fuchsia_sync/condvar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::MutexGuard;
use std::sync::atomic::Ordering;
use std::time::Duration;
/// A [condition variable][wikipedia] that integrates with [`fuchsia_sync::Mutex`].
///
/// [wikipedia]: https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables
pub struct Condvar {
/// Incremented by 1 on each notification.
inner: zx::Futex,
}
impl Condvar {
pub const fn new() -> Self {
Self { inner: zx::Futex::new(0) }
}
pub fn notify_one(&self) {
// Relaxed because the futex operation synchronizes.
self.inner.fetch_add(1, Ordering::Relaxed);
self.inner.wake_single_owner();
}
pub fn notify_all(&self) {
// Relaxed because the futex operation synchronizes.
self.inner.fetch_add(1, Ordering::Relaxed);
self.inner.wake_all();
}
pub fn wait<T: ?Sized>(&self, guard: &mut MutexGuard<'_, T>) {
assert!(
!self.wait_inner(guard, zx::MonotonicInstant::INFINITE).timed_out,
"an infinite wait should not timeout"
);
}
pub fn wait_while<'a, T: ?Sized, F>(&self, guard: &mut MutexGuard<'a, T>, mut condition: F)
where
F: FnMut(&mut T) -> bool,
{
while condition(&mut *guard) {
self.wait(guard);
}
}
pub fn wait_for<T: ?Sized>(
&self,
guard: &mut MutexGuard<'_, T>,
timeout: Duration,
) -> WaitTimeoutResult {
self.wait_inner(guard, zx::MonotonicInstant::after(timeout.into()))
}
pub fn wait_while_for<'a, T: ?Sized, F>(
&self,
guard: &mut MutexGuard<'a, T>,
mut condition: F,
timeout: Duration,
) -> WaitTimeoutResult
where
F: FnMut(&mut T) -> bool,
{
let mut result = WaitTimeoutResult { timed_out: false };
while !result.timed_out() && condition(&mut *guard) {
result = self.wait_for(guard, timeout);
}
result
}
fn wait_inner<T: ?Sized>(
&self,
guard: &mut MutexGuard<'_, T>,
deadline: zx::MonotonicInstant,
) -> WaitTimeoutResult {
// Relaxed because the futex and mutex operations synchronize.
let current = self.inner.load(Ordering::Relaxed);
MutexGuard::unlocked(guard, || {
match self.inner.wait(current, None, deadline) {
// The count only goes up. If `current` isn't the current value, a notification
// was received in between reading `current` and waiting.
Ok(()) | Err(zx::Status::BAD_STATE) => WaitTimeoutResult { timed_out: false },
Err(zx::Status::TIMED_OUT) => WaitTimeoutResult { timed_out: true },
Err(e) => panic!("unexpected wait error {e:?}"),
}
})
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct WaitTimeoutResult {
timed_out: bool,
}
impl WaitTimeoutResult {
pub fn timed_out(&self) -> bool {
self.timed_out
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Mutex;
#[test]
fn notify_one_works() {
let mutex = Mutex::new(());
let condvar = Condvar::new();
crossbeam::thread::scope(|s| {
let mut locked = mutex.lock();
s.spawn(|_| {
// With the lock already held, this won't return until the below wait starts.
let _locked = mutex.lock();
condvar.notify_one();
});
// This will hang forever (and time out the test infra) if notification doesn't work.
condvar.wait(&mut locked);
})
.unwrap();
}
#[test]
fn notify_all_works() {
let num_threads = 10;
let count = Mutex::new(0);
let condvar = Condvar::new();
let (send, recv) = std::sync::mpsc::channel();
crossbeam::thread::scope(|s| {
for _ in 0..num_threads {
s.spawn(|_| {
let mut count = count.lock();
*count += 1;
if *count == num_threads {
// Notify the main thread that the last thread has acquired the lock.
send.send(()).unwrap();
}
while *count != 0 {
condvar.wait(&mut count);
}
});
}
// Wait for all threads to have started waiting on their condvar.
recv.recv().unwrap();
let mut count = count.lock();
*count = 0;
condvar.notify_all();
drop(count);
// The crossbeam scope will now wait for all of the spawned threads to observe count=0.
})
.unwrap();
}
#[test]
fn wait_while_works() {
let pending = Mutex::new(true);
let condvar = Condvar::new();
crossbeam::thread::scope(|s| {
let mut locked_pending = pending.lock();
s.spawn(|_| {
// With the lock already held, this won't return until the below wait starts.
let mut locked_pending = pending.lock();
*locked_pending = false;
condvar.notify_one();
});
// This will hang forever (and time out the test infra) if the notification doesn't work
// or if the condition never evaluates to false.
condvar.wait_while(&mut locked_pending, |pending| !*pending);
})
.unwrap();
}
#[test]
fn wait_for_times_out() {
let mutex = Mutex::new(());
let condvar = Condvar::new();
let mut locked = mutex.lock();
// Account for possible spurious wakeups.
loop {
if condvar.wait_for(&mut locked, std::time::Duration::from_secs(1)).timed_out() {
break;
}
}
}
#[test]
fn wait_while_for_times_out() {
let mutex = Mutex::new(());
let condvar = Condvar::new();
let mut locked = mutex.lock();
let result =
condvar.wait_while_for(&mut locked, |_value| true, std::time::Duration::from_secs(1));
assert!(result.timed_out());
}
}