crc32fast/specialized/
pclmulqdq.rs

1#[cfg(target_arch = "x86")]
2use core::arch::x86 as arch;
3#[cfg(target_arch = "x86_64")]
4use core::arch::x86_64 as arch;
5
6#[derive(Clone)]
7pub struct State {
8    state: u32,
9}
10
11impl State {
12    #[cfg(not(feature = "std"))]
13    pub fn new(state: u32) -> Option<Self> {
14        if cfg!(target_feature = "pclmulqdq")
15            && cfg!(target_feature = "sse2")
16            && cfg!(target_feature = "sse4.1")
17        {
18            // SAFETY: The conditions above ensure that all
19            //         required instructions are supported by the CPU.
20            Some(Self { state })
21        } else {
22            None
23        }
24    }
25
26    #[cfg(feature = "std")]
27    pub fn new(state: u32) -> Option<Self> {
28        if is_x86_feature_detected!("pclmulqdq")
29            && is_x86_feature_detected!("sse2")
30            && is_x86_feature_detected!("sse4.1")
31        {
32            // SAFETY: The conditions above ensure that all
33            //         required instructions are supported by the CPU.
34            Some(Self { state })
35        } else {
36            None
37        }
38    }
39
40    pub fn update(&mut self, buf: &[u8]) {
41        // SAFETY: The `State::new` constructor ensures that all
42        //         required instructions are supported by the CPU.
43        self.state = unsafe { calculate(self.state, buf) }
44    }
45
46    pub fn finalize(self) -> u32 {
47        self.state
48    }
49
50    pub fn reset(&mut self) {
51        self.state = 0;
52    }
53
54    pub fn combine(&mut self, other: u32, amount: u64) {
55        self.state = ::combine::combine(self.state, other, amount);
56    }
57}
58
59const K1: i64 = 0x154442bd4;
60const K2: i64 = 0x1c6e41596;
61const K3: i64 = 0x1751997d0;
62const K4: i64 = 0x0ccaa009e;
63const K5: i64 = 0x163cd6124;
64const K6: i64 = 0x1db710640;
65
66const P_X: i64 = 0x1DB710641;
67const U_PRIME: i64 = 0x1F7011641;
68
69#[cfg(feature = "std")]
70unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i {
71    if false {
72        union A {
73            a: arch::__m128i,
74            b: [u8; 16],
75        }
76        let x = A { a }.b;
77        print!(" {:20} | ", s);
78        for x in x.iter() {
79            print!("{:02x} ", x);
80        }
81        println!();
82    }
83    return a;
84}
85
86#[cfg(not(feature = "std"))]
87unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i {
88    a
89}
90
91#[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")]
92pub unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 {
93    // In theory we can accelerate smaller chunks too, but for now just rely on
94    // the fallback implementation as it's too much hassle and doesn't seem too
95    // beneficial.
96    if data.len() < 128 {
97        return ::baseline::update_fast_16(crc, data);
98    }
99
100    // Step 1: fold by 4 loop
101    let mut x3 = get(&mut data);
102    let mut x2 = get(&mut data);
103    let mut x1 = get(&mut data);
104    let mut x0 = get(&mut data);
105
106    // fold in our initial value, part of the incremental crc checksum
107    x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32));
108
109    let k1k2 = arch::_mm_set_epi64x(K2, K1);
110    while data.len() >= 64 {
111        x3 = reduce128(x3, get(&mut data), k1k2);
112        x2 = reduce128(x2, get(&mut data), k1k2);
113        x1 = reduce128(x1, get(&mut data), k1k2);
114        x0 = reduce128(x0, get(&mut data), k1k2);
115    }
116
117    let k3k4 = arch::_mm_set_epi64x(K4, K3);
118    let mut x = reduce128(x3, x2, k3k4);
119    x = reduce128(x, x1, k3k4);
120    x = reduce128(x, x0, k3k4);
121
122    // Step 2: fold by 1 loop
123    while data.len() >= 16 {
124        x = reduce128(x, get(&mut data), k3k4);
125    }
126
127    debug("128 > 64 init", x);
128
129    // Perform step 3, reduction from 128 bits to 64 bits. This is
130    // significantly different from the paper and basically doesn't follow it
131    // at all. It's not really clear why, but implementations of this algorithm
132    // in Chrome/Linux diverge in the same way. It is beyond me why this is
133    // different than the paper, maybe the paper has like errata or something?
134    // Unclear.
135    //
136    // It's also not clear to me what's actually happening here and/or why, but
137    // algebraically what's happening is:
138    //
139    // x = (x[0:63] • K4) ^ x[64:127]           // 96 bit result
140    // x = ((x[0:31] as u64) • K5) ^ x[32:95]   // 64 bit result
141    //
142    // It's... not clear to me what's going on here. The paper itself is pretty
143    // vague on this part but definitely uses different constants at least.
144    // It's not clear to me, reading the paper, where the xor operations are
145    // happening or why things are shifting around. This implementation...
146    // appears to work though!
147    drop(K6);
148    let x = arch::_mm_xor_si128(
149        arch::_mm_clmulepi64_si128(x, k3k4, 0x10),
150        arch::_mm_srli_si128(x, 8),
151    );
152    let x = arch::_mm_xor_si128(
153        arch::_mm_clmulepi64_si128(
154            arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
155            arch::_mm_set_epi64x(0, K5),
156            0x00,
157        ),
158        arch::_mm_srli_si128(x, 4),
159    );
160    debug("128 > 64 xx", x);
161
162    // Perform a Barrett reduction from our now 64 bits to 32 bits. The
163    // algorithm for this is described at the end of the paper, and note that
164    // this also implements the "bit reflected input" variant.
165    let pu = arch::_mm_set_epi64x(U_PRIME, P_X);
166
167    // T1(x) = ⌊(R(x) % x^32)⌋ • μ
168    let t1 = arch::_mm_clmulepi64_si128(
169        arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
170        pu,
171        0x10,
172    );
173    // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x)
174    let t2 = arch::_mm_clmulepi64_si128(
175        arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)),
176        pu,
177        0x00,
178    );
179    // We're doing the bit-reflected variant, so get the upper 32-bits of the
180    // 64-bit result instead of the lower 32-bits.
181    //
182    // C(x) = R(x) ^ T2(x) / x^32
183    let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32;
184
185    if !data.is_empty() {
186        ::baseline::update_fast_16(!c, data)
187    } else {
188        !c
189    }
190}
191
192unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i {
193    let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00);
194    let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11);
195    arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2)
196}
197
198unsafe fn get(a: &mut &[u8]) -> arch::__m128i {
199    debug_assert!(a.len() >= 16);
200    let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i);
201    *a = &a[16..];
202    return r;
203}
204
205#[cfg(test)]
206mod test {
207    quickcheck! {
208        fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool {
209            let mut baseline = super::super::super::baseline::State::new(init);
210            let mut pclmulqdq = super::State::new(init).expect("not supported");
211            for (chunk, mut offset) in chunks {
212                // simulate random alignments by offsetting the slice by up to 15 bytes
213                offset &= 0xF;
214                if chunk.len() <= offset {
215                    baseline.update(&chunk);
216                    pclmulqdq.update(&chunk);
217                } else {
218                    baseline.update(&chunk[offset..]);
219                    pclmulqdq.update(&chunk[offset..]);
220                }
221            }
222            pclmulqdq.finalize() == baseline.finalize()
223        }
224    }
225}