vfs/
object_request.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::execution_scope::ExecutionScope;
use crate::node::{self, Node};
use crate::ProtocolsExt;
use fidl::endpoints::{ControlHandle, ProtocolMarker, RequestStream, ServerEnd};
use fidl::epitaph::ChannelEpitaphExt;
use fidl::{AsHandleRef, HandleBased};
use futures::future::BoxFuture;
use std::future::Future;
use std::sync::Arc;
use zx_status::Status;
use {fidl_fuchsia_io as fio, fuchsia_async as fasync};

/// Wraps the channel provided in the open methods and provide convenience methods for sending
/// appropriate responses.  It also records actions that should be taken upon successful connection
/// such as truncating file objects.
#[derive(Debug)]
pub struct ObjectRequest {
    // The channel.
    object_request: fidl::Channel,

    // What should be sent first.
    what_to_send: ObjectRequestSend,

    // Attributes required in the open method.
    attributes: fio::NodeAttributesQuery,

    // Creation attributes.
    create_attributes: Option<Box<fio::MutableNodeAttributes>>,

    /// Truncate the object before use.
    pub truncate: bool,
}

impl ObjectRequest {
    pub(crate) fn new_deprecated(
        object_request: fidl::Channel,
        what_to_send: ObjectRequestSend,
        attributes: fio::NodeAttributesQuery,
        create_attributes: Option<&fio::MutableNodeAttributes>,
        truncate: bool,
    ) -> Self {
        assert!(!object_request.is_invalid_handle());
        let create_attributes = create_attributes.map(|a| Box::new(a.clone()));
        Self { object_request, what_to_send, attributes, create_attributes, truncate }
    }

    /// Create a new [`ObjectRequest`] from a set of [`fio::Flags`] and [`fio::Options`]`.
    pub fn new(flags: fio::Flags, options: &fio::Options, object_request: fidl::Channel) -> Self {
        Self::new_deprecated(
            object_request,
            if flags.get_representation() {
                ObjectRequestSend::OnRepresentation
            } else {
                ObjectRequestSend::Nothing
            },
            options.attributes.unwrap_or(fio::NodeAttributesQuery::empty()),
            options.create_attributes.as_ref(),
            flags.is_truncate(),
        )
    }

    pub(crate) fn what_to_send(&self) -> ObjectRequestSend {
        self.what_to_send
    }

    pub fn attributes(&self) -> fio::NodeAttributesQuery {
        self.attributes
    }

    pub fn create_attributes(&self) -> Option<&fio::MutableNodeAttributes> {
        self.create_attributes.as_deref()
    }

    pub fn options(&self) -> fio::Options {
        fio::Options {
            attributes: (!self.attributes.is_empty()).then_some(self.attributes),
            create_attributes: self
                .create_attributes
                .as_ref()
                .map(|a| fio::MutableNodeAttributes::clone(&a)),
            ..Default::default()
        }
    }

    /// Returns the request stream after sending requested information.
    pub async fn into_request_stream<T: Representation>(
        self,
        connection: &T,
    ) -> Result<<T::Protocol as ProtocolMarker>::RequestStream, Status> {
        let stream = fio::NodeRequestStream::from_channel(fasync::Channel::from_channel(
            self.object_request,
        ));
        match self.what_to_send {
            ObjectRequestSend::OnOpen => {
                let control_handle = stream.control_handle();
                let node_info = connection.node_info().await.map_err(|s| {
                    control_handle.shutdown_with_epitaph(s);
                    s
                })?;
                send_on_open(&stream.control_handle(), node_info)?;
            }
            ObjectRequestSend::OnRepresentation => {
                let control_handle = stream.control_handle();
                let representation =
                    connection.get_representation(self.attributes).await.map_err(|s| {
                        control_handle.shutdown_with_epitaph(s);
                        s
                    })?;
                control_handle
                    .send_on_representation(representation)
                    .map_err(|_| Status::PEER_CLOSED)?;
            }
            ObjectRequestSend::Nothing => {}
        }
        Ok(stream.cast_stream())
    }

    /// Converts to ServerEnd<T>.
    pub fn into_server_end<T>(self) -> ServerEnd<T> {
        ServerEnd::new(self.object_request)
    }

    /// Extracts the channel (without sending on_open).
    pub fn into_channel(self) -> fidl::Channel {
        self.object_request
    }

    /// Extracts the channel after sending on_open.
    pub fn into_channel_after_sending_on_open(
        self,
        node_info: fio::NodeInfoDeprecated,
    ) -> Result<fidl::Channel, Status> {
        let stream = fio::NodeRequestStream::from_channel(fasync::Channel::from_channel(
            self.object_request,
        ));
        send_on_open(&stream.control_handle(), node_info)?;
        let (inner, _is_terminated) = stream.into_inner();
        // It's safe to unwrap here because inner is clearly the only Arc reference left.
        Ok(Arc::try_unwrap(inner).unwrap().into_channel().into())
    }

    /// Terminates the object request with the given status.
    pub fn shutdown(self, status: Status) {
        if self.object_request.is_invalid_handle() {
            return;
        }
        if let ObjectRequestSend::OnOpen = self.what_to_send {
            let (_, control_handle) = ServerEnd::<fio::NodeMarker>::new(self.object_request)
                .into_stream_and_control_handle();
            let _ = control_handle.send_on_open_(status.into_raw(), None);
            control_handle.shutdown_with_epitaph(status);
        } else {
            let _ = self.object_request.close_with_epitaph(status);
        }
    }

    /// Calls `f` and sends an error on the object request channel upon failure.
    pub fn handle<T>(
        mut self,
        f: impl FnOnce(ObjectRequestRef<'_>) -> Result<T, Status>,
    ) -> Option<T> {
        match f(&mut self) {
            Ok(o) => Some(o),
            Err(s) => {
                self.shutdown(s);
                None
            }
        }
    }

    /// Spawn a task for the object request.  The callback returns a future that can return a
    /// Status which will be handled appropriately.  If the future succeeds it should return
    /// another future that is responsible for the long term servicing of the object request.  This
    /// is done to avoid paying the stack cost of the object request for the lifetime of the
    /// connection.
    ///
    /// For example:
    ///
    ///   object_request.spawn(
    ///       scope,
    ///       move |object_request| Box::pin(async move {
    ///           // Perform checks on the new connection
    ///           if !valid(...) {
    ///               return Err(Status::INVALID_ARGS);
    ///           }
    ///           // Upon success, return a future that handles the connection.
    ///           let requests = object_request.take().into_request_stream();
    ///           Ok(async {
    ///                  while let request = requests.next().await {
    ///                      ...
    ///                  }
    ///              })
    ///       }));
    ///
    pub fn spawn<F, Fut>(self, scope: &ExecutionScope, f: F)
    where
        for<'a> F:
            FnOnce(ObjectRequestRef<'a>) -> BoxFuture<'a, Result<Fut, Status>> + Send + 'static,
        Fut: Future<Output = ()> + Send,
    {
        scope.spawn(async {
            // This avoids paying the stack cost for ObjectRequest for the lifetime of the task.
            let fut = {
                let mut this = self;
                match f(&mut this).await {
                    Err(s) => {
                        this.shutdown(s);
                        return;
                    }
                    Ok(fut) => fut,
                }
            };
            fut.await
        });
    }

    /// Waits until the request has a request waiting in its channel.  Returns immediately if this
    /// request requires sending an initial event such as OnOpen or OnRepresentation.  Returns
    /// `true` if the channel is readable (rather than just closed).
    pub async fn wait_till_ready(&self) -> bool {
        if !matches!(self.what_to_send, ObjectRequestSend::Nothing) {
            return true;
        }
        let signals = fasync::OnSignalsRef::new(
            self.object_request.as_handle_ref(),
            fidl::Signals::OBJECT_READABLE | fidl::Signals::CHANNEL_PEER_CLOSED,
        )
        .await
        .unwrap();
        signals.contains(fidl::Signals::OBJECT_READABLE)
    }

    /// Take the ObjectRequest.  The caller is responsible for sending errors.
    pub fn take(&mut self) -> ObjectRequest {
        assert!(!self.object_request.is_invalid_handle());
        Self {
            object_request: std::mem::replace(
                &mut self.object_request,
                fidl::Handle::invalid().into(),
            ),
            what_to_send: self.what_to_send,
            attributes: self.attributes,
            create_attributes: self.create_attributes.take(),
            truncate: self.truncate,
        }
    }

    /// Returns a future that will run the connection. `f` is a callback that returns a future
    /// that will run the connection but it will not be called if the connection is supposed
    /// to be a node connection.
    pub fn create_connection<N: Node, F: Future<Output = ()> + Send + 'static, P: ProtocolsExt>(
        &mut self,
        scope: ExecutionScope,
        node: Arc<N>,
        protocols: P,
        f: impl FnOnce(ExecutionScope, Arc<N>, P, &mut Self) -> Result<F, Status>,
    ) -> Result<BoxFuture<'static, ()>, Status> {
        assert!(!self.object_request.is_invalid_handle());
        if protocols.is_node() {
            Ok(Box::pin(node::Connection::create(scope, node, protocols, self)?))
        } else {
            Ok(Box::pin(f(scope, node, protocols, self)?))
        }
    }

    /// Spawns a new connection for this request. `f` is similar to `create_connection` above.
    pub fn spawn_connection<N: Node, F: Future<Output = ()> + Send + 'static, P: ProtocolsExt>(
        &mut self,
        scope: ExecutionScope,
        node: Arc<N>,
        protocols: P,
        f: impl FnOnce(ExecutionScope, Arc<N>, P, &mut Self) -> Result<F, Status>,
    ) -> Result<(), Status> {
        assert!(!self.object_request.is_invalid_handle());
        if protocols.is_node() {
            scope.spawn(node::Connection::create(scope.clone(), node, protocols, self)?);
        } else {
            scope.spawn(f(scope.clone(), node, protocols, self)?);
        }
        Ok(())
    }
}

pub type ObjectRequestRef<'a> = &'a mut ObjectRequest;

#[derive(Clone, Copy, Debug, PartialEq)]
#[allow(dead_code)]
pub(crate) enum ObjectRequestSend {
    OnOpen,
    OnRepresentation,
    Nothing,
}

/// Trait to get either fio::Representation or fio::NodeInfoDeprecated.  Connection types
/// should implement this.
pub trait Representation {
    /// The protocol used for the connection.
    type Protocol: ProtocolMarker;

    /// Returns io2's Representation for the object.
    fn get_representation(
        &self,
        requested_attributes: fio::NodeAttributesQuery,
    ) -> impl Future<Output = Result<fio::Representation, Status>> + Send;

    /// Returns io1's NodeInfoDeprecated.
    fn node_info(&self) -> impl Future<Output = Result<fio::NodeInfoDeprecated, Status>> + Send;
}

/// Convenience trait for converting [`fio::Flags`] and [`fio::OpenFlags`] into ObjectRequest.
///
/// If [`fio::Options`] need to be specified, use [`ObjectRequest::new`].
pub trait ToObjectRequest: ProtocolsExt {
    fn to_object_request(&self, object_request: impl Into<fidl::Handle>) -> ObjectRequest;
}

impl ToObjectRequest for fio::OpenFlags {
    fn to_object_request(&self, object_request: impl Into<fidl::Handle>) -> ObjectRequest {
        ObjectRequest::new_deprecated(
            object_request.into().into(),
            if self.contains(fio::OpenFlags::DESCRIBE) {
                ObjectRequestSend::OnOpen
            } else {
                ObjectRequestSend::Nothing
            },
            fio::NodeAttributesQuery::empty(),
            None,
            self.is_truncate(),
        )
    }
}

impl ToObjectRequest for fio::Flags {
    fn to_object_request(&self, object_request: impl Into<fidl::Handle>) -> ObjectRequest {
        ObjectRequest::new(*self, &Default::default(), object_request.into().into())
    }
}

fn send_on_open(
    control_handle: &fio::NodeControlHandle,
    node_info: fio::NodeInfoDeprecated,
) -> Result<(), Status> {
    control_handle
        .send_on_open_(Status::OK.into_raw(), Some(node_info))
        .map_err(|_| Status::PEER_CLOSED)
}