1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::io::{self, Read, Write};

use thiserror::Error;

use fuchsia_trace as ftrace;
use fuchsia_zircon as zx;

use crate::{Fixed, NewId, ObjectId};

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum ArgKind {
    Int,
    Uint,
    Fixed,
    String,
    Object,
    NewId,
    Array,
    Handle,
}

#[derive(Debug)]
pub enum Arg {
    Int(i32),
    Uint(u32),
    Fixed(Fixed),
    String(String),
    Object(ObjectId),
    NewId(NewId),
    Array(Array),
    Handle(zx::Handle),
}

impl Arg {
    pub fn kind(&self) -> ArgKind {
        match self {
            Arg::Int(_) => ArgKind::Int,
            Arg::Uint(_) => ArgKind::Uint,
            Arg::Fixed(_) => ArgKind::Fixed,
            Arg::String(_) => ArgKind::String,
            Arg::Object(_) => ArgKind::Object,
            Arg::NewId(_) => ArgKind::NewId,
            Arg::Array(_) => ArgKind::Array,
            Arg::Handle(_) => ArgKind::Handle,
        }
    }
}

macro_rules! impl_unwrap_arg(
    ($name:ident, $type:ty, $enumtype:ident) => (
        pub fn $name(self) -> $type {
            if let Arg::$enumtype(x) = self {
                x
            } else {
                panic!("Argument is not of the required type: \
                        expected {:?}, found {:?}",
                        stringify!($enumtype), self);
            }
        }
    )
);

impl Arg {
    impl_unwrap_arg!(unwrap_int, i32, Int);
    impl_unwrap_arg!(unwrap_uint, u32, Uint);
    impl_unwrap_arg!(unwrap_fixed, Fixed, Fixed);
    impl_unwrap_arg!(unwrap_object, ObjectId, Object);
    impl_unwrap_arg!(unwrap_new_id, ObjectId, NewId);
    impl_unwrap_arg!(unwrap_string, String, String);
    impl_unwrap_arg!(unwrap_array, Array, Array);
    impl_unwrap_arg!(unwrap_handle, zx::Handle, Handle);
}

#[derive(Debug, Error)]
#[error("Argument is not of the required type: expected {:?}, found {:?}", expected, found)]
pub struct MismatchedArgKind {
    pub expected: ArgKind,
    pub found: ArgKind,
}

macro_rules! impl_as_arg(
    ($name:ident, $type:ty, $enumtype:ident) => (
        pub fn $name(self) -> Result<$type, MismatchedArgKind> {
            if let Arg::$enumtype(x) = self {
                Ok(x)
            } else {
                Err(MismatchedArgKind {
                    expected: ArgKind::$enumtype,
                    found: self.kind(),
                })
            }
        }
    )
);

impl Arg {
    impl_as_arg!(as_int, i32, Int);
    impl_as_arg!(as_uint, u32, Uint);
    impl_as_arg!(as_fixed, Fixed, Fixed);
    impl_as_arg!(as_object, ObjectId, Object);
    impl_as_arg!(as_new_id, ObjectId, NewId);
    impl_as_arg!(as_string, String, String);
    impl_as_arg!(as_array, Array, Array);
    impl_as_arg!(as_handle, zx::Handle, Handle);
}

/// Simple conversion from the inner arg types to the Arg wrapper.
macro_rules! impl_from_for_arg(
    ($enumtype:ident, $type:ty) => (
        impl From<$type> for Arg {
            fn from(v: $type) -> Self {
                Arg::$enumtype(v)
            }
        }
    )
);
impl_from_for_arg!(Int, i32);
impl_from_for_arg!(Uint, u32);
impl_from_for_arg!(Fixed, Fixed);
impl_from_for_arg!(String, String);
impl_from_for_arg!(Array, Array);
impl_from_for_arg!(Handle, zx::Handle);

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct MessageHeader {
    pub sender: u32,
    pub opcode: u16,
    pub length: u16,
}

#[derive(Debug)]
pub struct Message {
    byte_buf: io::Cursor<Vec<u8>>,
    handle_buf: Vec<zx::Handle>,
}

fn compute_padding(size: u64) -> usize {
    (-(size as i64) & 3) as usize
}

impl Message {
    /// Initialize an empty Message.
    pub fn new() -> Self {
        Message { byte_buf: io::Cursor::new(Vec::new()), handle_buf: Vec::new() }
    }

    pub fn from_parts(bytes: Vec<u8>, handles: Vec<zx::Handle>) -> Self {
        Message { byte_buf: io::Cursor::new(bytes), handle_buf: handles }
    }

    /// Returns |true| iff this buffer has no more data (bytes or handles).
    pub fn is_empty(&self) -> bool {
        self.byte_buf.get_ref().len() as u64 == self.byte_buf.position()
            && self.handle_buf.is_empty()
    }

    pub fn clear(&mut self) {
        self.byte_buf.set_position(0);
        self.byte_buf.get_mut().truncate(0);
        self.handle_buf.truncate(0);
    }

    pub fn rewind(&mut self) {
        self.byte_buf.set_position(0);
    }

    pub fn bytes(&self) -> &[u8] {
        self.byte_buf.get_ref().as_slice()
    }

    pub fn take(self) -> (Vec<u8>, Vec<zx::Handle>) {
        (self.byte_buf.into_inner(), self.handle_buf)
    }

    /// Converts the value in |arg| into the appropriate wire format
    /// serialization.
    pub fn write_arg(&mut self, arg: Arg) -> io::Result<()> {
        ftrace::duration!(c"wayland", c"Message::write_arg");
        match arg {
            Arg::Int(i) => self.byte_buf.write_all(&i.to_ne_bytes()[..]),
            Arg::Uint(i) => self.byte_buf.write_all(&i.to_ne_bytes()[..]),
            Arg::Fixed(i) => self.byte_buf.write_all(&i.bits().to_ne_bytes()[..]),
            Arg::Object(i) => self.byte_buf.write_all(&i.to_ne_bytes()[..]),
            Arg::NewId(i) => self.byte_buf.write_all(&i.to_ne_bytes()[..]),
            Arg::String(s) => self.write_slice(s.as_bytes(), true),
            Arg::Array(a) => self.write_slice(a.as_slice(), false),
            Arg::Handle(h) => {
                self.handle_buf.push(h);
                Ok(())
            }
        }
    }

    fn read_i32(&mut self) -> io::Result<i32> {
        let mut buf = [0; std::mem::size_of::<i32>()];
        let () = self.byte_buf.read_exact(&mut buf)?;
        Ok(i32::from_ne_bytes(buf))
    }

    fn read_u32(&mut self) -> io::Result<u32> {
        let mut buf = [0; std::mem::size_of::<u32>()];
        let () = self.byte_buf.read_exact(&mut buf)?;
        Ok(u32::from_ne_bytes(buf))
    }

    /// Reads an Arg out of this Message and return the value.
    pub fn read_arg(&mut self, arg: ArgKind) -> io::Result<Arg> {
        ftrace::duration!(c"wayland", c"Message::read_arg");
        match arg {
            ArgKind::Int => self.read_i32().map(Arg::Int),
            ArgKind::Uint => self.read_u32().map(Arg::Uint),
            ArgKind::Fixed => self.read_i32().map(|i| Arg::Fixed(i.into())),
            ArgKind::Object => self.read_u32().map(Arg::Object),
            ArgKind::NewId => self.read_u32().map(Arg::NewId),
            ArgKind::String => self
                .read_slice(true)
                .map(|vec| String::from_utf8_lossy(vec.as_slice()).to_string())
                .map(Arg::String),
            ArgKind::Array => self.read_slice(false).map(|v| Arg::Array(v.into())),
            ArgKind::Handle => {
                if !self.handle_buf.is_empty() {
                    Ok(Arg::Handle(self.handle_buf.remove(0)))
                } else {
                    Err(io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "Unable to read handle from Message",
                    ))
                }
            }
        }
    }

    /// Reads the set of arguments specified by the given &[ArgKind].
    pub fn read_args(&mut self, args: &[ArgKind]) -> io::Result<Vec<Arg>> {
        ftrace::duration!(c"wayland", c"Message::read_args", "len" => args.len() as u64);
        args.iter().map(|arg| self.read_arg(*arg)).collect()
    }

    /// Reads the set of arguments specified by the given &[ArgKind].
    pub fn write_args(&mut self, args: Vec<Arg>) -> io::Result<()> {
        ftrace::duration!(c"wayland", c"Message::write_args", "len" => args.len() as u64);
        args.into_iter().try_for_each(|arg| self.write_arg(arg))?;
        Ok(())
    }

    /// Reads a |MessageHeader| without advancing the read pointer in the
    /// underlying buffer.
    pub fn peek_header(&mut self) -> io::Result<MessageHeader> {
        let pos = self.byte_buf.position();
        let header = self.read_header();
        self.byte_buf.set_position(pos);
        header
    }

    pub fn read_header(&mut self) -> io::Result<MessageHeader> {
        let sender = self.read_u32()?;
        let word = self.read_u32()?;
        Ok(MessageHeader { sender, length: (word >> 16) as u16, opcode: word as u16 })
    }

    pub fn write_header(&mut self, header: &MessageHeader) -> io::Result<()> {
        self.byte_buf.write_all(&header.sender.to_ne_bytes()[..])?;
        self.byte_buf
            .write_all(&((header.length as u32) << 16 | header.opcode as u32).to_ne_bytes()[..])?;
        Ok(())
    }

    fn read_slice(&mut self, null_term: bool) -> io::Result<Vec<u8>> {
        let pos = self.byte_buf.position();
        let len = self.read_u32()?;
        let mut vec: Vec<u8> = Vec::with_capacity(len as usize);
        if len == 0 {
            return Ok(vec);
        }

        vec.resize(len as usize, 0);
        self.byte_buf.read_exact(vec.as_mut_slice())?;

        if null_term {
            match vec.pop() {
                Some(term) => {
                    if term != b'\0' {
                        return Err(io::Error::new(
                            io::ErrorKind::InvalidData,
                            format!("Expected null terminator; found {}", term),
                        ));
                    }
                }
                None => {
                    return Err(io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "Missing null terminator on string argument",
                    ));
                }
            }
        }

        let pad = compute_padding(self.byte_buf.position() - pos);
        for _ in 0..pad {
            let mut buf = [0; 1];
            self.byte_buf.read_exact(&mut buf)?;
        }
        assert!(self.byte_buf.position() % 4 == 0);
        Ok(vec)
    }

    fn write_slice(&mut self, s: &[u8], null_term: bool) -> io::Result<()> {
        let pos = self.byte_buf.position();
        let mut len: u32 = s.len() as u32;
        if null_term {
            len += 1;
        }

        self.byte_buf.write_all(&len.to_ne_bytes())?;
        self.byte_buf.write_all(s)?;
        if null_term {
            self.byte_buf.write_all(&0u8.to_ne_bytes()[..])?;
        }

        // Pad to 32-bit boundary.
        let pad = compute_padding(self.byte_buf.position() - pos);
        for _ in 0..pad {
            self.byte_buf.write_all(&0u8.to_ne_bytes()[..])?;
        }
        assert!(self.byte_buf.position() % 4 == 0);
        Ok(())
    }
}

/// Convert from the zx::MessageBuf we get out of the channel.
impl From<zx::MessageBuf> for Message {
    fn from(buf: zx::MessageBuf) -> Self {
        let (bytes, handles) = buf.split();
        Message::from_parts(bytes, handles)
    }
}

/// Wrapper around the array data provided by the wayland wire format.
///
/// On the wire, wl_array arguments are simple byte arrays. Protocol
/// documentation may specify a specific interpretation of the bytes, however
/// this is not directly modeled in the protocol XML.
///
/// For example, the wl_keyboard::enter event has an argument for the set of
/// keys pressed at the time of the event:
///
///   <arg name="keys" type="array" summary="the currently pressed keys"/>
///
/// While not explitly stated, |keys| is an array of |uint| arguments. These are
/// packed into the array using the same rules used to write consecutive |uint|
/// arguments to a Message.
// We use a |Message| internally here to reuse the same argument serialization
// logic used for full messages. The semantics of Array is similar to a message
// that cannot contain any handles.
#[derive(Debug)]
pub struct Array(Message);

impl Array {
    /// Creates a new, empty Array.
    pub fn new() -> Self {
        Self(Message::new())
    }

    /// Creates a new Array that contains the bytes stored in the provided Vec.
    pub fn from_vec(v: Vec<u8>) -> Self {
        Self(Message::from_parts(v, vec![]))
    }

    /// Access the array data as a slice.
    pub fn as_slice(&self) -> &[u8] {
        self.0.bytes()
    }

    /// Extracts the Array data as a Vec<u8>.
    pub fn into_vec(self) -> Vec<u8> {
        let (bytes, _) = self.0.take();
        bytes
    }

    /// Returns the length (in bytes) of the array.
    pub fn len(&self) -> usize {
        self.0.bytes().len()
    }

    /// Writes an Arg to the end of this Array, increasing its size.
    ///
    /// Note that arrays cannot contain handles and it is an error to attempt
    /// to write an `Arg::Handle` to an array.
    pub fn push<T: Into<Arg>>(&mut self, arg: T) -> io::Result<()> {
        let arg = arg.into();
        if let Arg::Handle(_) = &arg {
            Err(io::Error::new(io::ErrorKind::InvalidInput, "Arrays cannot contain handles"))
        } else {
            self.0.write_arg(arg)
        }
    }

    /// Reads an Arg out of this Array and return the value.
    ///
    /// Note that arrays cannot contain handles and it is an error to attempt
    /// to read an `ArgKind::Handle` from an array.
    pub fn read_arg(&mut self, kind: ArgKind) -> io::Result<Arg> {
        if kind == ArgKind::Handle {
            Err(io::Error::new(io::ErrorKind::InvalidInput, "Arrays cannot contain handles"))
        } else {
            self.0.read_arg(kind)
        }
    }
}

impl From<Vec<u8>> for Array {
    fn from(v: Vec<u8>) -> Self {
        Self::from_vec(v)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use anyhow::Error;

    /// Helper to assist asserting a single match branch.
    ///
    /// Ex:
    ///
    /// let arg = Arg::Uint(8);
    /// assert_matches(arg, Arg::Uint(x) => assert_eq!(x, 8));
    macro_rules! assert_matches(
        ($e:expr, $p:pat => $a:expr) => (
            match $e {
                $p => $a,
                _ => panic!("Failed to match!"),
            }
        )
    );

    const UINT_VALUE: u32 = 0x1234567;
    const INT_VALUE: i32 = -12345678;
    const FIXED_VALUE: i32 = 0x11223344;
    const OBJECT_VALUE: u32 = 0x88775566;
    const NEW_ID_VALUE: u32 = 0x55443322;
    const STRING_VALUE: &str = "Hello from a test";
    const ARRAY_VALUE: &[u8] = &[0, 1, 2, 3, 4, 5, 6];

    /// Emit one argument of each type and read it back out.
    #[test]
    fn sanity() {
        let (h1, _h2) = zx::Socket::create_stream();

        let mut message = Message::new();
        assert!(message.write_arg(Arg::Uint(UINT_VALUE)).is_ok());
        assert!(message.write_arg(Arg::Int(INT_VALUE)).is_ok());
        assert!(message.write_arg(Arg::Fixed(Fixed::from_bits(FIXED_VALUE))).is_ok());
        assert!(message.write_arg(Arg::Object(OBJECT_VALUE)).is_ok());
        assert!(message.write_arg(Arg::NewId(NEW_ID_VALUE)).is_ok());
        assert!(message.write_arg(Arg::String(STRING_VALUE.to_owned())).is_ok());
        assert!(message.write_arg(Arg::Array(ARRAY_VALUE.to_owned().into())).is_ok());
        assert!(message.write_arg(Arg::Handle(h1.into())).is_ok());

        let (bytes, handles) = message.take();
        assert_eq!(1, handles.len());
        const INT_SIZE: u32 = 4;
        const UINT_SIZE: u32 = 4;
        const FIXED_SIZE: u32 = 4;
        const OBJECT_SIZE: u32 = 4;
        const NEW_ID_SIZE: u32 = 4;
        const STRING_SIZE: u32 = 24;
        const VEC_SIZE: u32 = 12;
        let expected_size =
            INT_SIZE + UINT_SIZE + FIXED_SIZE + OBJECT_SIZE + NEW_ID_SIZE + STRING_SIZE + VEC_SIZE;
        assert_eq!(expected_size as usize, bytes.len());

        let mut message = Message::from_parts(bytes, handles);
        let arg = message.read_arg(ArgKind::Uint).unwrap();
        assert_matches!(arg, Arg::Uint(x) => assert_eq!(x, UINT_VALUE));
        let arg = message.read_arg(ArgKind::Int).unwrap();
        assert_matches!(arg, Arg::Int(x) => assert_eq!(x, INT_VALUE));
        let arg = message.read_arg(ArgKind::Fixed).unwrap();
        assert_matches!(arg, Arg::Fixed(x) => assert_eq!(x, Fixed::from_bits(FIXED_VALUE)));
        let arg = message.read_arg(ArgKind::Object).unwrap();
        assert_matches!(arg, Arg::Object(x) => assert_eq!(x, OBJECT_VALUE));
        let arg = message.read_arg(ArgKind::NewId).unwrap();
        assert_matches!(arg, Arg::NewId(x) => assert_eq!(x, NEW_ID_VALUE));
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref x) => assert_eq!(x, STRING_VALUE));
        let arg = message.read_arg(ArgKind::Array).unwrap();
        assert_matches!(arg, Arg::Array(ref x) => assert_eq!(x.as_slice(), ARRAY_VALUE));
    }

    /// Test some of the padding edge-cases for string values.
    #[test]
    fn string_test() {
        let mut message = Message::new();

        // 4 bytes length + 1 null terminating byte + 3 pad bytes
        let s0 = "";
        message.clear();
        assert!(message.write_arg(Arg::String(s0.to_owned())).is_ok());
        assert_eq!(8, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, s0));

        // 4 bytes length + 1 char + 1 null terminating byte + 2 pad bytes
        let s1 = "1";
        message.clear();
        assert!(message.write_arg(Arg::String(s1.to_owned())).is_ok());
        assert_eq!(8, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, s1));

        // 4 bytes length + 2 char + 1 null terminating byte + 1 pad bytes
        let s2 = "22";
        message.clear();
        assert!(message.write_arg(Arg::String(s2.to_owned())).is_ok());
        assert_eq!(8, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, s2));

        // 4 bytes length + 3 char + 1 null terminating byte + 0 pad bytes
        let s3 = "333";
        message.clear();
        assert!(message.write_arg(Arg::String(s3.to_owned())).is_ok());
        assert_eq!(8, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, s3));

        // 4 bytes length + 4 char + 1 null terminating byte + 3 pad bytes
        let s4 = "4444";
        message.clear();
        assert!(message.write_arg(Arg::String(s4.to_owned())).is_ok());
        assert_eq!(12, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, s4));

        // 4 bytes length + 5 char + 1 null terminating byte + 2 pad bytes
        let s5 = "55555";
        message.clear();
        assert!(message.write_arg(Arg::String(s5.to_owned())).is_ok());
        assert_eq!(12, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, s5));

        // Null string (no \0 termiator). This is distinct from the empty
        // string (which is encoded as a single null terminator character).
        // Note that once decoded, a null and an empty string will have the
        // same representation, which is a Rust 'String' with length 0, but
        // this test ensures that we decode the null string correctly.
        //
        // 4 bytes length
        message.clear();
        assert!(message.write_arg(Arg::Uint(0)).is_ok());
        assert_eq!(4, message.bytes().len());
        message.rewind();
        let arg = message.read_arg(ArgKind::String).unwrap();
        assert_matches!(arg, Arg::String(ref s) => assert_eq!(s, ""));
    }

    #[test]
    fn peek_header() -> Result<(), Error> {
        // Write just a message header.
        let header = MessageHeader { sender: 3, opcode: 2, length: 8 };
        let mut message = Message::new();
        message.write_header(&header)?;
        message.rewind();

        // Verify peek doesn't advance the read pointer.
        assert_eq!(header, message.peek_header()?);
        assert_eq!(header, message.peek_header()?);
        assert_eq!(header, message.peek_header()?);
        assert_eq!(header, message.peek_header()?);
        Ok(())
    }

    #[test]
    fn empty_message() {
        let (h1, h2) = zx::Channel::create();

        let message = Message::new();
        assert!(message.is_empty());
        let message = Message::from_parts(vec![], vec![]);
        assert!(message.is_empty());
        let message = Message::from_parts(vec![1], vec![]);
        assert!(!message.is_empty());
        let message = Message::from_parts(vec![], vec![h1.into()]);
        assert!(!message.is_empty());

        let mut message = Message::from_parts(vec![0, 0, 0, 0], vec![h2.into()]);
        assert!(!message.is_empty());
        let _ = message.read_arg(ArgKind::Uint).unwrap();
        assert!(!message.is_empty());
        let _ = message.read_arg(ArgKind::Handle).unwrap();
        assert!(message.is_empty());
    }

    #[test]
    fn array_read_write() -> Result<(), Error> {
        let mut message = Message::new();
        let mut array = Array::new();
        array.push(3)?;
        array.push(-2)?;
        array.push(Fixed::from_float(-2.0))?;
        message.write_arg(array.into())?;
        message.rewind();

        let mut array = message.read_arg(ArgKind::Array)?.as_array()?;
        assert_eq!(3, array.read_arg(ArgKind::Uint)?.as_uint()?);
        assert_eq!(-2, array.read_arg(ArgKind::Int)?.as_int()?);
        assert_eq!(Fixed::from_float(-2.), array.read_arg(ArgKind::Fixed)?.as_fixed()?);

        Ok(())
    }
}