float_cmp/eq.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
// Copyright 2014-2020 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license. See LICENSE for details.
use core::{f32, f64};
#[cfg(feature = "num-traits")]
#[allow(unused_imports)]
use num_traits::float::FloatCore;
use super::Ulps;
/// A trait for approximate equality comparisons.
pub trait ApproxEq: Sized {
/// This type type defines a margin within which two values are to be
/// considered approximately equal. It must implement `Default` so that
/// `approx_eq()` can be called on unknown types.
type Margin: Copy + Default;
/// This method tests that the `self` and `other` values are equal within `margin`
/// of each other.
fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool;
/// This method tests that the `self` and `other` values are not within `margin`
/// of each other.
fn approx_ne<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool {
!self.approx_eq(other, margin)
}
}
/// This type defines a margin within two `f32` values might be considered equal,
/// and is intended as the associated type for the `ApproxEq` trait.
///
/// Two tests are used to determine approximate equality.
///
/// The first test considers two values approximately equal if they differ by <=
/// `epsilon`. This will only succeed for very small numbers. Note that it may
/// succeed even if the parameters are of differing signs, straddling zero.
///
/// The second test considers how many ULPs (units of least precision, units in
/// the last place, which is the integer number of floating-point representations
/// that the parameters are separated by) different the parameters are and considers
/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
/// an ULP can be a rather large gap, but this kind of comparison is necessary
/// because floating-point operations must round to the nearest representable value
/// and so larger floating-point values accumulate larger errors.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct F32Margin {
pub epsilon: f32,
pub ulps: i32
}
impl Default for F32Margin {
#[inline]
fn default() -> F32Margin {
F32Margin {
epsilon: f32::EPSILON,
ulps: 4
}
}
}
impl F32Margin {
#[inline]
pub fn zero() -> F32Margin {
F32Margin {
epsilon: 0.0,
ulps: 0
}
}
pub fn epsilon(self, epsilon: f32) -> Self {
F32Margin {
epsilon: epsilon,
..self
}
}
pub fn ulps(self, ulps: i32) -> Self {
F32Margin {
ulps: ulps,
..self
}
}
}
impl From<(f32, i32)> for F32Margin {
fn from(m: (f32, i32)) -> F32Margin {
F32Margin {
epsilon: m.0,
ulps: m.1
}
}
}
impl ApproxEq for f32 {
type Margin = F32Margin;
fn approx_eq<M: Into<Self::Margin>>(self, other: f32, margin: M) -> bool {
let margin = margin.into();
// Check for exact equality first. This is often true, and so we get the
// performance benefit of only doing one compare in most cases.
self==other ||
// Perform epsilon comparison next
((self - other).abs() <= margin.epsilon) ||
{
// Perform ulps comparion last
let diff: i32 = self.ulps(&other);
saturating_abs_i32!(diff) <= margin.ulps
}
}
}
#[test]
fn f32_approx_eq_test1() {
let f: f32 = 0.0_f32;
let g: f32 = -0.0000000000000005551115123125783_f32;
assert!(f != g); // Should not be directly equal
assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test2() {
let f: f32 = 0.0_f32;
let g: f32 = -0.0_f32;
assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test3() {
let f: f32 = 0.0_f32;
let g: f32 = 0.00000000000000001_f32;
assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true);
}
#[test]
fn f32_approx_eq_test4() {
let f: f32 = 0.00001_f32;
let g: f32 = 0.00000000000000001_f32;
assert!(f.approx_eq(g, (f32::EPSILON, 0)) == false);
}
#[test]
fn f32_approx_eq_test5() {
let f: f32 = 0.1_f32;
let mut sum: f32 = 0.0_f32;
for _ in 0_isize..10_isize { sum += f; }
let product: f32 = f * 10.0_f32;
assert!(sum != product); // Should not be directly equal:
assert!(sum.approx_eq(product, (f32::EPSILON, 1)) == true);
assert!(sum.approx_eq(product, F32Margin::zero()) == false);
}
#[test]
fn f32_approx_eq_test6() {
let x: f32 = 1000000_f32;
let y: f32 = 1000000.1_f32;
assert!(x != y); // Should not be directly equal
assert!(x.approx_eq(y, (0.0, 2)) == true); // 2 ulps does it
// epsilon method no good here:
assert!(x.approx_eq(y, (1000.0 * f32::EPSILON, 0)) == false);
}
/// This type defines a margin within two `f64` values might be considered equal,
/// and is intended as the associated type for the `ApproxEq` trait.
///
/// Two tests are used to determine approximate equality.
///
/// The first test considers two values approximately equal if they differ by <=
/// `epsilon`. This will only succeed for very small numbers. Note that it may
/// succeed even if the parameters are of differing signs, straddling zero.
///
/// The second test considers how many ULPs (units of least precision, units in
/// the last place, which is the integer number of floating-point representations
/// that the parameters are separated by) different the parameters are and considers
/// them approximately equal if this is <= `ulps`. For large floating-point numbers,
/// an ULP can be a rather large gap, but this kind of comparison is necessary
/// because floating-point operations must round to the nearest representable value
/// and so larger floating-point values accumulate larger errors.
#[derive(Debug, Clone, Copy)]
pub struct F64Margin {
pub epsilon: f64,
pub ulps: i64
}
impl Default for F64Margin {
#[inline]
fn default() -> F64Margin {
F64Margin {
epsilon: f64::EPSILON,
ulps: 4
}
}
}
impl F64Margin {
#[inline]
pub fn zero() -> F64Margin {
F64Margin {
epsilon: 0.0,
ulps: 0
}
}
pub fn epsilon(self, epsilon: f64) -> Self {
F64Margin {
epsilon: epsilon,
..self
}
}
pub fn ulps(self, ulps: i64) -> Self {
F64Margin {
ulps: ulps,
..self
}
}
}
impl From<(f64, i64)> for F64Margin {
fn from(m: (f64, i64)) -> F64Margin {
F64Margin {
epsilon: m.0,
ulps: m.1
}
}
}
impl ApproxEq for f64 {
type Margin = F64Margin;
fn approx_eq<M: Into<Self::Margin>>(self, other: f64, margin: M) -> bool {
let margin = margin.into();
// Check for exact equality first. This is often true, and so we get the
// performance benefit of only doing one compare in most cases.
self == other ||
// Perform epsilon comparison next
((self - other).abs() <= margin.epsilon) ||
{
// Perform ulps comparion last
let diff: i64 = self.ulps(&other);
saturating_abs_i64!(diff) <= margin.ulps
}
}
}
#[test]
fn f64_approx_eq_test1() {
let f: f64 = 0.0_f64;
let g: f64 = -0.0000000000000005551115123125783_f64;
assert!(f != g); // Should not be precisely equal.
assert!(f.approx_eq(g, (3.0 * f64::EPSILON, 0)) == true); // 3e is enough.
// ULPs test won't ever call these equal.
}
#[test]
fn f64_approx_eq_test2() {
let f: f64 = 0.0_f64;
let g: f64 = -0.0_f64;
assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
}
#[test]
fn f64_approx_eq_test3() {
let f: f64 = 0.0_f64;
let g: f64 = 1e-17_f64;
assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true);
}
#[test]
fn f64_approx_eq_test4() {
let f: f64 = 0.00001_f64;
let g: f64 = 0.00000000000000001_f64;
assert!(f.approx_eq(g, (f64::EPSILON, 0)) == false);
}
#[test]
fn f64_approx_eq_test5() {
let f: f64 = 0.1_f64;
let mut sum: f64 = 0.0_f64;
for _ in 0_isize..10_isize { sum += f; }
let product: f64 = f * 10.0_f64;
assert!(sum != product); // Should not be precisely equaly.
assert!(sum.approx_eq(product, (f64::EPSILON, 0)) == true);
assert!(sum.approx_eq(product, (0.0, 1)) == true);
}
#[test]
fn f64_approx_eq_test6() {
let x: f64 = 1000000_f64;
let y: f64 = 1000000.0000000003_f64;
assert!(x != y); // Should not be precisely equal.
assert!(x.approx_eq(y, (0.0, 3)) == true);
}
#[test]
fn f64_code_triggering_issue_20() {
assert_eq!((-25.0f64).approx_eq(25.0, (0.00390625, 1)), false);
}