tokio/runtime/time/
mod.rs

1// Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
2// in the future, this will change to the reverse. For now, suppress this
3// warning and generally stick with being explicit about unsafety.
4#![allow(unused_unsafe)]
5#![cfg_attr(not(feature = "rt"), allow(dead_code))]
6
7//! Time driver.
8
9mod entry;
10pub(crate) use entry::TimerEntry;
11use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION};
12
13mod handle;
14pub(crate) use self::handle::Handle;
15use self::wheel::Wheel;
16
17mod source;
18pub(crate) use source::TimeSource;
19
20mod wheel;
21
22use crate::loom::sync::atomic::{AtomicBool, Ordering};
23use crate::loom::sync::Mutex;
24use crate::runtime::driver::{self, IoHandle, IoStack};
25use crate::time::error::Error;
26use crate::time::{Clock, Duration};
27use crate::util::WakeList;
28
29use crate::loom::sync::atomic::AtomicU64;
30use std::fmt;
31use std::{num::NonZeroU64, ptr::NonNull};
32
33struct AtomicOptionNonZeroU64(AtomicU64);
34
35// A helper type to store the `next_wake`.
36impl AtomicOptionNonZeroU64 {
37    fn new(val: Option<NonZeroU64>) -> Self {
38        Self(AtomicU64::new(val.map_or(0, NonZeroU64::get)))
39    }
40
41    fn store(&self, val: Option<NonZeroU64>) {
42        self.0
43            .store(val.map_or(0, NonZeroU64::get), Ordering::Relaxed);
44    }
45
46    fn load(&self) -> Option<NonZeroU64> {
47        NonZeroU64::new(self.0.load(Ordering::Relaxed))
48    }
49}
50
51/// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
52///
53/// A `Driver` instance tracks the state necessary for managing time and
54/// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
55///
56/// It is expected that a single instance manages many individual [`Sleep`][sleep]
57/// instances. The `Driver` implementation is thread-safe and, as such, is able
58/// to handle callers from across threads.
59///
60/// After creating the `Driver` instance, the caller must repeatedly call `park`
61/// or `park_timeout`. The time driver will perform no work unless `park` or
62/// `park_timeout` is called repeatedly.
63///
64/// The driver has a resolution of one millisecond. Any unit of time that falls
65/// between milliseconds are rounded up to the next millisecond.
66///
67/// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
68/// elapsed will be notified with an error. At this point, calling `poll` on the
69/// [`Sleep`][sleep] instance will result in panic.
70///
71/// # Implementation
72///
73/// The time driver is based on the [paper by Varghese and Lauck][paper].
74///
75/// A hashed timing wheel is a vector of slots, where each slot handles a time
76/// slice. As time progresses, the timer walks over the slot for the current
77/// instant, and processes each entry for that slot. When the timer reaches the
78/// end of the wheel, it starts again at the beginning.
79///
80/// The implementation maintains six wheels arranged in a set of levels. As the
81/// levels go up, the slots of the associated wheel represent larger intervals
82/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
83/// time equal to the wheel at the lower level. At level zero, each slot
84/// represents one millisecond of time.
85///
86/// The wheels are:
87///
88/// * Level 0: 64 x 1 millisecond slots.
89/// * Level 1: 64 x 64 millisecond slots.
90/// * Level 2: 64 x ~4 second slots.
91/// * Level 3: 64 x ~4 minute slots.
92/// * Level 4: 64 x ~4 hour slots.
93/// * Level 5: 64 x ~12 day slots.
94///
95/// When the timer processes entries at level zero, it will notify all the
96/// `Sleep` instances as their deadlines have been reached. For all higher
97/// levels, all entries will be redistributed across the wheel at the next level
98/// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
99/// either be canceled (dropped) or their associated entries will reach level
100/// zero and be notified.
101///
102/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
103/// [sleep]: crate::time::Sleep
104/// [timeout]: crate::time::Timeout
105/// [interval]: crate::time::Interval
106#[derive(Debug)]
107pub(crate) struct Driver {
108    /// Parker to delegate to.
109    park: IoStack,
110}
111
112/// Timer state shared between `Driver`, `Handle`, and `Registration`.
113struct Inner {
114    /// The earliest time at which we promise to wake up without unparking.
115    next_wake: AtomicOptionNonZeroU64,
116
117    /// Sharded Timer wheels.
118    wheels: Box<[Mutex<wheel::Wheel>]>,
119
120    /// True if the driver is being shutdown.
121    pub(super) is_shutdown: AtomicBool,
122
123    // When `true`, a call to `park_timeout` should immediately return and time
124    // should not advance. One reason for this to be `true` is if the task
125    // passed to `Runtime::block_on` called `task::yield_now()`.
126    //
127    // While it may look racy, it only has any effect when the clock is paused
128    // and pausing the clock is restricted to a single-threaded runtime.
129    #[cfg(feature = "test-util")]
130    did_wake: AtomicBool,
131}
132
133// ===== impl Driver =====
134
135impl Driver {
136    /// Creates a new `Driver` instance that uses `park` to block the current
137    /// thread and `time_source` to get the current time and convert to ticks.
138    ///
139    /// Specifying the source of time is useful when testing.
140    pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) {
141        assert!(shards > 0);
142
143        let time_source = TimeSource::new(clock);
144        let wheels: Vec<_> = (0..shards)
145            .map(|_| Mutex::new(wheel::Wheel::new()))
146            .collect();
147
148        let handle = Handle {
149            time_source,
150            inner: Inner {
151                next_wake: AtomicOptionNonZeroU64::new(None),
152                wheels: wheels.into_boxed_slice(),
153                is_shutdown: AtomicBool::new(false),
154                #[cfg(feature = "test-util")]
155                did_wake: AtomicBool::new(false),
156            },
157        };
158
159        let driver = Driver { park };
160
161        (driver, handle)
162    }
163
164    pub(crate) fn park(&mut self, handle: &driver::Handle) {
165        self.park_internal(handle, None);
166    }
167
168    pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) {
169        self.park_internal(handle, Some(duration));
170    }
171
172    pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) {
173        let handle = rt_handle.time();
174
175        if handle.is_shutdown() {
176            return;
177        }
178
179        handle.inner.is_shutdown.store(true, Ordering::SeqCst);
180
181        // Advance time forward to the end of time.
182
183        handle.process_at_time(0, u64::MAX);
184
185        self.park.shutdown(rt_handle);
186    }
187
188    fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) {
189        let handle = rt_handle.time();
190        assert!(!handle.is_shutdown());
191
192        // Finds out the min expiration time to park.
193        let locks = (0..rt_handle.time().inner.get_shard_size())
194            .map(|id| rt_handle.time().inner.lock_sharded_wheel(id))
195            .collect::<Vec<_>>();
196
197        let expiration_time = locks
198            .iter()
199            .filter_map(|lock| lock.next_expiration_time())
200            .min();
201
202        rt_handle
203            .time()
204            .inner
205            .next_wake
206            .store(next_wake_time(expiration_time));
207
208        // Safety: After updating the `next_wake`, we drop all the locks.
209        drop(locks);
210
211        match expiration_time {
212            Some(when) => {
213                let now = handle.time_source.now(rt_handle.clock());
214                // Note that we effectively round up to 1ms here - this avoids
215                // very short-duration microsecond-resolution sleeps that the OS
216                // might treat as zero-length.
217                let mut duration = handle
218                    .time_source
219                    .tick_to_duration(when.saturating_sub(now));
220
221                if duration > Duration::from_millis(0) {
222                    if let Some(limit) = limit {
223                        duration = std::cmp::min(limit, duration);
224                    }
225
226                    self.park_thread_timeout(rt_handle, duration);
227                } else {
228                    self.park.park_timeout(rt_handle, Duration::from_secs(0));
229                }
230            }
231            None => {
232                if let Some(duration) = limit {
233                    self.park_thread_timeout(rt_handle, duration);
234                } else {
235                    self.park.park(rt_handle);
236                }
237            }
238        }
239
240        // Process pending timers after waking up
241        handle.process(rt_handle.clock());
242    }
243
244    cfg_test_util! {
245        fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
246            let handle = rt_handle.time();
247            let clock = rt_handle.clock();
248
249            if clock.can_auto_advance() {
250                self.park.park_timeout(rt_handle, Duration::from_secs(0));
251
252                // If the time driver was woken, then the park completed
253                // before the "duration" elapsed (usually caused by a
254                // yield in `Runtime::block_on`). In this case, we don't
255                // advance the clock.
256                if !handle.did_wake() {
257                    // Simulate advancing time
258                    if let Err(msg) = clock.advance(duration) {
259                        panic!("{}", msg);
260                    }
261                }
262            } else {
263                self.park.park_timeout(rt_handle, duration);
264            }
265        }
266    }
267
268    cfg_not_test_util! {
269        fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
270            self.park.park_timeout(rt_handle, duration);
271        }
272    }
273}
274
275// Helper function to turn expiration_time into next_wake_time.
276// Since the `park_timeout` will round up to 1ms for avoiding very
277// short-duration microsecond-resolution sleeps, we do the same here.
278// The conversion is as follows
279// None => None
280// Some(0) => Some(1)
281// Some(i) => Some(i)
282fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> {
283    expiration_time.and_then(|v| {
284        if v == 0 {
285            NonZeroU64::new(1)
286        } else {
287            NonZeroU64::new(v)
288        }
289    })
290}
291
292impl Handle {
293    /// Runs timer related logic, and returns the next wakeup time
294    pub(self) fn process(&self, clock: &Clock) {
295        let now = self.time_source().now(clock);
296        // For fairness, randomly select one to start.
297        let shards = self.inner.get_shard_size();
298        let start = crate::runtime::context::thread_rng_n(shards);
299        self.process_at_time(start, now);
300    }
301
302    pub(self) fn process_at_time(&self, start: u32, now: u64) {
303        let shards = self.inner.get_shard_size();
304
305        let expiration_time = (start..shards + start)
306            .filter_map(|i| self.process_at_sharded_time(i, now))
307            .min();
308
309        self.inner.next_wake.store(next_wake_time(expiration_time));
310    }
311
312    // Returns the next wakeup time of this shard.
313    pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> {
314        let mut waker_list = WakeList::new();
315        let mut lock = self.inner.lock_sharded_wheel(id);
316
317        if now < lock.elapsed() {
318            // Time went backwards! This normally shouldn't happen as the Rust language
319            // guarantees that an Instant is monotonic, but can happen when running
320            // Linux in a VM on a Windows host due to std incorrectly trusting the
321            // hardware clock to be monotonic.
322            //
323            // See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
324            now = lock.elapsed();
325        }
326
327        while let Some(entry) = lock.poll(now) {
328            debug_assert!(unsafe { entry.is_pending() });
329
330            // SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
331            if let Some(waker) = unsafe { entry.fire(Ok(())) } {
332                waker_list.push(waker);
333
334                if !waker_list.can_push() {
335                    // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
336                    drop(lock);
337
338                    waker_list.wake_all();
339
340                    lock = self.inner.lock_sharded_wheel(id);
341                }
342            }
343        }
344        let next_wake_up = lock.poll_at();
345        drop(lock);
346
347        waker_list.wake_all();
348        next_wake_up
349    }
350
351    /// Removes a registered timer from the driver.
352    ///
353    /// The timer will be moved to the cancelled state. Wakers will _not_ be
354    /// invoked. If the timer is already completed, this function is a no-op.
355    ///
356    /// This function always acquires the driver lock, even if the entry does
357    /// not appear to be registered.
358    ///
359    /// SAFETY: The timer must not be registered with some other driver, and
360    /// `add_entry` must not be called concurrently.
361    pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
362        unsafe {
363            let mut lock = self.inner.lock_sharded_wheel(entry.as_ref().shard_id());
364
365            if entry.as_ref().might_be_registered() {
366                lock.remove(entry);
367            }
368
369            entry.as_ref().handle().fire(Ok(()));
370        }
371    }
372
373    /// Removes and re-adds an entry to the driver.
374    ///
375    /// SAFETY: The timer must be either unregistered, or registered with this
376    /// driver. No other threads are allowed to concurrently manipulate the
377    /// timer at all (the current thread should hold an exclusive reference to
378    /// the `TimerEntry`)
379    pub(self) unsafe fn reregister(
380        &self,
381        unpark: &IoHandle,
382        new_tick: u64,
383        entry: NonNull<TimerShared>,
384    ) {
385        let waker = unsafe {
386            let mut lock = self.inner.lock_sharded_wheel(entry.as_ref().shard_id());
387
388            // We may have raced with a firing/deregistration, so check before
389            // deregistering.
390            if unsafe { entry.as_ref().might_be_registered() } {
391                lock.remove(entry);
392            }
393
394            // Now that we have exclusive control of this entry, mint a handle to reinsert it.
395            let entry = entry.as_ref().handle();
396
397            if self.is_shutdown() {
398                unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
399            } else {
400                entry.set_expiration(new_tick);
401
402                // Note: We don't have to worry about racing with some other resetting
403                // thread, because add_entry and reregister require exclusive control of
404                // the timer entry.
405                match unsafe { lock.insert(entry) } {
406                    Ok(when) => {
407                        if self
408                            .inner
409                            .next_wake
410                            .load()
411                            .map(|next_wake| when < next_wake.get())
412                            .unwrap_or(true)
413                        {
414                            unpark.unpark();
415                        }
416
417                        None
418                    }
419                    Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe {
420                        entry.fire(Ok(()))
421                    },
422                }
423            }
424
425            // Must release lock before invoking waker to avoid the risk of deadlock.
426        };
427
428        // The timer was fired synchronously as a result of the reregistration.
429        // Wake the waker; this is needed because we might reset _after_ a poll,
430        // and otherwise the task won't be awoken to poll again.
431        if let Some(waker) = waker {
432            waker.wake();
433        }
434    }
435
436    cfg_test_util! {
437        fn did_wake(&self) -> bool {
438            self.inner.did_wake.swap(false, Ordering::SeqCst)
439        }
440    }
441}
442
443// ===== impl Inner =====
444
445impl Inner {
446    /// Locks the driver's sharded wheel structure.
447    pub(super) fn lock_sharded_wheel(
448        &self,
449        shard_id: u32,
450    ) -> crate::loom::sync::MutexGuard<'_, Wheel> {
451        let index = shard_id % (self.wheels.len() as u32);
452        // Safety: This modulo operation ensures that the index is not out of bounds.
453        unsafe { self.wheels.get_unchecked(index as usize).lock() }
454    }
455
456    // Check whether the driver has been shutdown
457    pub(super) fn is_shutdown(&self) -> bool {
458        self.is_shutdown.load(Ordering::SeqCst)
459    }
460
461    // Gets the number of shards.
462    fn get_shard_size(&self) -> u32 {
463        self.wheels.len() as u32
464    }
465}
466
467impl fmt::Debug for Inner {
468    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
469        fmt.debug_struct("Inner").finish()
470    }
471}
472
473#[cfg(test)]
474mod tests;