1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Serialization and deserialization of wire formats.
//!
//! This module provides efficient serialization and deserialization of the
//! various wire formats used by this program. Where possible, it uses lifetimes
//! and immutability to allow for safe zero-copy parsing.
//!
//! # Endianness
//!
//! All values exposed or consumed by this crate are in host byte order, so the
//! caller does not need to worry about it. Any necessary conversions are
//! performed under the hood.
#![cfg_attr(not(test), no_std)]
// TODO(joshlf): Move into debug_err! and debug_err_fn! definitions once
// attributes are allowed on expressions
// (https://github.com/rust-lang/rust/issues/15701).
#![allow(clippy::blocks_in_conditions)]
#![deny(missing_docs, unreachable_patterns)]
extern crate alloc;
// TODO(https://github.com/rust-lang/rust/issues/62502): Remove this crate.
#[cfg(not(test))]
extern crate fakestd as std;
/// Emit a debug message and return an error.
///
/// Invoke the `debug!` macro on all but the first argument. A call to
/// `debug_err!(err, ...)` is an expression whose value is the expression `err`.
macro_rules! debug_err {
($err:expr, $($arg:tt)*) => (
// TODO(joshlf): Uncomment once attributes are allowed on expressions
// #[cfg_attr(feature = "cargo-clippy", allow(block_in_if_condition_stmt))]
{
use ::log::debug;
debug!($($arg)*);
$err
}
)
}
/// Create a closure which emits a debug message and returns an error.
///
/// Create a closure which, when called, invokes the `debug!` macro on all but
/// the first argument, and returns the first argument.
macro_rules! debug_err_fn {
($err:expr, $($arg:tt)*) => (
// TODO(joshlf): Uncomment once attributes are allowed on expressions
// #[cfg_attr(feature = "cargo-clippy", allow(block_in_if_condition_stmt))]
|| {
use ::log::debug;
debug!($($arg)*);
$err
}
)
}
#[macro_use]
mod macros;
pub mod arp;
pub mod error;
pub mod ethernet;
pub mod icmp;
pub mod igmp;
pub mod ip;
pub mod ipv4;
pub mod ipv6;
pub mod tcp;
pub mod testdata;
pub mod testutil;
pub mod udp;
pub mod utils;
use core::num::TryFromIntError;
use byteorder::{ByteOrder, NetworkEndian};
use internet_checksum::Checksum;
use net_types::ip::{Ip, IpAddress, IpInvariant as IpInv, Ipv6Addr};
use packet::{FragmentedBytesMut, SerializeTarget};
// The "sealed trait" pattern.
//
// https://rust-lang.github.io/api-guidelines/future-proofing.html
mod private {
pub trait Sealed {}
}
fn update_transport_checksum_pseudo_header<I: Ip>(
checksum: &mut Checksum,
src_ip: I::Addr,
dst_ip: I::Addr,
proto: u8,
transport_len: usize,
) -> Result<(), TryFromIntError> {
I::map_ip_in(
(IpInv(checksum), src_ip, dst_ip, IpInv(proto), IpInv(transport_len)),
|(IpInv(checksum), src_ip, dst_ip, IpInv(proto), IpInv(transport_len))| {
let pseudo_header = {
// 4 bytes for src_ip + 4 bytes for dst_ip + 1 byte of zeros + 1
// byte for protocol + 2 bytes for total_len
let mut pseudo_header = [0u8; 12];
(&mut pseudo_header[..4]).copy_from_slice(src_ip.bytes());
(&mut pseudo_header[4..8]).copy_from_slice(dst_ip.bytes());
pseudo_header[9] = proto;
NetworkEndian::write_u16(&mut pseudo_header[10..12], transport_len.try_into()?);
pseudo_header
};
// add_bytes contains some branching logic at the beginning which is
// a bit more expensive than the main loop of the algorithm. In
// order to make sure we go through that logic as few times as
// possible, we construct the entire pseudo-header first, and then
// add it to the checksum all at once.
checksum.add_bytes(&pseudo_header[..]);
Ok(())
},
|(IpInv(checksum), src_ip, dst_ip, IpInv(proto), IpInv(transport_len))| {
let pseudo_header = {
// 16 bytes for src_ip + 16 bytes for dst_ip + 4 bytes for
// total_len + 3 bytes of zeroes + 1 byte for next header
let mut pseudo_header = [0u8; 40];
(&mut pseudo_header[..16]).copy_from_slice(src_ip.bytes());
(&mut pseudo_header[16..32]).copy_from_slice(dst_ip.bytes());
NetworkEndian::write_u32(&mut pseudo_header[32..36], transport_len.try_into()?);
pseudo_header[39] = proto;
pseudo_header
};
// add_bytes contains some branching logic at the beginning which is
// a bit more expensive than the main loop of the algorithm. In
// order to make sure we go through that logic as few times as
// possible, we construct the entire pseudo-header first, and then
// add it to the checksum all at once.
checksum.add_bytes(&pseudo_header[..]);
Ok(())
},
)
}
/// Compute the checksum used by TCP and UDP.
///
/// `compute_transport_checksum` computes the checksum used by TCP and UDP. For
/// IPv4, the total packet length `transport_len` must fit in a `u16`, and for
/// IPv6, a `u32`. If the provided packet is too big,
/// `compute_transport_checksum` returns `None`.
fn compute_transport_checksum_parts<'a, A: IpAddress, P>(
src_ip: A,
dst_ip: A,
proto: u8,
parts: P,
) -> Option<[u8; 2]>
where
P: Iterator<Item = &'a &'a [u8]> + Clone,
{
// See for details:
// https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Checksum_computation
let mut checksum = Checksum::new();
let transport_len = parts.clone().map(|b| b.len()).sum();
update_transport_checksum_pseudo_header::<A::Version>(
&mut checksum,
src_ip,
dst_ip,
proto,
transport_len,
)
.ok()?;
for p in parts {
checksum.add_bytes(p);
}
Some(checksum.checksum())
}
/// Compute the checksum used by TCP and UDP.
///
/// Same as [`compute_transport_checksum_parts`] but gets the parts from a
/// `SerializeTarget`.
fn compute_transport_checksum_serialize<A: IpAddress>(
src_ip: A,
dst_ip: A,
proto: u8,
target: &mut SerializeTarget<'_>,
body: FragmentedBytesMut<'_, '_>,
) -> Option<[u8; 2]> {
// See for details:
// https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Checksum_computation
let mut checksum = Checksum::new();
let transport_len = target.header.len() + body.len() + target.footer.len();
update_transport_checksum_pseudo_header::<A::Version>(
&mut checksum,
src_ip,
dst_ip,
proto,
transport_len,
)
.ok()?;
checksum.add_bytes(target.header);
for p in body.iter_fragments() {
checksum.add_bytes(p);
}
checksum.add_bytes(target.footer);
Some(checksum.checksum())
}
/// Compute the checksum used by TCP and UDP.
///
/// Same as [`compute_transport_checksum_parts`] but with a single part.
#[cfg(test)]
fn compute_transport_checksum<A: IpAddress>(
src_ip: A,
dst_ip: A,
proto: u8,
packet: &[u8],
) -> Option<[u8; 2]> {
let mut checksum = Checksum::new();
update_transport_checksum_pseudo_header::<A::Version>(
&mut checksum,
src_ip,
dst_ip,
proto,
packet.len(),
)
.ok()?;
checksum.add_bytes(packet);
Some(checksum.checksum())
}