tokio/sync/mpsc/bounded.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
use crate::loom::sync::Arc;
use crate::sync::batch_semaphore::{self as semaphore, TryAcquireError};
use crate::sync::mpsc::chan;
use crate::sync::mpsc::error::{SendError, TryRecvError, TrySendError};
cfg_time! {
use crate::sync::mpsc::error::SendTimeoutError;
use crate::time::Duration;
}
use std::fmt;
use std::task::{Context, Poll};
/// Sends values to the associated `Receiver`.
///
/// Instances are created by the [`channel`] function.
///
/// To convert the `Sender` into a `Sink` or use it in a poll function, you can
/// use the [`PollSender`] utility.
///
/// [`PollSender`]: https://docs.rs/tokio-util/latest/tokio_util/sync/struct.PollSender.html
pub struct Sender<T> {
chan: chan::Tx<T, Semaphore>,
}
/// A sender that does not prevent the channel from being closed.
///
/// If all [`Sender`] instances of a channel were dropped and only `WeakSender`
/// instances remain, the channel is closed.
///
/// In order to send messages, the `WeakSender` needs to be upgraded using
/// [`WeakSender::upgrade`], which returns `Option<Sender>`. It returns `None`
/// if all `Sender`s have been dropped, and otherwise it returns a `Sender`.
///
/// [`Sender`]: Sender
/// [`WeakSender::upgrade`]: WeakSender::upgrade
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc::channel;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, _rx) = channel::<i32>(15);
/// let tx_weak = tx.downgrade();
///
/// // Upgrading will succeed because `tx` still exists.
/// assert!(tx_weak.upgrade().is_some());
///
/// // If we drop `tx`, then it will fail.
/// drop(tx);
/// assert!(tx_weak.clone().upgrade().is_none());
/// }
/// ```
pub struct WeakSender<T> {
chan: Arc<chan::Chan<T, Semaphore>>,
}
/// Permits to send one value into the channel.
///
/// `Permit` values are returned by [`Sender::reserve()`] and [`Sender::try_reserve()`]
/// and are used to guarantee channel capacity before generating a message to send.
///
/// [`Sender::reserve()`]: Sender::reserve
/// [`Sender::try_reserve()`]: Sender::try_reserve
pub struct Permit<'a, T> {
chan: &'a chan::Tx<T, Semaphore>,
}
/// An [`Iterator`] of [`Permit`] that can be used to hold `n` slots in the channel.
///
/// `PermitIterator` values are returned by [`Sender::reserve_many()`] and [`Sender::try_reserve_many()`]
/// and are used to guarantee channel capacity before generating `n` messages to send.
///
/// [`Sender::reserve_many()`]: Sender::reserve_many
/// [`Sender::try_reserve_many()`]: Sender::try_reserve_many
pub struct PermitIterator<'a, T> {
chan: &'a chan::Tx<T, Semaphore>,
n: usize,
}
/// Owned permit to send one value into the channel.
///
/// This is identical to the [`Permit`] type, except that it moves the sender
/// rather than borrowing it.
///
/// `OwnedPermit` values are returned by [`Sender::reserve_owned()`] and
/// [`Sender::try_reserve_owned()`] and are used to guarantee channel capacity
/// before generating a message to send.
///
/// [`Permit`]: Permit
/// [`Sender::reserve_owned()`]: Sender::reserve_owned
/// [`Sender::try_reserve_owned()`]: Sender::try_reserve_owned
pub struct OwnedPermit<T> {
chan: Option<chan::Tx<T, Semaphore>>,
}
/// Receives values from the associated `Sender`.
///
/// Instances are created by the [`channel`] function.
///
/// This receiver can be turned into a `Stream` using [`ReceiverStream`].
///
/// [`ReceiverStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.ReceiverStream.html
pub struct Receiver<T> {
/// The channel receiver.
chan: chan::Rx<T, Semaphore>,
}
/// Creates a bounded mpsc channel for communicating between asynchronous tasks
/// with backpressure.
///
/// The channel will buffer up to the provided number of messages. Once the
/// buffer is full, attempts to send new messages will wait until a message is
/// received from the channel. The provided buffer capacity must be at least 1.
///
/// All data sent on `Sender` will become available on `Receiver` in the same
/// order as it was sent.
///
/// The `Sender` can be cloned to `send` to the same channel from multiple code
/// locations. Only one `Receiver` is supported.
///
/// If the `Receiver` is disconnected while trying to `send`, the `send` method
/// will return a `SendError`. Similarly, if `Sender` is disconnected while
/// trying to `recv`, the `recv` method will return `None`.
///
/// # Panics
///
/// Panics if the buffer capacity is 0.
///
/// # Examples
///
/// ```rust
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(100);
///
/// tokio::spawn(async move {
/// for i in 0..10 {
/// if let Err(_) = tx.send(i).await {
/// println!("receiver dropped");
/// return;
/// }
/// }
/// });
///
/// while let Some(i) = rx.recv().await {
/// println!("got = {}", i);
/// }
/// }
/// ```
#[track_caller]
pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) {
assert!(buffer > 0, "mpsc bounded channel requires buffer > 0");
let semaphore = Semaphore {
semaphore: semaphore::Semaphore::new(buffer),
bound: buffer,
};
let (tx, rx) = chan::channel(semaphore);
let tx = Sender::new(tx);
let rx = Receiver::new(rx);
(tx, rx)
}
/// Channel semaphore is a tuple of the semaphore implementation and a `usize`
/// representing the channel bound.
#[derive(Debug)]
pub(crate) struct Semaphore {
pub(crate) semaphore: semaphore::Semaphore,
pub(crate) bound: usize,
}
impl<T> Receiver<T> {
pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> Receiver<T> {
Receiver { chan }
}
/// Receives the next value for this receiver.
///
/// This method returns `None` if the channel has been closed and there are
/// no remaining messages in the channel's buffer. This indicates that no
/// further values can ever be received from this `Receiver`. The channel is
/// closed when all senders have been dropped, or when [`close`] is called.
///
/// If there are no messages in the channel's buffer, but the channel has
/// not yet been closed, this method will sleep until a message is sent or
/// the channel is closed. Note that if [`close`] is called, but there are
/// still outstanding [`Permits`] from before it was closed, the channel is
/// not considered closed by `recv` until the permits are released.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// channel.
///
/// [`close`]: Self::close
/// [`Permits`]: struct@crate::sync::mpsc::Permit
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(100);
///
/// tokio::spawn(async move {
/// tx.send("hello").await.unwrap();
/// });
///
/// assert_eq!(Some("hello"), rx.recv().await);
/// assert_eq!(None, rx.recv().await);
/// }
/// ```
///
/// Values are buffered:
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(100);
///
/// tx.send("hello").await.unwrap();
/// tx.send("world").await.unwrap();
///
/// assert_eq!(Some("hello"), rx.recv().await);
/// assert_eq!(Some("world"), rx.recv().await);
/// }
/// ```
pub async fn recv(&mut self) -> Option<T> {
use crate::future::poll_fn;
poll_fn(|cx| self.chan.recv(cx)).await
}
/// Receives the next values for this receiver and extends `buffer`.
///
/// This method extends `buffer` by no more than a fixed number of values
/// as specified by `limit`. If `limit` is zero, the function immediately
/// returns `0`. The return value is the number of values added to `buffer`.
///
/// For `limit > 0`, if there are no messages in the channel's queue, but
/// the channel has not yet been closed, this method will sleep until a
/// message is sent or the channel is closed. Note that if [`close`] is
/// called, but there are still outstanding [`Permits`] from before it was
/// closed, the channel is not considered closed by `recv_many` until the
/// permits are released.
///
/// For non-zero values of `limit`, this method will never return `0` unless
/// the channel has been closed and there are no remaining messages in the
/// channel's queue. This indicates that no further values can ever be
/// received from this `Receiver`. The channel is closed when all senders
/// have been dropped, or when [`close`] is called.
///
/// The capacity of `buffer` is increased as needed.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv_many` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// channel.
///
/// [`close`]: Self::close
/// [`Permits`]: struct@crate::sync::mpsc::Permit
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let mut buffer: Vec<&str> = Vec::with_capacity(2);
/// let limit = 2;
/// let (tx, mut rx) = mpsc::channel(100);
/// let tx2 = tx.clone();
/// tx2.send("first").await.unwrap();
/// tx2.send("second").await.unwrap();
/// tx2.send("third").await.unwrap();
///
/// // Call `recv_many` to receive up to `limit` (2) values.
/// assert_eq!(2, rx.recv_many(&mut buffer, limit).await);
/// assert_eq!(vec!["first", "second"], buffer);
///
/// // If the buffer is full, the next call to `recv_many`
/// // reserves additional capacity.
/// assert_eq!(1, rx.recv_many(&mut buffer, 1).await);
///
/// tokio::spawn(async move {
/// tx.send("fourth").await.unwrap();
/// });
///
/// // 'tx' is dropped, but `recv_many`
/// // is guaranteed not to return 0 as the channel
/// // is not yet closed.
/// assert_eq!(1, rx.recv_many(&mut buffer, 1).await);
/// assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
///
/// // Once the last sender is dropped, the channel is
/// // closed and `recv_many` returns 0, capacity unchanged.
/// drop(tx2);
/// assert_eq!(0, rx.recv_many(&mut buffer, limit).await);
/// assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
/// }
/// ```
pub async fn recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
use crate::future::poll_fn;
poll_fn(|cx| self.chan.recv_many(cx, buffer, limit)).await
}
/// Tries to receive the next value for this receiver.
///
/// This method returns the [`Empty`] error if the channel is currently
/// empty, but there are still outstanding [senders] or [permits].
///
/// This method returns the [`Disconnected`] error if the channel is
/// currently empty, and there are no outstanding [senders] or [permits].
///
/// Unlike the [`poll_recv`] method, this method will never return an
/// [`Empty`] error spuriously.
///
/// [`Empty`]: crate::sync::mpsc::error::TryRecvError::Empty
/// [`Disconnected`]: crate::sync::mpsc::error::TryRecvError::Disconnected
/// [`poll_recv`]: Self::poll_recv
/// [senders]: crate::sync::mpsc::Sender
/// [permits]: crate::sync::mpsc::Permit
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
/// use tokio::sync::mpsc::error::TryRecvError;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(100);
///
/// tx.send("hello").await.unwrap();
///
/// assert_eq!(Ok("hello"), rx.try_recv());
/// assert_eq!(Err(TryRecvError::Empty), rx.try_recv());
///
/// tx.send("hello").await.unwrap();
/// // Drop the last sender, closing the channel.
/// drop(tx);
///
/// assert_eq!(Ok("hello"), rx.try_recv());
/// assert_eq!(Err(TryRecvError::Disconnected), rx.try_recv());
/// }
/// ```
pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
self.chan.try_recv()
}
/// Blocking receive to call outside of asynchronous contexts.
///
/// This method returns `None` if the channel has been closed and there are
/// no remaining messages in the channel's buffer. This indicates that no
/// further values can ever be received from this `Receiver`. The channel is
/// closed when all senders have been dropped, or when [`close`] is called.
///
/// If there are no messages in the channel's buffer, but the channel has
/// not yet been closed, this method will block until a message is sent or
/// the channel is closed.
///
/// This method is intended for use cases where you are sending from
/// asynchronous code to synchronous code, and will work even if the sender
/// is not using [`blocking_send`] to send the message.
///
/// Note that if [`close`] is called, but there are still outstanding
/// [`Permits`] from before it was closed, the channel is not considered
/// closed by `blocking_recv` until the permits are released.
///
/// [`close`]: Self::close
/// [`Permits`]: struct@crate::sync::mpsc::Permit
/// [`blocking_send`]: fn@crate::sync::mpsc::Sender::blocking_send
///
/// # Panics
///
/// This function panics if called within an asynchronous execution
/// context.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use tokio::runtime::Runtime;
/// use tokio::sync::mpsc;
///
/// fn main() {
/// let (tx, mut rx) = mpsc::channel::<u8>(10);
///
/// let sync_code = thread::spawn(move || {
/// assert_eq!(Some(10), rx.blocking_recv());
/// });
///
/// Runtime::new()
/// .unwrap()
/// .block_on(async move {
/// let _ = tx.send(10).await;
/// });
/// sync_code.join().unwrap()
/// }
/// ```
#[track_caller]
#[cfg(feature = "sync")]
#[cfg_attr(docsrs, doc(alias = "recv_blocking"))]
pub fn blocking_recv(&mut self) -> Option<T> {
crate::future::block_on(self.recv())
}
/// Closes the receiving half of a channel without dropping it.
///
/// This prevents any further messages from being sent on the channel while
/// still enabling the receiver to drain messages that are buffered. Any
/// outstanding [`Permit`] values will still be able to send messages.
///
/// To guarantee that no messages are dropped, after calling `close()`,
/// `recv()` must be called until `None` is returned. If there are
/// outstanding [`Permit`] or [`OwnedPermit`] values, the `recv` method will
/// not return `None` until those are released.
///
/// [`Permit`]: Permit
/// [`OwnedPermit`]: OwnedPermit
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(20);
///
/// tokio::spawn(async move {
/// let mut i = 0;
/// while let Ok(permit) = tx.reserve().await {
/// permit.send(i);
/// i += 1;
/// }
/// });
///
/// rx.close();
///
/// while let Some(msg) = rx.recv().await {
/// println!("got {}", msg);
/// }
///
/// // Channel closed and no messages are lost.
/// }
/// ```
pub fn close(&mut self) {
self.chan.close();
}
/// Checks if a channel is closed.
///
/// This method returns `true` if the channel has been closed. The channel is closed
/// when all [`Sender`] have been dropped, or when [`Receiver::close`] is called.
///
/// [`Sender`]: crate::sync::mpsc::Sender
/// [`Receiver::close`]: crate::sync::mpsc::Receiver::close
///
/// # Examples
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (_tx, mut rx) = mpsc::channel::<()>(10);
/// assert!(!rx.is_closed());
///
/// rx.close();
///
/// assert!(rx.is_closed());
/// }
/// ```
pub fn is_closed(&self) -> bool {
self.chan.is_closed()
}
/// Checks if a channel is empty.
///
/// This method returns `true` if the channel has no messages.
///
/// # Examples
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::channel(10);
/// assert!(rx.is_empty());
///
/// tx.send(0).await.unwrap();
/// assert!(!rx.is_empty());
/// }
///
/// ```
pub fn is_empty(&self) -> bool {
self.chan.is_empty()
}
/// Returns the number of messages in the channel.
///
/// # Examples
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::channel(10);
/// assert_eq!(0, rx.len());
///
/// tx.send(0).await.unwrap();
/// assert_eq!(1, rx.len());
/// }
/// ```
pub fn len(&self) -> usize {
self.chan.len()
}
/// Returns the current capacity of the channel.
///
/// The capacity goes down when the sender sends a value by calling [`Sender::send`] or by reserving
/// capacity with [`Sender::reserve`]. The capacity goes up when values are received.
/// This is distinct from [`max_capacity`], which always returns buffer capacity initially
/// specified when calling [`channel`].
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel::<()>(5);
///
/// assert_eq!(rx.capacity(), 5);
///
/// // Making a reservation drops the capacity by one.
/// let permit = tx.reserve().await.unwrap();
/// assert_eq!(rx.capacity(), 4);
/// assert_eq!(rx.len(), 0);
///
/// // Sending and receiving a value increases the capacity by one.
/// permit.send(());
/// assert_eq!(rx.len(), 1);
/// rx.recv().await.unwrap();
/// assert_eq!(rx.capacity(), 5);
///
/// // Directly sending a message drops the capacity by one.
/// tx.send(()).await.unwrap();
/// assert_eq!(rx.capacity(), 4);
/// assert_eq!(rx.len(), 1);
///
/// // Receiving the message increases the capacity by one.
/// rx.recv().await.unwrap();
/// assert_eq!(rx.capacity(), 5);
/// assert_eq!(rx.len(), 0);
/// }
/// ```
/// [`capacity`]: Receiver::capacity
/// [`max_capacity`]: Receiver::max_capacity
pub fn capacity(&self) -> usize {
self.chan.semaphore().semaphore.available_permits()
}
/// Returns the maximum buffer capacity of the channel.
///
/// The maximum capacity is the buffer capacity initially specified when calling
/// [`channel`]. This is distinct from [`capacity`], which returns the *current*
/// available buffer capacity: as messages are sent and received, the value
/// returned by [`capacity`] will go up or down, whereas the value
/// returned by [`max_capacity`] will remain constant.
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::channel::<()>(5);
///
/// // both max capacity and capacity are the same at first
/// assert_eq!(rx.max_capacity(), 5);
/// assert_eq!(rx.capacity(), 5);
///
/// // Making a reservation doesn't change the max capacity.
/// let permit = tx.reserve().await.unwrap();
/// assert_eq!(rx.max_capacity(), 5);
/// // but drops the capacity by one
/// assert_eq!(rx.capacity(), 4);
/// }
/// ```
/// [`capacity`]: Receiver::capacity
/// [`max_capacity`]: Receiver::max_capacity
pub fn max_capacity(&self) -> usize {
self.chan.semaphore().bound
}
/// Polls to receive the next message on this channel.
///
/// This method returns:
///
/// * `Poll::Pending` if no messages are available but the channel is not
/// closed, or if a spurious failure happens.
/// * `Poll::Ready(Some(message))` if a message is available.
/// * `Poll::Ready(None)` if the channel has been closed and all messages
/// sent before it was closed have been received.
///
/// When the method returns `Poll::Pending`, the `Waker` in the provided
/// `Context` is scheduled to receive a wakeup when a message is sent on any
/// receiver, or when the channel is closed. Note that on multiple calls to
/// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
/// passed to the most recent call is scheduled to receive a wakeup.
///
/// If this method returns `Poll::Pending` due to a spurious failure, then
/// the `Waker` will be notified when the situation causing the spurious
/// failure has been resolved. Note that receiving such a wakeup does not
/// guarantee that the next call will succeed — it could fail with another
/// spurious failure.
pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
self.chan.recv(cx)
}
/// Polls to receive multiple messages on this channel, extending the provided buffer.
///
/// This method returns:
/// * `Poll::Pending` if no messages are available but the channel is not closed, or if a
/// spurious failure happens.
/// * `Poll::Ready(count)` where `count` is the number of messages successfully received and
/// stored in `buffer`. This can be less than, or equal to, `limit`.
/// * `Poll::Ready(0)` if `limit` is set to zero or when the channel is closed.
///
/// When the method returns `Poll::Pending`, the `Waker` in the provided
/// `Context` is scheduled to receive a wakeup when a message is sent on any
/// receiver, or when the channel is closed. Note that on multiple calls to
/// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
/// passed to the most recent call is scheduled to receive a wakeup.
///
/// Note that this method does not guarantee that exactly `limit` messages
/// are received. Rather, if at least one message is available, it returns
/// as many messages as it can up to the given limit. This method returns
/// zero only if the channel is closed (or if `limit` is zero).
///
/// # Examples
///
/// ```
/// use std::task::{Context, Poll};
/// use std::pin::Pin;
/// use tokio::sync::mpsc;
/// use futures::Future;
///
/// struct MyReceiverFuture<'a> {
/// receiver: mpsc::Receiver<i32>,
/// buffer: &'a mut Vec<i32>,
/// limit: usize,
/// }
///
/// impl<'a> Future for MyReceiverFuture<'a> {
/// type Output = usize; // Number of messages received
///
/// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
/// let MyReceiverFuture { receiver, buffer, limit } = &mut *self;
///
/// // Now `receiver` and `buffer` are mutable references, and `limit` is copied
/// match receiver.poll_recv_many(cx, *buffer, *limit) {
/// Poll::Pending => Poll::Pending,
/// Poll::Ready(count) => Poll::Ready(count),
/// }
/// }
/// }
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::channel(32);
/// let mut buffer = Vec::new();
///
/// let my_receiver_future = MyReceiverFuture {
/// receiver: rx,
/// buffer: &mut buffer,
/// limit: 3,
/// };
///
/// for i in 0..10 {
/// tx.send(i).await.unwrap();
/// }
///
/// let count = my_receiver_future.await;
/// assert_eq!(count, 3);
/// assert_eq!(buffer, vec![0,1,2])
/// }
/// ```
pub fn poll_recv_many(
&mut self,
cx: &mut Context<'_>,
buffer: &mut Vec<T>,
limit: usize,
) -> Poll<usize> {
self.chan.recv_many(cx, buffer, limit)
}
}
impl<T> fmt::Debug for Receiver<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Receiver")
.field("chan", &self.chan)
.finish()
}
}
impl<T> Unpin for Receiver<T> {}
impl<T> Sender<T> {
pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> Sender<T> {
Sender { chan }
}
/// Sends a value, waiting until there is capacity.
///
/// A successful send occurs when it is determined that the other end of the
/// channel has not hung up already. An unsuccessful send would be one where
/// the corresponding receiver has already been closed. Note that a return
/// value of `Err` means that the data will never be received, but a return
/// value of `Ok` does not mean that the data will be received. It is
/// possible for the corresponding receiver to hang up immediately after
/// this function returns `Ok`.
///
/// # Errors
///
/// If the receive half of the channel is closed, either due to [`close`]
/// being called or the [`Receiver`] handle dropping, the function returns
/// an error. The error includes the value passed to `send`.
///
/// [`close`]: Receiver::close
/// [`Receiver`]: Receiver
///
/// # Cancel safety
///
/// If `send` is used as the event in a [`tokio::select!`](crate::select)
/// statement and some other branch completes first, then it is guaranteed
/// that the message was not sent. **However, in that case, the message
/// is dropped and will be lost.**
///
/// To avoid losing messages, use [`reserve`](Self::reserve) to reserve
/// capacity, then use the returned [`Permit`] to send the message.
///
/// This channel uses a queue to ensure that calls to `send` and `reserve`
/// complete in the order they were requested. Cancelling a call to
/// `send` makes you lose your place in the queue.
///
/// # Examples
///
/// In the following example, each call to `send` will block until the
/// previously sent value was received.
///
/// ```rust
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// tokio::spawn(async move {
/// for i in 0..10 {
/// if let Err(_) = tx.send(i).await {
/// println!("receiver dropped");
/// return;
/// }
/// }
/// });
///
/// while let Some(i) = rx.recv().await {
/// println!("got = {}", i);
/// }
/// }
/// ```
pub async fn send(&self, value: T) -> Result<(), SendError<T>> {
match self.reserve().await {
Ok(permit) => {
permit.send(value);
Ok(())
}
Err(_) => Err(SendError(value)),
}
}
/// Completes when the receiver has dropped.
///
/// This allows the producers to get notified when interest in the produced
/// values is canceled and immediately stop doing work.
///
/// # Cancel safety
///
/// This method is cancel safe. Once the channel is closed, it stays closed
/// forever and all future calls to `closed` will return immediately.
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx1, rx) = mpsc::channel::<()>(1);
/// let tx2 = tx1.clone();
/// let tx3 = tx1.clone();
/// let tx4 = tx1.clone();
/// let tx5 = tx1.clone();
/// tokio::spawn(async move {
/// drop(rx);
/// });
///
/// futures::join!(
/// tx1.closed(),
/// tx2.closed(),
/// tx3.closed(),
/// tx4.closed(),
/// tx5.closed()
/// );
/// println!("Receiver dropped");
/// }
/// ```
pub async fn closed(&self) {
self.chan.closed().await;
}
/// Attempts to immediately send a message on this `Sender`
///
/// This method differs from [`send`] by returning immediately if the channel's
/// buffer is full or no receiver is waiting to acquire some data. Compared
/// with [`send`], this function has two failure cases instead of one (one for
/// disconnection, one for a full buffer).
///
/// # Errors
///
/// If the channel capacity has been reached, i.e., the channel has `n`
/// buffered values where `n` is the argument passed to [`channel`], then an
/// error is returned.
///
/// If the receive half of the channel is closed, either due to [`close`]
/// being called or the [`Receiver`] handle dropping, the function returns
/// an error. The error includes the value passed to `send`.
///
/// [`send`]: Sender::send
/// [`channel`]: channel
/// [`close`]: Receiver::close
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// // Create a channel with buffer size 1
/// let (tx1, mut rx) = mpsc::channel(1);
/// let tx2 = tx1.clone();
///
/// tokio::spawn(async move {
/// tx1.send(1).await.unwrap();
/// tx1.send(2).await.unwrap();
/// // task waits until the receiver receives a value.
/// });
///
/// tokio::spawn(async move {
/// // This will return an error and send
/// // no message if the buffer is full
/// let _ = tx2.try_send(3);
/// });
///
/// let mut msg;
/// msg = rx.recv().await.unwrap();
/// println!("message {} received", msg);
///
/// msg = rx.recv().await.unwrap();
/// println!("message {} received", msg);
///
/// // Third message may have never been sent
/// match rx.recv().await {
/// Some(msg) => println!("message {} received", msg),
/// None => println!("the third message was never sent"),
/// }
/// }
/// ```
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
match self.chan.semaphore().semaphore.try_acquire(1) {
Ok(()) => {}
Err(TryAcquireError::Closed) => return Err(TrySendError::Closed(message)),
Err(TryAcquireError::NoPermits) => return Err(TrySendError::Full(message)),
}
// Send the message
self.chan.send(message);
Ok(())
}
/// Sends a value, waiting until there is capacity, but only for a limited time.
///
/// Shares the same success and error conditions as [`send`], adding one more
/// condition for an unsuccessful send, which is when the provided timeout has
/// elapsed, and there is no capacity available.
///
/// [`send`]: Sender::send
///
/// # Errors
///
/// If the receive half of the channel is closed, either due to [`close`]
/// being called or the [`Receiver`] having been dropped,
/// the function returns an error. The error includes the value passed to `send`.
///
/// [`close`]: Receiver::close
/// [`Receiver`]: Receiver
///
/// # Panics
///
/// This function panics if it is called outside the context of a Tokio
/// runtime [with time enabled](crate::runtime::Builder::enable_time).
///
/// # Examples
///
/// In the following example, each call to `send_timeout` will block until the
/// previously sent value was received, unless the timeout has elapsed.
///
/// ```rust
/// use tokio::sync::mpsc;
/// use tokio::time::{sleep, Duration};
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// tokio::spawn(async move {
/// for i in 0..10 {
/// if let Err(e) = tx.send_timeout(i, Duration::from_millis(100)).await {
/// println!("send error: #{:?}", e);
/// return;
/// }
/// }
/// });
///
/// while let Some(i) = rx.recv().await {
/// println!("got = {}", i);
/// sleep(Duration::from_millis(200)).await;
/// }
/// }
/// ```
#[cfg(feature = "time")]
#[cfg_attr(docsrs, doc(cfg(feature = "time")))]
pub async fn send_timeout(
&self,
value: T,
timeout: Duration,
) -> Result<(), SendTimeoutError<T>> {
let permit = match crate::time::timeout(timeout, self.reserve()).await {
Err(_) => {
return Err(SendTimeoutError::Timeout(value));
}
Ok(Err(_)) => {
return Err(SendTimeoutError::Closed(value));
}
Ok(Ok(permit)) => permit,
};
permit.send(value);
Ok(())
}
/// Blocking send to call outside of asynchronous contexts.
///
/// This method is intended for use cases where you are sending from
/// synchronous code to asynchronous code, and will work even if the
/// receiver is not using [`blocking_recv`] to receive the message.
///
/// [`blocking_recv`]: fn@crate::sync::mpsc::Receiver::blocking_recv
///
/// # Panics
///
/// This function panics if called within an asynchronous execution
/// context.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use tokio::runtime::Runtime;
/// use tokio::sync::mpsc;
///
/// fn main() {
/// let (tx, mut rx) = mpsc::channel::<u8>(1);
///
/// let sync_code = thread::spawn(move || {
/// tx.blocking_send(10).unwrap();
/// });
///
/// Runtime::new().unwrap().block_on(async move {
/// assert_eq!(Some(10), rx.recv().await);
/// });
/// sync_code.join().unwrap()
/// }
/// ```
#[track_caller]
#[cfg(feature = "sync")]
#[cfg_attr(docsrs, doc(alias = "send_blocking"))]
pub fn blocking_send(&self, value: T) -> Result<(), SendError<T>> {
crate::future::block_on(self.send(value))
}
/// Checks if the channel has been closed. This happens when the
/// [`Receiver`] is dropped, or when the [`Receiver::close`] method is
/// called.
///
/// [`Receiver`]: crate::sync::mpsc::Receiver
/// [`Receiver::close`]: crate::sync::mpsc::Receiver::close
///
/// ```
/// let (tx, rx) = tokio::sync::mpsc::channel::<()>(42);
/// assert!(!tx.is_closed());
///
/// let tx2 = tx.clone();
/// assert!(!tx2.is_closed());
///
/// drop(rx);
/// assert!(tx.is_closed());
/// assert!(tx2.is_closed());
/// ```
pub fn is_closed(&self) -> bool {
self.chan.is_closed()
}
/// Waits for channel capacity. Once capacity to send one message is
/// available, it is reserved for the caller.
///
/// If the channel is full, the function waits for the number of unreceived
/// messages to become less than the channel capacity. Capacity to send one
/// message is reserved for the caller. A [`Permit`] is returned to track
/// the reserved capacity. The [`send`] function on [`Permit`] consumes the
/// reserved capacity.
///
/// Dropping [`Permit`] without sending a message releases the capacity back
/// to the channel.
///
/// [`Permit`]: Permit
/// [`send`]: Permit::send
///
/// # Cancel safety
///
/// This channel uses a queue to ensure that calls to `send` and `reserve`
/// complete in the order they were requested. Cancelling a call to
/// `reserve` makes you lose your place in the queue.
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Reserve capacity
/// let permit = tx.reserve().await.unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Sending on the permit succeeds
/// permit.send(456);
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
/// }
/// ```
pub async fn reserve(&self) -> Result<Permit<'_, T>, SendError<()>> {
self.reserve_inner(1).await?;
Ok(Permit { chan: &self.chan })
}
/// Waits for channel capacity. Once capacity to send `n` messages is
/// available, it is reserved for the caller.
///
/// If the channel is full or if there are fewer than `n` permits available, the function waits
/// for the number of unreceived messages to become `n` less than the channel capacity.
/// Capacity to send `n` message is then reserved for the caller.
///
/// A [`PermitIterator`] is returned to track the reserved capacity.
/// You can call this [`Iterator`] until it is exhausted to
/// get a [`Permit`] and then call [`Permit::send`]. This function is similar to
/// [`try_reserve_many`] except it awaits for the slots to become available.
///
/// If the channel is closed, the function returns a [`SendError`].
///
/// Dropping [`PermitIterator`] without consuming it entirely releases the remaining
/// permits back to the channel.
///
/// [`PermitIterator`]: PermitIterator
/// [`Permit`]: Permit
/// [`send`]: Permit::send
/// [`try_reserve_many`]: Sender::try_reserve_many
///
/// # Cancel safety
///
/// This channel uses a queue to ensure that calls to `send` and `reserve_many`
/// complete in the order they were requested. Cancelling a call to
/// `reserve_many` makes you lose your place in the queue.
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(2);
///
/// // Reserve capacity
/// let mut permit = tx.reserve_many(2).await.unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Sending with the permit iterator succeeds
/// permit.next().unwrap().send(456);
/// permit.next().unwrap().send(457);
///
/// // The iterator should now be exhausted
/// assert!(permit.next().is_none());
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
/// assert_eq!(rx.recv().await.unwrap(), 457);
/// }
/// ```
pub async fn reserve_many(&self, n: usize) -> Result<PermitIterator<'_, T>, SendError<()>> {
self.reserve_inner(n).await?;
Ok(PermitIterator {
chan: &self.chan,
n,
})
}
/// Waits for channel capacity, moving the `Sender` and returning an owned
/// permit. Once capacity to send one message is available, it is reserved
/// for the caller.
///
/// This moves the sender _by value_, and returns an owned permit that can
/// be used to send a message into the channel. Unlike [`Sender::reserve`],
/// this method may be used in cases where the permit must be valid for the
/// `'static` lifetime. `Sender`s may be cloned cheaply (`Sender::clone` is
/// essentially a reference count increment, comparable to [`Arc::clone`]),
/// so when multiple [`OwnedPermit`]s are needed or the `Sender` cannot be
/// moved, it can be cloned prior to calling `reserve_owned`.
///
/// If the channel is full, the function waits for the number of unreceived
/// messages to become less than the channel capacity. Capacity to send one
/// message is reserved for the caller. An [`OwnedPermit`] is returned to
/// track the reserved capacity. The [`send`] function on [`OwnedPermit`]
/// consumes the reserved capacity.
///
/// Dropping the [`OwnedPermit`] without sending a message releases the
/// capacity back to the channel.
///
/// # Cancel safety
///
/// This channel uses a queue to ensure that calls to `send` and `reserve`
/// complete in the order they were requested. Cancelling a call to
/// `reserve_owned` makes you lose your place in the queue.
///
/// # Examples
/// Sending a message using an [`OwnedPermit`]:
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Reserve capacity, moving the sender.
/// let permit = tx.reserve_owned().await.unwrap();
///
/// // Send a message, consuming the permit and returning
/// // the moved sender.
/// let tx = permit.send(123);
///
/// // The value sent on the permit is received.
/// assert_eq!(rx.recv().await.unwrap(), 123);
///
/// // The sender can now be used again.
/// tx.send(456).await.unwrap();
/// }
/// ```
///
/// When multiple [`OwnedPermit`]s are needed, or the sender cannot be moved
/// by value, it can be inexpensively cloned before calling `reserve_owned`:
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Clone the sender and reserve capacity.
/// let permit = tx.clone().reserve_owned().await.unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Sending on the permit succeeds.
/// permit.send(456);
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
/// }
/// ```
///
/// [`Sender::reserve`]: Sender::reserve
/// [`OwnedPermit`]: OwnedPermit
/// [`send`]: OwnedPermit::send
/// [`Arc::clone`]: std::sync::Arc::clone
pub async fn reserve_owned(self) -> Result<OwnedPermit<T>, SendError<()>> {
self.reserve_inner(1).await?;
Ok(OwnedPermit {
chan: Some(self.chan),
})
}
async fn reserve_inner(&self, n: usize) -> Result<(), SendError<()>> {
crate::trace::async_trace_leaf().await;
if n > self.max_capacity() {
return Err(SendError(()));
}
match self.chan.semaphore().semaphore.acquire(n).await {
Ok(()) => Ok(()),
Err(_) => Err(SendError(())),
}
}
/// Tries to acquire a slot in the channel without waiting for the slot to become
/// available.
///
/// If the channel is full this function will return [`TrySendError`], otherwise
/// if there is a slot available it will return a [`Permit`] that will then allow you
/// to [`send`] on the channel with a guaranteed slot. This function is similar to
/// [`reserve`] except it does not await for the slot to become available.
///
/// Dropping [`Permit`] without sending a message releases the capacity back
/// to the channel.
///
/// [`Permit`]: Permit
/// [`send`]: Permit::send
/// [`reserve`]: Sender::reserve
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Reserve capacity
/// let permit = tx.try_reserve().unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Trying to reserve an additional slot on the `tx` will
/// // fail because there is no capacity.
/// assert!(tx.try_reserve().is_err());
///
/// // Sending on the permit succeeds
/// permit.send(456);
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
///
/// }
/// ```
pub fn try_reserve(&self) -> Result<Permit<'_, T>, TrySendError<()>> {
match self.chan.semaphore().semaphore.try_acquire(1) {
Ok(()) => {}
Err(TryAcquireError::Closed) => return Err(TrySendError::Closed(())),
Err(TryAcquireError::NoPermits) => return Err(TrySendError::Full(())),
}
Ok(Permit { chan: &self.chan })
}
/// Tries to acquire `n` slots in the channel without waiting for the slot to become
/// available.
///
/// A [`PermitIterator`] is returned to track the reserved capacity.
/// You can call this [`Iterator`] until it is exhausted to
/// get a [`Permit`] and then call [`Permit::send`]. This function is similar to
/// [`reserve_many`] except it does not await for the slots to become available.
///
/// If there are fewer than `n` permits available on the channel, then
/// this function will return a [`TrySendError::Full`]. If the channel is closed
/// this function will return a [`TrySendError::Closed`].
///
/// Dropping [`PermitIterator`] without consuming it entirely releases the remaining
/// permits back to the channel.
///
/// [`PermitIterator`]: PermitIterator
/// [`send`]: Permit::send
/// [`reserve_many`]: Sender::reserve_many
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(2);
///
/// // Reserve capacity
/// let mut permit = tx.try_reserve_many(2).unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Trying to reserve an additional slot on the `tx` will
/// // fail because there is no capacity.
/// assert!(tx.try_reserve().is_err());
///
/// // Sending with the permit iterator succeeds
/// permit.next().unwrap().send(456);
/// permit.next().unwrap().send(457);
///
/// // The iterator should now be exhausted
/// assert!(permit.next().is_none());
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
/// assert_eq!(rx.recv().await.unwrap(), 457);
///
/// // Trying to call try_reserve_many with 0 will return an empty iterator
/// let mut permit = tx.try_reserve_many(0).unwrap();
/// assert!(permit.next().is_none());
///
/// // Trying to call try_reserve_many with a number greater than the channel
/// // capacity will return an error
/// let permit = tx.try_reserve_many(3);
/// assert!(permit.is_err());
///
/// // Trying to call try_reserve_many on a closed channel will return an error
/// drop(rx);
/// let permit = tx.try_reserve_many(1);
/// assert!(permit.is_err());
///
/// let permit = tx.try_reserve_many(0);
/// assert!(permit.is_err());
/// }
/// ```
pub fn try_reserve_many(&self, n: usize) -> Result<PermitIterator<'_, T>, TrySendError<()>> {
if n > self.max_capacity() {
return Err(TrySendError::Full(()));
}
match self.chan.semaphore().semaphore.try_acquire(n) {
Ok(()) => {}
Err(TryAcquireError::Closed) => return Err(TrySendError::Closed(())),
Err(TryAcquireError::NoPermits) => return Err(TrySendError::Full(())),
}
Ok(PermitIterator {
chan: &self.chan,
n,
})
}
/// Tries to acquire a slot in the channel without waiting for the slot to become
/// available, returning an owned permit.
///
/// This moves the sender _by value_, and returns an owned permit that can
/// be used to send a message into the channel. Unlike [`Sender::try_reserve`],
/// this method may be used in cases where the permit must be valid for the
/// `'static` lifetime. `Sender`s may be cloned cheaply (`Sender::clone` is
/// essentially a reference count increment, comparable to [`Arc::clone`]),
/// so when multiple [`OwnedPermit`]s are needed or the `Sender` cannot be
/// moved, it can be cloned prior to calling `try_reserve_owned`.
///
/// If the channel is full this function will return a [`TrySendError`].
/// Since the sender is taken by value, the `TrySendError` returned in this
/// case contains the sender, so that it may be used again. Otherwise, if
/// there is a slot available, this method will return an [`OwnedPermit`]
/// that can then be used to [`send`] on the channel with a guaranteed slot.
/// This function is similar to [`reserve_owned`] except it does not await
/// for the slot to become available.
///
/// Dropping the [`OwnedPermit`] without sending a message releases the capacity back
/// to the channel.
///
/// [`OwnedPermit`]: OwnedPermit
/// [`send`]: OwnedPermit::send
/// [`reserve_owned`]: Sender::reserve_owned
/// [`Arc::clone`]: std::sync::Arc::clone
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Reserve capacity
/// let permit = tx.clone().try_reserve_owned().unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Trying to reserve an additional slot on the `tx` will
/// // fail because there is no capacity.
/// assert!(tx.try_reserve().is_err());
///
/// // Sending on the permit succeeds
/// permit.send(456);
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
///
/// }
/// ```
pub fn try_reserve_owned(self) -> Result<OwnedPermit<T>, TrySendError<Self>> {
match self.chan.semaphore().semaphore.try_acquire(1) {
Ok(()) => {}
Err(TryAcquireError::Closed) => return Err(TrySendError::Closed(self)),
Err(TryAcquireError::NoPermits) => return Err(TrySendError::Full(self)),
}
Ok(OwnedPermit {
chan: Some(self.chan),
})
}
/// Returns `true` if senders belong to the same channel.
///
/// # Examples
///
/// ```
/// let (tx, rx) = tokio::sync::mpsc::channel::<()>(1);
/// let tx2 = tx.clone();
/// assert!(tx.same_channel(&tx2));
///
/// let (tx3, rx3) = tokio::sync::mpsc::channel::<()>(1);
/// assert!(!tx3.same_channel(&tx2));
/// ```
pub fn same_channel(&self, other: &Self) -> bool {
self.chan.same_channel(&other.chan)
}
/// Returns the current capacity of the channel.
///
/// The capacity goes down when sending a value by calling [`send`] or by reserving capacity
/// with [`reserve`]. The capacity goes up when values are received by the [`Receiver`].
/// This is distinct from [`max_capacity`], which always returns buffer capacity initially
/// specified when calling [`channel`]
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel::<()>(5);
///
/// assert_eq!(tx.capacity(), 5);
///
/// // Making a reservation drops the capacity by one.
/// let permit = tx.reserve().await.unwrap();
/// assert_eq!(tx.capacity(), 4);
///
/// // Sending and receiving a value increases the capacity by one.
/// permit.send(());
/// rx.recv().await.unwrap();
/// assert_eq!(tx.capacity(), 5);
/// }
/// ```
///
/// [`send`]: Sender::send
/// [`reserve`]: Sender::reserve
/// [`channel`]: channel
/// [`max_capacity`]: Sender::max_capacity
pub fn capacity(&self) -> usize {
self.chan.semaphore().semaphore.available_permits()
}
/// Converts the `Sender` to a [`WeakSender`] that does not count
/// towards RAII semantics, i.e. if all `Sender` instances of the
/// channel were dropped and only `WeakSender` instances remain,
/// the channel is closed.
#[must_use = "Downgrade creates a WeakSender without destroying the original non-weak sender."]
pub fn downgrade(&self) -> WeakSender<T> {
WeakSender {
chan: self.chan.downgrade(),
}
}
/// Returns the maximum buffer capacity of the channel.
///
/// The maximum capacity is the buffer capacity initially specified when calling
/// [`channel`]. This is distinct from [`capacity`], which returns the *current*
/// available buffer capacity: as messages are sent and received, the
/// value returned by [`capacity`] will go up or down, whereas the value
/// returned by [`max_capacity`] will remain constant.
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, _rx) = mpsc::channel::<()>(5);
///
/// // both max capacity and capacity are the same at first
/// assert_eq!(tx.max_capacity(), 5);
/// assert_eq!(tx.capacity(), 5);
///
/// // Making a reservation doesn't change the max capacity.
/// let permit = tx.reserve().await.unwrap();
/// assert_eq!(tx.max_capacity(), 5);
/// // but drops the capacity by one
/// assert_eq!(tx.capacity(), 4);
/// }
/// ```
///
/// [`channel`]: channel
/// [`max_capacity`]: Sender::max_capacity
/// [`capacity`]: Sender::capacity
pub fn max_capacity(&self) -> usize {
self.chan.semaphore().bound
}
/// Returns the number of [`Sender`] handles.
pub fn strong_count(&self) -> usize {
self.chan.strong_count()
}
/// Returns the number of [`WeakSender`] handles.
pub fn weak_count(&self) -> usize {
self.chan.weak_count()
}
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
Sender {
chan: self.chan.clone(),
}
}
}
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Sender")
.field("chan", &self.chan)
.finish()
}
}
impl<T> Clone for WeakSender<T> {
fn clone(&self) -> Self {
self.chan.increment_weak_count();
WeakSender {
chan: self.chan.clone(),
}
}
}
impl<T> Drop for WeakSender<T> {
fn drop(&mut self) {
self.chan.decrement_weak_count();
}
}
impl<T> WeakSender<T> {
/// Tries to convert a `WeakSender` into a [`Sender`]. This will return `Some`
/// if there are other `Sender` instances alive and the channel wasn't
/// previously dropped, otherwise `None` is returned.
pub fn upgrade(&self) -> Option<Sender<T>> {
chan::Tx::upgrade(self.chan.clone()).map(Sender::new)
}
/// Returns the number of [`Sender`] handles.
pub fn strong_count(&self) -> usize {
self.chan.strong_count()
}
/// Returns the number of [`WeakSender`] handles.
pub fn weak_count(&self) -> usize {
self.chan.weak_count()
}
}
impl<T> fmt::Debug for WeakSender<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("WeakSender").finish()
}
}
// ===== impl Permit =====
impl<T> Permit<'_, T> {
/// Sends a value using the reserved capacity.
///
/// Capacity for the message has already been reserved. The message is sent
/// to the receiver and the permit is consumed. The operation will succeed
/// even if the receiver half has been closed. See [`Receiver::close`] for
/// more details on performing a clean shutdown.
///
/// [`Receiver::close`]: Receiver::close
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Reserve capacity
/// let permit = tx.reserve().await.unwrap();
///
/// // Trying to send directly on the `tx` will fail due to no
/// // available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Send a message on the permit
/// permit.send(456);
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
/// }
/// ```
pub fn send(self, value: T) {
use std::mem;
self.chan.send(value);
// Avoid the drop logic
mem::forget(self);
}
}
impl<T> Drop for Permit<'_, T> {
fn drop(&mut self) {
use chan::Semaphore;
let semaphore = self.chan.semaphore();
// Add the permit back to the semaphore
semaphore.add_permit();
// If this is the last sender for this channel, wake the receiver so
// that it can be notified that the channel is closed.
if semaphore.is_closed() && semaphore.is_idle() {
self.chan.wake_rx();
}
}
}
impl<T> fmt::Debug for Permit<'_, T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Permit")
.field("chan", &self.chan)
.finish()
}
}
// ===== impl PermitIterator =====
impl<'a, T> Iterator for PermitIterator<'a, T> {
type Item = Permit<'a, T>;
fn next(&mut self) -> Option<Self::Item> {
if self.n == 0 {
return None;
}
self.n -= 1;
Some(Permit { chan: self.chan })
}
fn size_hint(&self) -> (usize, Option<usize>) {
let n = self.n;
(n, Some(n))
}
}
impl<T> ExactSizeIterator for PermitIterator<'_, T> {}
impl<T> std::iter::FusedIterator for PermitIterator<'_, T> {}
impl<T> Drop for PermitIterator<'_, T> {
fn drop(&mut self) {
use chan::Semaphore;
if self.n == 0 {
return;
}
let semaphore = self.chan.semaphore();
// Add the remaining permits back to the semaphore
semaphore.add_permits(self.n);
// If this is the last sender for this channel, wake the receiver so
// that it can be notified that the channel is closed.
if semaphore.is_closed() && semaphore.is_idle() {
self.chan.wake_rx();
}
}
}
impl<T> fmt::Debug for PermitIterator<'_, T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("PermitIterator")
.field("chan", &self.chan)
.field("capacity", &self.n)
.finish()
}
}
// ===== impl Permit =====
impl<T> OwnedPermit<T> {
/// Sends a value using the reserved capacity.
///
/// Capacity for the message has already been reserved. The message is sent
/// to the receiver and the permit is consumed. The operation will succeed
/// even if the receiver half has been closed. See [`Receiver::close`] for
/// more details on performing a clean shutdown.
///
/// Unlike [`Permit::send`], this method returns the [`Sender`] from which
/// the `OwnedPermit` was reserved.
///
/// [`Receiver::close`]: Receiver::close
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::channel(1);
///
/// // Reserve capacity
/// let permit = tx.reserve_owned().await.unwrap();
///
/// // Send a message on the permit, returning the sender.
/// let tx = permit.send(456);
///
/// // The value sent on the permit is received
/// assert_eq!(rx.recv().await.unwrap(), 456);
///
/// // We may now reuse `tx` to send another message.
/// tx.send(789).await.unwrap();
/// }
/// ```
pub fn send(mut self, value: T) -> Sender<T> {
let chan = self.chan.take().unwrap_or_else(|| {
unreachable!("OwnedPermit channel is only taken when the permit is moved")
});
chan.send(value);
Sender { chan }
}
/// Releases the reserved capacity *without* sending a message, returning the
/// [`Sender`].
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::channel(1);
///
/// // Clone the sender and reserve capacity
/// let permit = tx.clone().reserve_owned().await.unwrap();
///
/// // Trying to send on the original `tx` will fail, since the `permit`
/// // has reserved all the available capacity.
/// assert!(tx.try_send(123).is_err());
///
/// // Release the permit without sending a message, returning the clone
/// // of the sender.
/// let tx2 = permit.release();
///
/// // We may now reuse `tx` to send another message.
/// tx.send(789).await.unwrap();
/// # drop(rx); drop(tx2);
/// }
/// ```
///
/// [`Sender`]: Sender
pub fn release(mut self) -> Sender<T> {
use chan::Semaphore;
let chan = self.chan.take().unwrap_or_else(|| {
unreachable!("OwnedPermit channel is only taken when the permit is moved")
});
// Add the permit back to the semaphore
chan.semaphore().add_permit();
Sender { chan }
}
}
impl<T> Drop for OwnedPermit<T> {
fn drop(&mut self) {
use chan::Semaphore;
// Are we still holding onto the sender?
if let Some(chan) = self.chan.take() {
let semaphore = chan.semaphore();
// Add the permit back to the semaphore
semaphore.add_permit();
// If this `OwnedPermit` is holding the last sender for this
// channel, wake the receiver so that it can be notified that the
// channel is closed.
if semaphore.is_closed() && semaphore.is_idle() {
chan.wake_rx();
}
}
// Otherwise, do nothing.
}
}
impl<T> fmt::Debug for OwnedPermit<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("OwnedPermit")
.field("chan", &self.chan)
.finish()
}
}