float_cmp/
eq.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright 2014-2020 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license.  See LICENSE for details.

use core::{f32, f64};
#[cfg(feature = "num-traits")]
#[allow(unused_imports)]
use num_traits::float::FloatCore;
use super::Ulps;

/// A trait for approximate equality comparisons.
pub trait ApproxEq: Sized {
    /// This type type defines a margin within which two values are to be
    /// considered approximately equal. It must implement `Default` so that
    /// `approx_eq()` can be called on unknown types.
    type Margin: Copy + Default;

    /// This method tests that the `self` and `other` values are equal within `margin`
    /// of each other.
    fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool;

    /// This method tests that the `self` and `other` values are not within `margin`
    /// of each other.
    fn approx_ne<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
        !self.approx_eq(other, margin)
    }
}

/// This type defines a margin within two `f32` values might be considered equal,
/// and is intended as the associated type for the `ApproxEq` trait.
///
/// Two tests are used to determine approximate equality.
///
/// The first test considers two values approximately equal if they differ by <=
/// `epsilon`. This will only succeed for very small numbers. Note that it may
/// succeed even if the parameters are of differing signs, straddling zero.
///
/// The second test considers how many ULPs (units of least precision, units in
/// the last place, which is the integer number of floating-point representations
/// that the parameters are separated by) different the parameters are and considers
/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
/// an ULP can be a rather large gap, but this kind of comparison is necessary
/// because floating-point operations must round to the nearest representable value
/// and so larger floating-point values accumulate larger errors.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct F32Margin {
    pub epsilon: f32,
    pub ulps: i32
}
impl Default for F32Margin {
    #[inline]
    fn default() -> F32Margin {
        F32Margin {
            epsilon: f32::EPSILON,
            ulps: 4
        }
    }
}
impl F32Margin {
    #[inline]
    pub fn zero() -> F32Margin {
        F32Margin {
            epsilon: 0.0,
            ulps: 0
        }
    }
    pub fn epsilon(self, epsilon: f32) -> Self {
        F32Margin {
            epsilon: epsilon,
            ..self
        }
    }
    pub fn ulps(self, ulps: i32) -> Self {
        F32Margin {
            ulps: ulps,
            ..self
        }
    }
}
impl From<(f32, i32)> for F32Margin {
    fn from(m: (f32, i32)) -> F32Margin {
        F32Margin {
            epsilon: m.0,
            ulps: m.1
        }
    }
}

impl ApproxEq for f32 {
    type Margin = F32Margin;

    fn approx_eq<M: Into<Self::Margin>>(self, other: f32, margin: M) -> bool {
        let margin = margin.into();

        // Check for exact equality first. This is often true, and so we get the
        // performance benefit of only doing one compare in most cases.
        self==other ||

        // Perform epsilon comparison next
            ((self - other).abs() <= margin.epsilon) ||

        {
            // Perform ulps comparion last
            let diff: i32 = self.ulps(&other);
            saturating_abs_i32!(diff) <= margin.ulps
        }
    }
}

#[test]
fn f32_approx_eq_test1() {
    let f: f32 = 0.0_f32;
    let g: f32 = -0.0000000000000005551115123125783_f32;
    assert!(f != g); // Should not be directly equal
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test2() {
    let f: f32 = 0.0_f32;
    let g: f32 = -0.0_f32;
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test3() {
    let f: f32 = 0.0_f32;
    let g: f32 = 0.00000000000000001_f32;
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test4() {
    let f: f32 = 0.00001_f32;
    let g: f32 = 0.00000000000000001_f32;
    assert!(f.approx_eq(g, (f32::EPSILON, 0)) == false);
}
#[test]
fn f32_approx_eq_test5() {
    let f: f32 = 0.1_f32;
    let mut sum: f32 = 0.0_f32;
    for _ in 0_isize..10_isize { sum += f; }
    let product: f32 = f * 10.0_f32;
    assert!(sum != product); // Should not be directly equal:
    assert!(sum.approx_eq(product, (f32::EPSILON, 1)) == true);
    assert!(sum.approx_eq(product, F32Margin::zero()) == false);
}
#[test]
fn f32_approx_eq_test6() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    assert!(x != y); // Should not be directly equal
    assert!(x.approx_eq(y, (0.0, 2)) == true); // 2 ulps does it
    // epsilon method no good here:
    assert!(x.approx_eq(y, (1000.0 * f32::EPSILON, 0)) == false);
}

/// This type defines a margin within two `f64` values might be considered equal,
/// and is intended as the associated type for the `ApproxEq` trait.
///
/// Two tests are used to determine approximate equality.
///
/// The first test considers two values approximately equal if they differ by <=
/// `epsilon`. This will only succeed for very small numbers. Note that it may
/// succeed even if the parameters are of differing signs, straddling zero.
///
/// The second test considers how many ULPs (units of least precision, units in
/// the last place, which is the integer number of floating-point representations
/// that the parameters are separated by) different the parameters are and considers
/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
/// an ULP can be a rather large gap, but this kind of comparison is necessary
/// because floating-point operations must round to the nearest representable value
/// and so larger floating-point values accumulate larger errors.
#[derive(Debug, Clone, Copy)]
pub struct F64Margin {
    pub epsilon: f64,
    pub ulps: i64
}
impl Default for F64Margin {
    #[inline]
    fn default() -> F64Margin {
        F64Margin {
            epsilon: f64::EPSILON,
            ulps: 4
        }
    }
}
impl F64Margin {
    #[inline]
    pub fn zero() -> F64Margin {
        F64Margin {
            epsilon: 0.0,
            ulps: 0
        }
    }
    pub fn epsilon(self, epsilon: f64) -> Self {
        F64Margin {
            epsilon: epsilon,
            ..self
        }
    }
    pub fn ulps(self, ulps: i64) -> Self {
        F64Margin {
            ulps: ulps,
            ..self
        }
    }
}
impl From<(f64, i64)> for F64Margin {
    fn from(m: (f64, i64)) -> F64Margin {
        F64Margin {
            epsilon: m.0,
            ulps: m.1
        }
    }
}

impl ApproxEq for f64 {
    type Margin = F64Margin;

    fn approx_eq<M: Into<Self::Margin>>(self, other: f64, margin: M) -> bool {
        let margin = margin.into();

        // Check for exact equality first. This is often true, and so we get the
        // performance benefit of only doing one compare in most cases.
        self == other ||

        // Perform epsilon comparison next
            ((self - other).abs() <= margin.epsilon) ||

        {
            // Perform ulps comparion last
            let diff: i64 = self.ulps(&other);
            saturating_abs_i64!(diff) <= margin.ulps
        }
    }
}

#[test]
fn f64_approx_eq_test1() {
    let f: f64 = 0.0_f64;
    let g: f64 = -0.0000000000000005551115123125783_f64;
    assert!(f != g); // Should not be precisely equal.
    assert!(f.approx_eq(g, (3.0 * f64::EPSILON, 0)) == true); // 3e is enough.
    // ULPs test won't ever call these equal.
}
#[test]
fn f64_approx_eq_test2() {
    let f: f64 = 0.0_f64;
    let g: f64 = -0.0_f64;
    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
}
#[test]
fn f64_approx_eq_test3() {
    let f: f64 = 0.0_f64;
    let g: f64 = 1e-17_f64;
    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
}
#[test]
fn f64_approx_eq_test4() {
    let f: f64 = 0.00001_f64;
    let g: f64 = 0.00000000000000001_f64;
    assert!(f.approx_eq(g, (f64::EPSILON, 0)) == false);
}
#[test]
fn f64_approx_eq_test5() {
    let f: f64 = 0.1_f64;
    let mut sum: f64 = 0.0_f64;
    for _ in 0_isize..10_isize { sum += f; }
    let product: f64 = f * 10.0_f64;
    assert!(sum != product); // Should not be precisely equaly.
    assert!(sum.approx_eq(product, (f64::EPSILON, 0)) == true);
    assert!(sum.approx_eq(product, (0.0, 1)) == true);
}
#[test]
fn f64_approx_eq_test6() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.0000000003_f64;
    assert!(x != y); // Should not be precisely equal.
    assert!(x.approx_eq(y, (0.0, 3)) == true);
}
#[test]
fn f64_code_triggering_issue_20() {
    assert_eq!((-25.0f64).approx_eq(25.0, (0.00390625, 1)), false);
}