomicUsize>,
drop_call_count: Arc<AtomicUsize>,
drop_sender: Option<oneshot::Sender<()>>,
future: Pin<Box<dyn Future<Output = ()> + Send>>,
}
impl ControlledTask {
pub(super) fn new(
poll_sender: oneshot::Sender<()>,
processing_complete: oneshot::Receiver<()>,
drop_sender: oneshot::Sender<()>,
) -> (TaskCounters, Self) {
let (poll_call_count, drop_call_count, counters) = TaskCounters::new();
(
counters,
Self {
poll_call_count,
drop_call_count,
drop_sender: Some(drop_sender),
future: Box::pin(async move {
poll_sender.send(()).unwrap();
processing_complete.await.unwrap();
}),
},
)
}
}
impl Future for ControlledTask {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.poll_call_count.fetch_add(1, Ordering::Relaxed);
self.future.as_mut().poll(cx)
}
}
impl Drop for ControlledTask {
fn drop(&mut self) {
self.drop_call_count.fetch_add(1, Ordering::Relaxed);
self.drop_sender.take().unwrap().send(()).unwrap();
}
}
}
}