tokio/sync/mpsc/
unbounded.rs

1use crate::loom::sync::{atomic::AtomicUsize, Arc};
2use crate::sync::mpsc::chan;
3use crate::sync::mpsc::error::{SendError, TryRecvError};
4
5use std::fmt;
6use std::task::{Context, Poll};
7
8/// Send values to the associated `UnboundedReceiver`.
9///
10/// Instances are created by the [`unbounded_channel`] function.
11pub struct UnboundedSender<T> {
12    chan: chan::Tx<T, Semaphore>,
13}
14
15/// An unbounded sender that does not prevent the channel from being closed.
16///
17/// If all [`UnboundedSender`] instances of a channel were dropped and only
18/// `WeakUnboundedSender` instances remain, the channel is closed.
19///
20/// In order to send messages, the `WeakUnboundedSender` needs to be upgraded using
21/// [`WeakUnboundedSender::upgrade`], which returns `Option<UnboundedSender>`. It returns `None`
22/// if all `UnboundedSender`s have been dropped, and otherwise it returns an `UnboundedSender`.
23///
24/// [`UnboundedSender`]: UnboundedSender
25/// [`WeakUnboundedSender::upgrade`]: WeakUnboundedSender::upgrade
26///
27/// # Examples
28///
29/// ```
30/// use tokio::sync::mpsc::unbounded_channel;
31///
32/// #[tokio::main]
33/// async fn main() {
34///     let (tx, _rx) = unbounded_channel::<i32>();
35///     let tx_weak = tx.downgrade();
36///
37///     // Upgrading will succeed because `tx` still exists.
38///     assert!(tx_weak.upgrade().is_some());
39///
40///     // If we drop `tx`, then it will fail.
41///     drop(tx);
42///     assert!(tx_weak.clone().upgrade().is_none());
43/// }
44/// ```
45pub struct WeakUnboundedSender<T> {
46    chan: Arc<chan::Chan<T, Semaphore>>,
47}
48
49impl<T> Clone for UnboundedSender<T> {
50    fn clone(&self) -> Self {
51        UnboundedSender {
52            chan: self.chan.clone(),
53        }
54    }
55}
56
57impl<T> fmt::Debug for UnboundedSender<T> {
58    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
59        fmt.debug_struct("UnboundedSender")
60            .field("chan", &self.chan)
61            .finish()
62    }
63}
64
65/// Receive values from the associated `UnboundedSender`.
66///
67/// Instances are created by the [`unbounded_channel`] function.
68///
69/// This receiver can be turned into a `Stream` using [`UnboundedReceiverStream`].
70///
71/// [`UnboundedReceiverStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.UnboundedReceiverStream.html
72pub struct UnboundedReceiver<T> {
73    /// The channel receiver
74    chan: chan::Rx<T, Semaphore>,
75}
76
77impl<T> fmt::Debug for UnboundedReceiver<T> {
78    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
79        fmt.debug_struct("UnboundedReceiver")
80            .field("chan", &self.chan)
81            .finish()
82    }
83}
84
85/// Creates an unbounded mpsc channel for communicating between asynchronous
86/// tasks without backpressure.
87///
88/// A `send` on this channel will always succeed as long as the receive half has
89/// not been closed. If the receiver falls behind, messages will be arbitrarily
90/// buffered.
91///
92/// **Note** that the amount of available system memory is an implicit bound to
93/// the channel. Using an `unbounded` channel has the ability of causing the
94/// process to run out of memory. In this case, the process will be aborted.
95pub fn unbounded_channel<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
96    let (tx, rx) = chan::channel(Semaphore(AtomicUsize::new(0)));
97
98    let tx = UnboundedSender::new(tx);
99    let rx = UnboundedReceiver::new(rx);
100
101    (tx, rx)
102}
103
104/// No capacity
105#[derive(Debug)]
106pub(crate) struct Semaphore(pub(crate) AtomicUsize);
107
108impl<T> UnboundedReceiver<T> {
109    pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> UnboundedReceiver<T> {
110        UnboundedReceiver { chan }
111    }
112
113    /// Receives the next value for this receiver.
114    ///
115    /// This method returns `None` if the channel has been closed and there are
116    /// no remaining messages in the channel's buffer. This indicates that no
117    /// further values can ever be received from this `Receiver`. The channel is
118    /// closed when all senders have been dropped, or when [`close`] is called.
119    ///
120    /// If there are no messages in the channel's buffer, but the channel has
121    /// not yet been closed, this method will sleep until a message is sent or
122    /// the channel is closed.
123    ///
124    /// # Cancel safety
125    ///
126    /// This method is cancel safe. If `recv` is used as the event in a
127    /// [`tokio::select!`](crate::select) statement and some other branch
128    /// completes first, it is guaranteed that no messages were received on this
129    /// channel.
130    ///
131    /// [`close`]: Self::close
132    ///
133    /// # Examples
134    ///
135    /// ```
136    /// use tokio::sync::mpsc;
137    ///
138    /// #[tokio::main]
139    /// async fn main() {
140    ///     let (tx, mut rx) = mpsc::unbounded_channel();
141    ///
142    ///     tokio::spawn(async move {
143    ///         tx.send("hello").unwrap();
144    ///     });
145    ///
146    ///     assert_eq!(Some("hello"), rx.recv().await);
147    ///     assert_eq!(None, rx.recv().await);
148    /// }
149    /// ```
150    ///
151    /// Values are buffered:
152    ///
153    /// ```
154    /// use tokio::sync::mpsc;
155    ///
156    /// #[tokio::main]
157    /// async fn main() {
158    ///     let (tx, mut rx) = mpsc::unbounded_channel();
159    ///
160    ///     tx.send("hello").unwrap();
161    ///     tx.send("world").unwrap();
162    ///
163    ///     assert_eq!(Some("hello"), rx.recv().await);
164    ///     assert_eq!(Some("world"), rx.recv().await);
165    /// }
166    /// ```
167    pub async fn recv(&mut self) -> Option<T> {
168        use crate::future::poll_fn;
169
170        poll_fn(|cx| self.poll_recv(cx)).await
171    }
172
173    /// Receives the next values for this receiver and extends `buffer`.
174    ///
175    /// This method extends `buffer` by no more than a fixed number of values
176    /// as specified by `limit`. If `limit` is zero, the function returns
177    /// immediately with `0`. The return value is the number of values added to
178    /// `buffer`.
179    ///
180    /// For `limit > 0`, if there are no messages in the channel's queue,
181    /// but the channel has not yet been closed, this method will sleep
182    /// until a message is sent or the channel is closed.
183    ///
184    /// For non-zero values of `limit`, this method will never return `0` unless
185    /// the channel has been closed and there are no remaining messages in the
186    /// channel's queue. This indicates that no further values can ever be
187    /// received from this `Receiver`. The channel is closed when all senders
188    /// have been dropped, or when [`close`] is called.
189    ///
190    /// The capacity of `buffer` is increased as needed.
191    ///
192    /// # Cancel safety
193    ///
194    /// This method is cancel safe. If `recv_many` is used as the event in a
195    /// [`tokio::select!`](crate::select) statement and some other branch
196    /// completes first, it is guaranteed that no messages were received on this
197    /// channel.
198    ///
199    /// [`close`]: Self::close
200    ///
201    /// # Examples
202    ///
203    /// ```
204    /// use tokio::sync::mpsc;
205    ///
206    /// #[tokio::main]
207    /// async fn main() {
208    ///     let mut buffer: Vec<&str> = Vec::with_capacity(2);
209    ///     let limit = 2;
210    ///     let (tx, mut rx) = mpsc::unbounded_channel();
211    ///     let tx2 = tx.clone();
212    ///     tx2.send("first").unwrap();
213    ///     tx2.send("second").unwrap();
214    ///     tx2.send("third").unwrap();
215    ///
216    ///     // Call `recv_many` to receive up to `limit` (2) values.
217    ///     assert_eq!(2, rx.recv_many(&mut buffer, limit).await);
218    ///     assert_eq!(vec!["first", "second"], buffer);
219    ///
220    ///     // If the buffer is full, the next call to `recv_many`
221    ///     // reserves additional capacity.
222    ///     assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
223    ///
224    ///     tokio::spawn(async move {
225    ///         tx.send("fourth").unwrap();
226    ///     });
227    ///
228    ///     // 'tx' is dropped, but `recv_many`
229    ///     // is guaranteed not to return 0 as the channel
230    ///     // is not yet closed.
231    ///     assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
232    ///     assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
233    ///
234    ///     // Once the last sender is dropped, the channel is
235    ///     // closed and `recv_many` returns 0, capacity unchanged.
236    ///     drop(tx2);
237    ///     assert_eq!(0, rx.recv_many(&mut buffer, limit).await);
238    ///     assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
239    /// }
240    /// ```
241    pub async fn recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
242        use crate::future::poll_fn;
243        poll_fn(|cx| self.chan.recv_many(cx, buffer, limit)).await
244    }
245
246    /// Tries to receive the next value for this receiver.
247    ///
248    /// This method returns the [`Empty`] error if the channel is currently
249    /// empty, but there are still outstanding [senders] or [permits].
250    ///
251    /// This method returns the [`Disconnected`] error if the channel is
252    /// currently empty, and there are no outstanding [senders] or [permits].
253    ///
254    /// Unlike the [`poll_recv`] method, this method will never return an
255    /// [`Empty`] error spuriously.
256    ///
257    /// [`Empty`]: crate::sync::mpsc::error::TryRecvError::Empty
258    /// [`Disconnected`]: crate::sync::mpsc::error::TryRecvError::Disconnected
259    /// [`poll_recv`]: Self::poll_recv
260    /// [senders]: crate::sync::mpsc::Sender
261    /// [permits]: crate::sync::mpsc::Permit
262    ///
263    /// # Examples
264    ///
265    /// ```
266    /// use tokio::sync::mpsc;
267    /// use tokio::sync::mpsc::error::TryRecvError;
268    ///
269    /// #[tokio::main]
270    /// async fn main() {
271    ///     let (tx, mut rx) = mpsc::unbounded_channel();
272    ///
273    ///     tx.send("hello").unwrap();
274    ///
275    ///     assert_eq!(Ok("hello"), rx.try_recv());
276    ///     assert_eq!(Err(TryRecvError::Empty), rx.try_recv());
277    ///
278    ///     tx.send("hello").unwrap();
279    ///     // Drop the last sender, closing the channel.
280    ///     drop(tx);
281    ///
282    ///     assert_eq!(Ok("hello"), rx.try_recv());
283    ///     assert_eq!(Err(TryRecvError::Disconnected), rx.try_recv());
284    /// }
285    /// ```
286    pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
287        self.chan.try_recv()
288    }
289
290    /// Blocking receive to call outside of asynchronous contexts.
291    ///
292    /// # Panics
293    ///
294    /// This function panics if called within an asynchronous execution
295    /// context.
296    ///
297    /// # Examples
298    ///
299    /// ```
300    /// use std::thread;
301    /// use tokio::sync::mpsc;
302    ///
303    /// #[tokio::main]
304    /// async fn main() {
305    ///     let (tx, mut rx) = mpsc::unbounded_channel::<u8>();
306    ///
307    ///     let sync_code = thread::spawn(move || {
308    ///         assert_eq!(Some(10), rx.blocking_recv());
309    ///     });
310    ///
311    ///     let _ = tx.send(10);
312    ///     sync_code.join().unwrap();
313    /// }
314    /// ```
315    #[track_caller]
316    #[cfg(feature = "sync")]
317    #[cfg_attr(docsrs, doc(alias = "recv_blocking"))]
318    pub fn blocking_recv(&mut self) -> Option<T> {
319        crate::future::block_on(self.recv())
320    }
321
322    /// Closes the receiving half of a channel, without dropping it.
323    ///
324    /// This prevents any further messages from being sent on the channel while
325    /// still enabling the receiver to drain messages that are buffered.
326    ///
327    /// To guarantee that no messages are dropped, after calling `close()`,
328    /// `recv()` must be called until `None` is returned.
329    pub fn close(&mut self) {
330        self.chan.close();
331    }
332
333    /// Checks if a channel is closed.
334    ///
335    /// This method returns `true` if the channel has been closed. The channel is closed
336    /// when all [`UnboundedSender`] have been dropped, or when [`UnboundedReceiver::close`] is called.
337    ///
338    /// [`UnboundedSender`]: crate::sync::mpsc::UnboundedSender
339    /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
340    ///
341    /// # Examples
342    /// ```
343    /// use tokio::sync::mpsc;
344    ///
345    /// #[tokio::main]
346    /// async fn main() {
347    ///     let (_tx, mut rx) = mpsc::unbounded_channel::<()>();
348    ///     assert!(!rx.is_closed());
349    ///
350    ///     rx.close();
351    ///     
352    ///     assert!(rx.is_closed());
353    /// }
354    /// ```
355    pub fn is_closed(&self) -> bool {
356        self.chan.is_closed()
357    }
358
359    /// Checks if a channel is empty.
360    ///
361    /// This method returns `true` if the channel has no messages.
362    ///
363    /// # Examples
364    /// ```
365    /// use tokio::sync::mpsc;
366    ///
367    /// #[tokio::main]
368    /// async fn main() {
369    ///     let (tx, rx) = mpsc::unbounded_channel();
370    ///     assert!(rx.is_empty());
371    ///
372    ///     tx.send(0).unwrap();
373    ///     assert!(!rx.is_empty());
374    /// }
375    ///
376    /// ```
377    pub fn is_empty(&self) -> bool {
378        self.chan.is_empty()
379    }
380
381    /// Returns the number of messages in the channel.
382    ///
383    /// # Examples
384    /// ```
385    /// use tokio::sync::mpsc;
386    ///
387    /// #[tokio::main]
388    /// async fn main() {
389    ///     let (tx, rx) = mpsc::unbounded_channel();
390    ///     assert_eq!(0, rx.len());
391    ///
392    ///     tx.send(0).unwrap();
393    ///     assert_eq!(1, rx.len());
394    /// }
395    /// ```
396    pub fn len(&self) -> usize {
397        self.chan.len()
398    }
399
400    /// Polls to receive the next message on this channel.
401    ///
402    /// This method returns:
403    ///
404    ///  * `Poll::Pending` if no messages are available but the channel is not
405    ///    closed, or if a spurious failure happens.
406    ///  * `Poll::Ready(Some(message))` if a message is available.
407    ///  * `Poll::Ready(None)` if the channel has been closed and all messages
408    ///    sent before it was closed have been received.
409    ///
410    /// When the method returns `Poll::Pending`, the `Waker` in the provided
411    /// `Context` is scheduled to receive a wakeup when a message is sent on any
412    /// receiver, or when the channel is closed.  Note that on multiple calls to
413    /// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
414    /// passed to the most recent call is scheduled to receive a wakeup.
415    ///
416    /// If this method returns `Poll::Pending` due to a spurious failure, then
417    /// the `Waker` will be notified when the situation causing the spurious
418    /// failure has been resolved. Note that receiving such a wakeup does not
419    /// guarantee that the next call will succeed — it could fail with another
420    /// spurious failure.
421    pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
422        self.chan.recv(cx)
423    }
424
425    /// Polls to receive multiple messages on this channel, extending the provided buffer.
426    ///
427    /// This method returns:
428    /// * `Poll::Pending` if no messages are available but the channel is not closed, or if a
429    ///   spurious failure happens.
430    /// * `Poll::Ready(count)` where `count` is the number of messages successfully received and
431    ///   stored in `buffer`. This can be less than, or equal to, `limit`.
432    /// * `Poll::Ready(0)` if `limit` is set to zero or when the channel is closed.
433    ///
434    /// When the method returns `Poll::Pending`, the `Waker` in the provided
435    /// `Context` is scheduled to receive a wakeup when a message is sent on any
436    /// receiver, or when the channel is closed.  Note that on multiple calls to
437    /// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
438    /// passed to the most recent call is scheduled to receive a wakeup.
439    ///
440    /// Note that this method does not guarantee that exactly `limit` messages
441    /// are received. Rather, if at least one message is available, it returns
442    /// as many messages as it can up to the given limit. This method returns
443    /// zero only if the channel is closed (or if `limit` is zero).
444    ///
445    /// # Examples
446    ///
447    /// ```
448    /// use std::task::{Context, Poll};
449    /// use std::pin::Pin;
450    /// use tokio::sync::mpsc;
451    /// use futures::Future;
452    ///
453    /// struct MyReceiverFuture<'a> {
454    ///     receiver: mpsc::UnboundedReceiver<i32>,
455    ///     buffer: &'a mut Vec<i32>,
456    ///     limit: usize,
457    /// }
458    ///
459    /// impl<'a> Future for MyReceiverFuture<'a> {
460    ///     type Output = usize; // Number of messages received
461    ///
462    ///     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
463    ///         let MyReceiverFuture { receiver, buffer, limit } = &mut *self;
464    ///
465    ///         // Now `receiver` and `buffer` are mutable references, and `limit` is copied
466    ///         match receiver.poll_recv_many(cx, *buffer, *limit) {
467    ///             Poll::Pending => Poll::Pending,
468    ///             Poll::Ready(count) => Poll::Ready(count),
469    ///         }
470    ///     }
471    /// }
472    ///
473    /// #[tokio::main]
474    /// async fn main() {
475    ///     let (tx, rx) = mpsc::unbounded_channel::<i32>();
476    ///     let mut buffer = Vec::new();
477    ///
478    ///     let my_receiver_future = MyReceiverFuture {
479    ///         receiver: rx,
480    ///         buffer: &mut buffer,
481    ///         limit: 3,
482    ///     };
483    ///
484    ///     for i in 0..10 {
485    ///         tx.send(i).expect("Unable to send integer");
486    ///     }
487    ///
488    ///     let count = my_receiver_future.await;
489    ///     assert_eq!(count, 3);
490    ///     assert_eq!(buffer, vec![0,1,2])
491    /// }
492    /// ```
493    pub fn poll_recv_many(
494        &mut self,
495        cx: &mut Context<'_>,
496        buffer: &mut Vec<T>,
497        limit: usize,
498    ) -> Poll<usize> {
499        self.chan.recv_many(cx, buffer, limit)
500    }
501}
502
503impl<T> UnboundedSender<T> {
504    pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> UnboundedSender<T> {
505        UnboundedSender { chan }
506    }
507
508    /// Attempts to send a message on this `UnboundedSender` without blocking.
509    ///
510    /// This method is not marked async because sending a message to an unbounded channel
511    /// never requires any form of waiting. Because of this, the `send` method can be
512    /// used in both synchronous and asynchronous code without problems.
513    ///
514    /// If the receive half of the channel is closed, either due to [`close`]
515    /// being called or the [`UnboundedReceiver`] having been dropped, this
516    /// function returns an error. The error includes the value passed to `send`.
517    ///
518    /// [`close`]: UnboundedReceiver::close
519    /// [`UnboundedReceiver`]: UnboundedReceiver
520    pub fn send(&self, message: T) -> Result<(), SendError<T>> {
521        if !self.inc_num_messages() {
522            return Err(SendError(message));
523        }
524
525        self.chan.send(message);
526        Ok(())
527    }
528
529    fn inc_num_messages(&self) -> bool {
530        use std::process;
531        use std::sync::atomic::Ordering::{AcqRel, Acquire};
532
533        let mut curr = self.chan.semaphore().0.load(Acquire);
534
535        loop {
536            if curr & 1 == 1 {
537                return false;
538            }
539
540            if curr == usize::MAX ^ 1 {
541                // Overflowed the ref count. There is no safe way to recover, so
542                // abort the process. In practice, this should never happen.
543                process::abort()
544            }
545
546            match self
547                .chan
548                .semaphore()
549                .0
550                .compare_exchange(curr, curr + 2, AcqRel, Acquire)
551            {
552                Ok(_) => return true,
553                Err(actual) => {
554                    curr = actual;
555                }
556            }
557        }
558    }
559
560    /// Completes when the receiver has dropped.
561    ///
562    /// This allows the producers to get notified when interest in the produced
563    /// values is canceled and immediately stop doing work.
564    ///
565    /// # Cancel safety
566    ///
567    /// This method is cancel safe. Once the channel is closed, it stays closed
568    /// forever and all future calls to `closed` will return immediately.
569    ///
570    /// # Examples
571    ///
572    /// ```
573    /// use tokio::sync::mpsc;
574    ///
575    /// #[tokio::main]
576    /// async fn main() {
577    ///     let (tx1, rx) = mpsc::unbounded_channel::<()>();
578    ///     let tx2 = tx1.clone();
579    ///     let tx3 = tx1.clone();
580    ///     let tx4 = tx1.clone();
581    ///     let tx5 = tx1.clone();
582    ///     tokio::spawn(async move {
583    ///         drop(rx);
584    ///     });
585    ///
586    ///     futures::join!(
587    ///         tx1.closed(),
588    ///         tx2.closed(),
589    ///         tx3.closed(),
590    ///         tx4.closed(),
591    ///         tx5.closed()
592    ///     );
593    ////     println!("Receiver dropped");
594    /// }
595    /// ```
596    pub async fn closed(&self) {
597        self.chan.closed().await;
598    }
599
600    /// Checks if the channel has been closed. This happens when the
601    /// [`UnboundedReceiver`] is dropped, or when the
602    /// [`UnboundedReceiver::close`] method is called.
603    ///
604    /// [`UnboundedReceiver`]: crate::sync::mpsc::UnboundedReceiver
605    /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
606    ///
607    /// ```
608    /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
609    /// assert!(!tx.is_closed());
610    ///
611    /// let tx2 = tx.clone();
612    /// assert!(!tx2.is_closed());
613    ///
614    /// drop(rx);
615    /// assert!(tx.is_closed());
616    /// assert!(tx2.is_closed());
617    /// ```
618    pub fn is_closed(&self) -> bool {
619        self.chan.is_closed()
620    }
621
622    /// Returns `true` if senders belong to the same channel.
623    ///
624    /// # Examples
625    ///
626    /// ```
627    /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
628    /// let  tx2 = tx.clone();
629    /// assert!(tx.same_channel(&tx2));
630    ///
631    /// let (tx3, rx3) = tokio::sync::mpsc::unbounded_channel::<()>();
632    /// assert!(!tx3.same_channel(&tx2));
633    /// ```
634    pub fn same_channel(&self, other: &Self) -> bool {
635        self.chan.same_channel(&other.chan)
636    }
637
638    /// Converts the `UnboundedSender` to a [`WeakUnboundedSender`] that does not count
639    /// towards RAII semantics, i.e. if all `UnboundedSender` instances of the
640    /// channel were dropped and only `WeakUnboundedSender` instances remain,
641    /// the channel is closed.
642    #[must_use = "Downgrade creates a WeakSender without destroying the original non-weak sender."]
643    pub fn downgrade(&self) -> WeakUnboundedSender<T> {
644        WeakUnboundedSender {
645            chan: self.chan.downgrade(),
646        }
647    }
648
649    /// Returns the number of [`UnboundedSender`] handles.
650    pub fn strong_count(&self) -> usize {
651        self.chan.strong_count()
652    }
653
654    /// Returns the number of [`WeakUnboundedSender`] handles.
655    pub fn weak_count(&self) -> usize {
656        self.chan.weak_count()
657    }
658}
659
660impl<T> Clone for WeakUnboundedSender<T> {
661    fn clone(&self) -> Self {
662        self.chan.increment_weak_count();
663
664        WeakUnboundedSender {
665            chan: self.chan.clone(),
666        }
667    }
668}
669
670impl<T> Drop for WeakUnboundedSender<T> {
671    fn drop(&mut self) {
672        self.chan.decrement_weak_count();
673    }
674}
675
676impl<T> WeakUnboundedSender<T> {
677    /// Tries to convert a `WeakUnboundedSender` into an [`UnboundedSender`].
678    /// This will return `Some` if there are other `Sender` instances alive and
679    /// the channel wasn't previously dropped, otherwise `None` is returned.
680    pub fn upgrade(&self) -> Option<UnboundedSender<T>> {
681        chan::Tx::upgrade(self.chan.clone()).map(UnboundedSender::new)
682    }
683
684    /// Returns the number of [`UnboundedSender`] handles.
685    pub fn strong_count(&self) -> usize {
686        self.chan.strong_count()
687    }
688
689    /// Returns the number of [`WeakUnboundedSender`] handles.
690    pub fn weak_count(&self) -> usize {
691        self.chan.weak_count()
692    }
693}
694
695impl<T> fmt::Debug for WeakUnboundedSender<T> {
696    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
697        fmt.debug_struct("WeakUnboundedSender").finish()
698    }
699}