crossbeam_channel/flavors/array.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
//! Bounded channel based on a preallocated array.
//!
//! This flavor has a fixed, positive capacity.
//!
//! The implementation is based on Dmitry Vyukov's bounded MPMC queue.
//!
//! Source:
//! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue>
//! - <https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub>
use std::cell::UnsafeCell;
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::ptr;
use std::sync::atomic::{self, AtomicUsize, Ordering};
use std::time::Instant;
use crossbeam_utils::{Backoff, CachePadded};
use crate::context::Context;
use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
use crate::select::{Operation, SelectHandle, Selected, Token};
use crate::waker::SyncWaker;
/// A slot in a channel.
struct Slot<T> {
/// The current stamp.
stamp: AtomicUsize,
/// The message in this slot.
msg: UnsafeCell<MaybeUninit<T>>,
}
/// The token type for the array flavor.
#[derive(Debug)]
pub struct ArrayToken {
/// Slot to read from or write to.
slot: *const u8,
/// Stamp to store into the slot after reading or writing.
stamp: usize,
}
impl Default for ArrayToken {
#[inline]
fn default() -> Self {
ArrayToken {
slot: ptr::null(),
stamp: 0,
}
}
}
/// Bounded channel based on a preallocated array.
pub(crate) struct Channel<T> {
/// The head of the channel.
///
/// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
/// packed into a single `usize`. The lower bits represent the index, while the upper bits
/// represent the lap. The mark bit in the head is always zero.
///
/// Messages are popped from the head of the channel.
head: CachePadded<AtomicUsize>,
/// The tail of the channel.
///
/// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
/// packed into a single `usize`. The lower bits represent the index, while the upper bits
/// represent the lap. The mark bit indicates that the channel is disconnected.
///
/// Messages are pushed into the tail of the channel.
tail: CachePadded<AtomicUsize>,
/// The buffer holding slots.
buffer: *mut Slot<T>,
/// The channel capacity.
cap: usize,
/// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`.
one_lap: usize,
/// If this bit is set in the tail, that means the channel is disconnected.
mark_bit: usize,
/// Senders waiting while the channel is full.
senders: SyncWaker,
/// Receivers waiting while the channel is empty and not disconnected.
receivers: SyncWaker,
/// Indicates that dropping a `Channel<T>` may drop values of type `T`.
_marker: PhantomData<T>,
}
impl<T> Channel<T> {
/// Creates a bounded channel of capacity `cap`.
pub(crate) fn with_capacity(cap: usize) -> Self {
assert!(cap > 0, "capacity must be positive");
// Compute constants `mark_bit` and `one_lap`.
let mark_bit = (cap + 1).next_power_of_two();
let one_lap = mark_bit * 2;
// Head is initialized to `{ lap: 0, mark: 0, index: 0 }`.
let head = 0;
// Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`.
let tail = 0;
// Allocate a buffer of `cap` slots initialized
// with stamps.
let buffer = {
let mut boxed: Box<[Slot<T>]> = (0..cap)
.map(|i| {
// Set the stamp to `{ lap: 0, mark: 0, index: i }`.
Slot {
stamp: AtomicUsize::new(i),
msg: UnsafeCell::new(MaybeUninit::uninit()),
}
})
.collect();
let ptr = boxed.as_mut_ptr();
mem::forget(boxed);
ptr
};
Channel {
buffer,
cap,
one_lap,
mark_bit,
head: CachePadded::new(AtomicUsize::new(head)),
tail: CachePadded::new(AtomicUsize::new(tail)),
senders: SyncWaker::new(),
receivers: SyncWaker::new(),
_marker: PhantomData,
}
}
/// Returns a receiver handle to the channel.
pub(crate) fn receiver(&self) -> Receiver<'_, T> {
Receiver(self)
}
/// Returns a sender handle to the channel.
pub(crate) fn sender(&self) -> Sender<'_, T> {
Sender(self)
}
/// Attempts to reserve a slot for sending a message.
fn start_send(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut tail = self.tail.load(Ordering::Relaxed);
loop {
// Check if the channel is disconnected.
if tail & self.mark_bit != 0 {
token.array.slot = ptr::null();
token.array.stamp = 0;
return true;
}
// Deconstruct the tail.
let index = tail & (self.mark_bit - 1);
let lap = tail & !(self.one_lap - 1);
// Inspect the corresponding slot.
let slot = unsafe { &*self.buffer.add(index) };
let stamp = slot.stamp.load(Ordering::Acquire);
// If the tail and the stamp match, we may attempt to push.
if tail == stamp {
let new_tail = if index + 1 < self.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, mark: 0, index: index + 1 }`.
tail + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
lap.wrapping_add(self.one_lap)
};
// Try moving the tail.
match self.tail.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Relaxed,
) {
Ok(_) => {
// Prepare the token for the follow-up call to `write`.
token.array.slot = slot as *const Slot<T> as *const u8;
token.array.stamp = tail + 1;
return true;
}
Err(t) => {
tail = t;
backoff.spin();
}
}
} else if stamp.wrapping_add(self.one_lap) == tail + 1 {
atomic::fence(Ordering::SeqCst);
let head = self.head.load(Ordering::Relaxed);
// If the head lags one lap behind the tail as well...
if head.wrapping_add(self.one_lap) == tail {
// ...then the channel is full.
return false;
}
backoff.spin();
tail = self.tail.load(Ordering::Relaxed);
} else {
// Snooze because we need to wait for the stamp to get updated.
backoff.snooze();
tail = self.tail.load(Ordering::Relaxed);
}
}
}
/// Writes a message into the channel.
pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
// If there is no slot, the channel is disconnected.
if token.array.slot.is_null() {
return Err(msg);
}
let slot: &Slot<T> = &*(token.array.slot as *const Slot<T>);
// Write the message into the slot and update the stamp.
slot.msg.get().write(MaybeUninit::new(msg));
slot.stamp.store(token.array.stamp, Ordering::Release);
// Wake a sleeping receiver.
self.receivers.notify();
Ok(())
}
/// Attempts to reserve a slot for receiving a message.
fn start_recv(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut head = self.head.load(Ordering::Relaxed);
loop {
// Deconstruct the head.
let index = head & (self.mark_bit - 1);
let lap = head & !(self.one_lap - 1);
// Inspect the corresponding slot.
let slot = unsafe { &*self.buffer.add(index) };
let stamp = slot.stamp.load(Ordering::Acquire);
// If the the stamp is ahead of the head by 1, we may attempt to pop.
if head + 1 == stamp {
let new = if index + 1 < self.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, mark: 0, index: index + 1 }`.
head + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
lap.wrapping_add(self.one_lap)
};
// Try moving the head.
match self.head.compare_exchange_weak(
head,
new,
Ordering::SeqCst,
Ordering::Relaxed,
) {
Ok(_) => {
// Prepare the token for the follow-up call to `read`.
token.array.slot = slot as *const Slot<T> as *const u8;
token.array.stamp = head.wrapping_add(self.one_lap);
return true;
}
Err(h) => {
head = h;
backoff.spin();
}
}
} else if stamp == head {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.load(Ordering::Relaxed);
// If the tail equals the head, that means the channel is empty.
if (tail & !self.mark_bit) == head {
// If the channel is disconnected...
if tail & self.mark_bit != 0 {
// ...then receive an error.
token.array.slot = ptr::null();
token.array.stamp = 0;
return true;
} else {
// Otherwise, the receive operation is not ready.
return false;
}
}
backoff.spin();
head = self.head.load(Ordering::Relaxed);
} else {
// Snooze because we need to wait for the stamp to get updated.
backoff.snooze();
head = self.head.load(Ordering::Relaxed);
}
}
}
/// Reads a message from the channel.
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
if token.array.slot.is_null() {
// The channel is disconnected.
return Err(());
}
let slot: &Slot<T> = &*(token.array.slot as *const Slot<T>);
// Read the message from the slot and update the stamp.
let msg = slot.msg.get().read().assume_init();
slot.stamp.store(token.array.stamp, Ordering::Release);
// Wake a sleeping sender.
self.senders.notify();
Ok(msg)
}
/// Attempts to send a message into the channel.
pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
let token = &mut Token::default();
if self.start_send(token) {
unsafe { self.write(token, msg).map_err(TrySendError::Disconnected) }
} else {
Err(TrySendError::Full(msg))
}
}
/// Sends a message into the channel.
pub(crate) fn send(
&self,
msg: T,
deadline: Option<Instant>,
) -> Result<(), SendTimeoutError<T>> {
let token = &mut Token::default();
loop {
// Try sending a message several times.
let backoff = Backoff::new();
loop {
if self.start_send(token) {
let res = unsafe { self.write(token, msg) };
return res.map_err(SendTimeoutError::Disconnected);
}
if backoff.is_completed() {
break;
} else {
backoff.snooze();
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(SendTimeoutError::Timeout(msg));
}
}
Context::with(|cx| {
// Prepare for blocking until a receiver wakes us up.
let oper = Operation::hook(token);
self.senders.register(oper, cx);
// Has the channel become ready just now?
if !self.is_full() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.senders.unregister(oper).unwrap();
}
Selected::Operation(_) => {}
}
});
}
}
/// Attempts to receive a message without blocking.
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
let token = &mut Token::default();
if self.start_recv(token) {
unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
} else {
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
let token = &mut Token::default();
loop {
// Try receiving a message several times.
let backoff = Backoff::new();
loop {
if self.start_recv(token) {
let res = unsafe { self.read(token) };
return res.map_err(|_| RecvTimeoutError::Disconnected);
}
if backoff.is_completed() {
break;
} else {
backoff.snooze();
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(RecvTimeoutError::Timeout);
}
}
Context::with(|cx| {
// Prepare for blocking until a sender wakes us up.
let oper = Operation::hook(token);
self.receivers.register(oper, cx);
// Has the channel become ready just now?
if !self.is_empty() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.receivers.unregister(oper).unwrap();
// If the channel was disconnected, we still have to check for remaining
// messages.
}
Selected::Operation(_) => {}
}
});
}
}
/// Returns the current number of messages inside the channel.
pub(crate) fn len(&self) -> usize {
loop {
// Load the tail, then load the head.
let tail = self.tail.load(Ordering::SeqCst);
let head = self.head.load(Ordering::SeqCst);
// If the tail didn't change, we've got consistent values to work with.
if self.tail.load(Ordering::SeqCst) == tail {
let hix = head & (self.mark_bit - 1);
let tix = tail & (self.mark_bit - 1);
return if hix < tix {
tix - hix
} else if hix > tix {
self.cap - hix + tix
} else if (tail & !self.mark_bit) == head {
0
} else {
self.cap
};
}
}
}
/// Returns the capacity of the channel.
#[allow(clippy::unnecessary_wraps)] // This is intentional.
pub(crate) fn capacity(&self) -> Option<usize> {
Some(self.cap)
}
/// Disconnects the channel and wakes up all blocked senders and receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect(&self) -> bool {
let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst);
if tail & self.mark_bit == 0 {
self.senders.disconnect();
self.receivers.disconnect();
true
} else {
false
}
}
/// Returns `true` if the channel is disconnected.
pub(crate) fn is_disconnected(&self) -> bool {
self.tail.load(Ordering::SeqCst) & self.mark_bit != 0
}
/// Returns `true` if the channel is empty.
pub(crate) fn is_empty(&self) -> bool {
let head = self.head.load(Ordering::SeqCst);
let tail = self.tail.load(Ordering::SeqCst);
// Is the tail equal to the head?
//
// Note: If the head changes just before we load the tail, that means there was a moment
// when the channel was not empty, so it is safe to just return `false`.
(tail & !self.mark_bit) == head
}
/// Returns `true` if the channel is full.
pub(crate) fn is_full(&self) -> bool {
let tail = self.tail.load(Ordering::SeqCst);
let head = self.head.load(Ordering::SeqCst);
// Is the head lagging one lap behind tail?
//
// Note: If the tail changes just before we load the head, that means there was a moment
// when the channel was not full, so it is safe to just return `false`.
head.wrapping_add(self.one_lap) == tail & !self.mark_bit
}
}
impl<T> Drop for Channel<T> {
fn drop(&mut self) {
// Get the index of the head.
let hix = self.head.load(Ordering::Relaxed) & (self.mark_bit - 1);
// Loop over all slots that hold a message and drop them.
for i in 0..self.len() {
// Compute the index of the next slot holding a message.
let index = if hix + i < self.cap {
hix + i
} else {
hix + i - self.cap
};
unsafe {
let p = {
let slot = &mut *self.buffer.add(index);
let msg = &mut *slot.msg.get();
msg.as_mut_ptr()
};
p.drop_in_place();
}
}
// Finally, deallocate the buffer, but don't run any destructors.
unsafe {
// Create a slice from the buffer to make
// a fat pointer. Then, use Box::from_raw
// to deallocate it.
let ptr = std::slice::from_raw_parts_mut(self.buffer, self.cap) as *mut [Slot<T>];
Box::from_raw(ptr);
}
}
}
/// Receiver handle to a channel.
pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
/// Sender handle to a channel.
pub(crate) struct Sender<'a, T>(&'a Channel<T>);
impl<T> SelectHandle for Receiver<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_recv(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.register(oper, cx);
self.is_ready()
}
fn unregister(&self, oper: Operation) {
self.0.receivers.unregister(oper);
}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
!self.0.is_empty() || self.0.is_disconnected()
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.watch(oper, cx);
self.is_ready()
}
fn unwatch(&self, oper: Operation) {
self.0.receivers.unwatch(oper);
}
}
impl<T> SelectHandle for Sender<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_send(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
self.0.senders.register(oper, cx);
self.is_ready()
}
fn unregister(&self, oper: Operation) {
self.0.senders.unregister(oper);
}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
!self.0.is_full() || self.0.is_disconnected()
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
self.0.senders.watch(oper, cx);
self.is_ready()
}
fn unwatch(&self, oper: Operation) {
self.0.senders.unwatch(oper);
}
}