char_set/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use char_collection::CharCollection;
use std::cmp::Ordering;

type BitmapElement = u64;
const BITMAP_ELEMENT_SIZE: usize = 64;
/// This value is optimal for memory use, based on some non-scientific experimentation with
/// real-world font files. (Though compared to `2048`, it does add a few nanoseconds to the average
/// `contains` call.)
const MAX_RANGE_GAP: u32 = 256;

/// Represents an ordered set of code points that begin at [CharSetRange.start]. The largest
/// allowed discontinuity between two consecutive code points in the set is [MAX_RANGE_GAP].
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
struct CharSetRange {
    start: u32,
    bitmap: Vec<BitmapElement>,
}

impl CharSetRange {
    fn new() -> CharSetRange {
        CharSetRange { start: 0, bitmap: vec![] }
    }

    fn start(&self) -> u32 {
        self.start
    }

    fn end(&self) -> u32 {
        self.start + (self.bitmap.len() * BITMAP_ELEMENT_SIZE) as u32
    }

    fn is_empty(&self) -> bool {
        self.bitmap.is_empty()
    }

    fn add(&mut self, val: u32) {
        assert!(val >= self.start);
        assert!(char::try_from(val).is_ok());

        if self.bitmap.is_empty() {
            self.start = val;
        }

        let pos = (val - self.start) as usize;
        let element_pos = pos / BITMAP_ELEMENT_SIZE;

        if element_pos >= self.bitmap.len() {
            self.bitmap.resize(element_pos + 1, 0);
        }

        self.bitmap[element_pos] |= 1 << (pos % BITMAP_ELEMENT_SIZE);
    }

    fn contains(&self, c: u32) -> bool {
        if c < self.start || c >= self.end() {
            false
        } else {
            let index = c as usize - self.start as usize;
            (self.bitmap[index / BITMAP_ELEMENT_SIZE] & (1 << (index % BITMAP_ELEMENT_SIZE))) > 0
        }
    }

    fn iter(&self) -> CharSetRangeIterator<'_> {
        CharSetRangeIterator { char_set_range: &self, position: self.start.clone() }
    }
}

struct CharSetRangeIterator<'a> {
    char_set_range: &'a CharSetRange,
    position: u32,
}

impl Iterator for CharSetRangeIterator<'_> {
    type Item = char;

    fn next(&mut self) -> Option<char> {
        while self.position < self.char_set_range.end() {
            if self.char_set_range.contains(self.position) {
                self.position += 1;
                return Some(std::char::from_u32(self.position - 1).unwrap());
            }
            self.position += 1;
        }
        None
    }
}

/// Represents an ordered set of code points.
///
/// TODO(kpozin): Add factory method that takes lazy `Iterator<Item = char>` instead of `Vec`.
/// TODO(kpozin): Enforce `char` values.
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct CharSet {
    ranges: Vec<CharSetRange>,
    len: usize,
}

impl CharSet {
    pub fn new(mut code_points: Vec<u32>) -> CharSet {
        let len = code_points.len();
        code_points.sort_unstable();

        let mut ranges = vec![];
        let mut range = CharSetRange::new();
        for c in code_points {
            if c != 0 && !range.is_empty() && c >= range.end() + MAX_RANGE_GAP {
                ranges.push(range);
                range = CharSetRange::new();
            }
            range.add(c);
        }
        if !range.is_empty() {
            ranges.push(range)
        }
        CharSet { ranges, len }
    }

    pub fn contains(&self, c: u32) -> bool {
        match self.ranges.binary_search_by(|r| {
            if r.end() < c {
                Ordering::Less
            } else if r.start() > c {
                Ordering::Greater
            } else {
                Ordering::Equal
            }
        }) {
            Ok(r) => self.ranges[r].contains(c),
            Err(_) => false,
        }
    }

    pub fn is_empty(&self) -> bool {
        self.ranges.is_empty()
    }

    /// Returns the number of code points in the set.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Iterate over all the characters in the the `CharSet` in code point order.
    pub fn iter(&self) -> impl Iterator<Item = char> + '_ {
        self.ranges.iter().flat_map(CharSetRange::iter)
    }
}

impl Default for CharSet {
    fn default() -> Self {
        CharSet::new(vec![])
    }
}

impl Into<CharCollection> for &CharSet {
    fn into(self) -> CharCollection {
        // Unwrapping is safe because we know `CharSet` iterates in order.
        CharCollection::from_sorted_chars(self.iter()).unwrap()
    }
}

impl From<CharCollection> for CharSet {
    fn from(value: CharCollection) -> CharSet {
        CharSet::from(&value)
    }
}

impl From<&CharCollection> for CharSet {
    fn from(value: &CharCollection) -> CharSet {
        CharSet::new(value.iter().map(|ch| ch as u32).collect::<Vec<u32>>())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use char_collection::char_collect;

    #[test]
    fn test_charset() {
        let charset = CharSet::new(vec![1, 2, 3, 10, 500, 5000, 5001, 10000]);
        assert!(!charset.contains(0));
        assert!(charset.contains(1));
        assert!(charset.contains(2));
        assert!(charset.contains(3));
        assert!(!charset.contains(4));
        assert!(!charset.contains(9));
        assert!(charset.contains(10));
        assert!(charset.contains(500));
        assert!(!charset.contains(501));
        assert!(charset.contains(5000));
        assert!(charset.contains(5001));
        assert!(!charset.contains(5002));
        assert!(!charset.contains(9999));
        assert!(charset.contains(10000));
        assert!(!charset.contains(10001));

        assert_eq!(
            charset.iter().map(|ch| ch as u32).collect::<Vec<u32>>(),
            vec![1, 2, 3, 10, 500, 5000, 5001, 10000]
        );
    }

    #[test]
    fn test_charset_from_char_collection() {
        let collection = char_collect!(0..=0, 2..=2, 13..=13, 32..=126);
        let charset = CharSet::from(&collection);
        assert!([0, 2, 13, 32, 54, 126].iter().all(|c| charset.contains(*c)));
        assert!([1, 11, 19, 127, 10000].iter().all(|c| !charset.contains(*c)));
    }
}