virtio_device/fake_queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Fake queue for simulating driver interactions in unittests
//!
//! To facilitate writing unittests it is useful to manipulate the queues from the perspective of a
//! a driver. This module contains helpers that allow for:
//! * Building simple descriptor chains
//! * Publishing the build descriptors in the available ring
//! * Receiving written descriptors from the used ring
//! This functionality centers around the [`FakeQueue`] implementation.
//!
//! For simplicity of writing tests the [`TestQueue`] struct packages together all the pieces
//! commonly needed to write a test.
//!
//! This module is available as, in addition to be used for writing the unittests for this library,
//! it can also be used for writing unittests for actual virtio device drivers without needing a
//! guest environment.
use crate::mem::{DeviceRange, DriverRange};
use crate::queue::{Queue, QueueMemory};
use crate::ring::{self, DescAccess, VRING_DESC_F_INDIRECT};
use crate::util::NotificationCounter;
use fuchsia_sync::Mutex;
use std::alloc::{self, GlobalAlloc};
use std::collections::HashMap;
// Helper struct that just holds an allocation and returns it to the system allocator on drop.
struct IdentityAlloc {
// alloc must not be null and be the return result from having passed layout to System.alloc,
// such that it is safe to pass alloc and layout to System.dealloc.
alloc: *mut u8,
layout: alloc::Layout,
}
impl IdentityAlloc {
fn new(layout: alloc::Layout) -> Option<Self> {
if layout.size() == 0 {
return None;
}
// The safety requirement on alloc_zeroed is that layout not be for a zero size, which we
// validated just above.
let alloc = unsafe { alloc::System.alloc_zeroed(layout) };
if alloc.is_null() {
return None;
}
Some(IdentityAlloc { alloc, layout })
}
fn base(&self) -> usize {
self.alloc as usize
}
}
impl Drop for IdentityAlloc {
fn drop(&mut self) {
// It is an invariant on alloc and layout that alloc is not null and that these are valid to
// pass to System.dealloc.
unsafe { alloc::System.dealloc(self.alloc, self.layout) };
}
}
/// Implementation of [`crate::mem::DriverMem`] assuming the identity translation.
///
/// Can be used to allocate valid [`DeviceRange`] using the [`range_with_layout`] or [`new_range`]
/// methods. This then implements the identity transformation in [`translate`] meaning that:
///
/// ```
/// let range = identity_driver_mem.new_range(64)?;
/// assert_eq!(identity_driver_mem.translate(range.get().into()), Some(range)
/// ```
///
/// There is no mechanism to free or deallocate any constructed ranges, this is neccessary to ensure
/// they remain valid their provided lifetimes. Allocations will be freed once the
/// [`IdentityDriverMem`] is dropped.
pub struct IdentityDriverMem {
// Allocations are stored using a DriverRange as the key, instead of a DeviceRange, to avoid
// needing to invent a fake lifetime annotation. It is a requirement that these allocations only
// be added to over the lifetime of the IdentityDriverMem.
allocations: Mutex<Vec<(DriverRange, IdentityAlloc)>>,
}
impl crate::mem::DriverMem for IdentityDriverMem {
fn translate<'a>(&'a self, driver: DriverRange) -> Option<DeviceRange<'a>> {
if driver.len() == 0 {
return None;
}
// See `driver` is contained in any of the ranges we have.
let range = self
.allocations
.lock()
.iter()
.map(|x| x.0.clone())
.find(|x| x.0.contains(&driver.0.start) && x.0.contains(&(driver.0.end - 1)))?
.0;
// We know (see `register`) that the DriverRange in allocations is a valid DeviceRange. As
// the backing memory will not be free'd until IdentityDriverMem is dropped, we can safely
// provide the lifetime `'a` on the range.
let device = unsafe { DeviceRange::new(range) };
// Now trim device down to the potential sub range that was requested.
let device = device.split_at(driver.0.start - device.get().start)?.1;
Some(device.split_at(driver.len())?.0)
}
}
impl IdentityDriverMem {
/// Construct a new [`IdentityDriverMem`]
pub fn new() -> IdentityDriverMem {
IdentityDriverMem { allocations: Mutex::new(Vec::new()) }
}
// Helper method for localizing the reasoning on the allocations map.
// # Safety
//
// Require that `alloc` be a valid `IdentityAlloc` and that range.start == alloc.base and
// range.len() <= alloc.layout.size(). This ensures range can be safely re-interpreted as a
// DeviceRange.
unsafe fn register(&self, range: DriverRange, alloc: IdentityAlloc) {
self.allocations.lock().push((range, alloc));
}
fn range_with_layout_size<'a>(
&'a self,
size_bytes: usize,
layout: alloc::Layout,
) -> Option<DeviceRange<'a>> {
// Validate that our desired length fits inside the amount we are going to allocate
if size_bytes > layout.size() {
return None;
}
let alloc = IdentityAlloc::new(layout)?;
let base = alloc.base();
// The memory we provide to DeviceRange is valid as it just came from the allocator. And it
// will remain valid until the [`IdentityAlloc`] is dropped and the memory freed, which does
// not happen till this object is destroyed, and we have a borrow against this object of the
// same lifetime as we provide in the DeviceRange.
let range = unsafe { DeviceRange::new(base..(base + size_bytes)) };
// register is safe to call since we provide a range that is pulled out of a valid
// DeviceRange and range was is from the provided allocation.
unsafe { self.register(DriverRange(range.get()), alloc) };
Some(range)
}
/// Allocate with a specific [`alloc::Layout`]
///
/// Specifying a specific [`alloc::Layout`] for the range is to allow for alignments to be
/// specified so that [underlying](#get) [`DeviceRange`] can be accessed directly as a desired
/// object using [`DeviceRange::try_ptr`].
///
/// The allocated range will be zeroed.
pub fn range_with_layout<'a>(&'a self, layout: alloc::Layout) -> Option<DeviceRange<'a>> {
self.range_with_layout_size(layout.size(), layout)
}
/// Allocate a range to hold `size_bytes`
///
/// The backing allocation will be aligned to match a [`u64`], but the [`DeviceRange`] reported
/// by [`get`](#get) will be exactly `size_bytes` long.
///
/// The allocated range will be zeroed.
pub fn new_range<'a>(&'a self, size_bytes: usize) -> Option<DeviceRange<'a>> {
if size_bytes == 0 {
return None;
}
let layout = alloc::Layout::from_size_align(size_bytes, std::mem::align_of::<u64>())
.ok()?
.pad_to_align();
self.range_with_layout_size(size_bytes, layout)
}
/// Allocates ranges to fill and return a [`QueueMemory`]
pub fn alloc_queue_memory<'a>(&'a self, queue_size: u16) -> Option<QueueMemory<'a>> {
let desc = self.new_range(std::mem::size_of::<ring::Desc>() * queue_size as usize)?;
let avail = self.new_range(ring::Driver::avail_len_for_queue_size(queue_size))?;
let used = self.new_range(ring::Device::used_len_for_queue_size(queue_size))?;
Some(QueueMemory { desc, avail, used })
}
}
/// Simulates driver side interactions of a queue for facilitating tests.
///
/// This is termed a `FakeQueue` as, whilst it can correctly function as a driver side queue
/// manager, its methods and internal book keeping are aimed at writing tests and not being
/// efficient.
pub struct FakeQueue<'a> {
device: ring::as_driver::Device<'a>,
driver: ring::as_driver::Driver<'a>,
queue_size: u16,
next_desc: u16,
next_avail: u16,
next_used: u16,
chains: HashMap<u16, Chain>,
}
impl<'a> FakeQueue<'a> {
/// Construct a [`FakeQueue`] to act as driver for provided rings.
///
/// Takes a [`ring::Driver`] and [`ring::Device`] and constructs a view to the same memory to
/// act as the driver.
///
/// This assumes the rings have been correctly initialized, which by the virtio
/// specification means they have been zeroed.
pub fn new(driver: &ring::Driver<'a>, device: &ring::Device<'a>) -> Option<Self> {
let queue_size = driver.queue_size();
if queue_size != device.queue_size() {
return None;
}
let driver = ring::as_driver::Driver::new(driver);
let device = ring::as_driver::Device::new(device);
Some(FakeQueue {
device,
driver,
queue_size,
next_desc: 0,
next_avail: 0,
next_used: 0,
chains: HashMap::new(),
})
}
pub fn publish_indirect(
&mut self,
chain: Chain,
mem: &IdentityDriverMem,
) -> Option<(u16, u16)> {
if chain.descriptors.len() == 0 {
return None;
}
let indirect_range =
mem.new_range(chain.descriptors.len() * std::mem::size_of::<ring::Desc>())?;
let mut iter = chain.descriptors.iter().enumerate().peekable();
while let Some((index, desc)) = iter.next() {
let has_next = iter.peek().is_some();
let write_flags =
if desc.access == DescAccess::DeviceWrite { ring::VRING_DESC_F_WRITE } else { 0 };
let next_flags = if has_next { ring::VRING_DESC_F_NEXT } else { 0 };
let next_desc = if has_next { index as u16 + 1 } else { 0 };
let ring_desc = ring::as_driver::make_desc(
desc.data_addr,
desc.data_len,
write_flags | next_flags,
next_desc,
);
let ptr = indirect_range.try_mut_ptr::<ring::Desc>()?;
unsafe {
std::ptr::copy_nonoverlapping::<ring::Desc>(
&ring_desc as *const ring::Desc,
ptr.add(index as usize),
1,
)
};
}
self.driver.write_desc(
self.next_desc,
ring::as_driver::make_desc(
indirect_range.get().start as u64,
indirect_range.len() as u32,
VRING_DESC_F_INDIRECT,
0,
),
);
self.update_index(chain, 1)
}
/// Attempt to publish a [`Chain`] into the ring.
///
/// This returns a `None` if the chain is of zero length, or there are not enough available
/// descriptors in the ring for the chain. Otherwise it returns the current available index, and
/// the index of the first descriptor in the chain.
pub fn publish(&mut self, chain: Chain) -> Option<(u16, u16)> {
if chain.descriptors.len() == 0 {
return None;
}
// Need to validate that enough descriptors are available. We know next_desc is either the
// start of a chain, or is free, as such we just need to walk forward and check if any
// chains start in our desired descriptor range.
let desc_count = chain.descriptors.len() as u16;
// Use a loop to check so that we can wrap indexes in a clearly readable way.
for offset in 0..desc_count {
let index = self.next_desc.wrapping_add(offset) % self.queue_size;
if self.chains.get(&index).is_some() {
return None;
}
}
// Write descriptors
let mut iter = chain.descriptors.iter().enumerate().peekable();
while let Some((index, desc)) = iter.next() {
let has_next = iter.peek().is_some();
let ring_index = self.next_desc.wrapping_add(index as u16) % self.queue_size;
let write_flags =
if desc.access == DescAccess::DeviceWrite { ring::VRING_DESC_F_WRITE } else { 0 };
let next_flags = if has_next { ring::VRING_DESC_F_NEXT } else { 0 };
// If a specific next descriptor was supplied by the chain then use it, otherwise
// calculate the actual next index we will insert.
let next_desc = if has_next {
desc.next.unwrap_or_else(|| ring_index.wrapping_add(1) % self.queue_size)
} else {
0
};
self.driver.write_desc(
ring_index,
ring::as_driver::make_desc(
desc.data_addr,
desc.data_len,
write_flags | next_flags,
next_desc,
),
);
}
self.update_index(chain, desc_count)
}
fn update_index(&mut self, chain: Chain, desc_count: u16) -> Option<(u16, u16)> {
// Mark the start of the descriptor chain.
let first_desc = self.next_desc % self.queue_size;
let avail_index = self.next_avail;
self.driver.write_avail(avail_index, first_desc);
// Available index is monotonic increasing and does not wrap at queue_size.
self.next_avail = self.next_avail.wrapping_add(1);
// Signal it as existing.
self.driver.write_idx(self.next_avail);
// Record the index we should start allocating descriptors from next time. This range may
// or may not be free right now.
self.next_desc = self.next_desc.wrapping_add(desc_count) % self.queue_size;
// Store the descriptor in our map so we can return it in next_used.
self.chains.insert(first_desc, chain);
// Return the avail index we used and where the descriptor chain starts.
Some((avail_index, first_desc))
}
/// Retrieve the next returned chain, if any.
///
/// If a chain has been returned by the device return a [`UsedChain`], otherwise a `None.
pub fn next_used(&mut self) -> Option<UsedChain> {
// Check if the device has returned anything.
if self.device.read_idx() == self.next_used {
return None;
}
// Read out the chain that was returned.
let (id, written) =
ring::as_driver::deconstruct_used(self.device.read_used(self.next_used));
// Expect something in the next slot next time.
self.next_used = self.next_used.wrapping_add(1);
// Remove the chain from our internal map and return it.
self.chains.remove(&(id as u16)).map(|chain| UsedChain { written, chain })
}
}
/// Represents a chain returned by a device.
pub struct UsedChain {
written: u32,
chain: Chain,
}
impl UsedChain {
/// Get the amount of data written to the chain.
///
/// This is the amount of data the device claimed it wrote to the chain and could be incorrect,
/// for example some devices do not zero this field when they return a read only chain.
pub fn written(&self) -> u32 {
self.written
}
/// Iterate over any written portions.
///
/// Iterates over the writable portion of the descriptor chain, up to the amount that was
/// claimed to be [`written`](#written). The iterator produces
/// `(driver_addr as u64, length as u32)` tuples and it is the responsibility of the caller to
/// know if this range is valid and how to access it.
pub fn data_iter<'a>(&'a self) -> ChainDataIter<'a> {
ChainDataIter { next: Some(0), remaining: self.written, chain: &self.chain }
}
}
/// Iterator for the data in a [`UsedChain`]
pub struct ChainDataIter<'a> {
next: Option<usize>,
remaining: u32,
chain: &'a Chain,
}
impl<'a> Iterator for ChainDataIter<'a> {
type Item = (u64, u32);
fn next(&mut self) -> Option<Self::Item> {
if self.remaining == 0 {
return None;
}
let next = self.next.take()?;
// Walk the descriptors till we find a writable one.
let (index, desc) = self
.chain
.descriptors
.iter()
.enumerate()
.skip(next)
.find(|(_, desc)| desc.access == DescAccess::DeviceWrite)?;
self.next = Some(index + 1);
let size = std::cmp::min(self.remaining, desc.data_len);
self.remaining = self.remaining - size;
Some((desc.data_addr, size))
}
}
struct DescriptorInfo {
access: DescAccess,
data_addr: u64,
data_len: u32,
next: Option<u16>,
}
/// Descriptor chain that can be published in a [`FakeQueue`]
pub struct Chain {
descriptors: Vec<DescriptorInfo>,
}
impl Chain {
/// Build a descriptor chain with zeroed readable and writable descriptors.
///
/// For every value in the `readable` and `writable` slice provided, allocates a descriptor of
/// that many bytes in the descriptor chain.
pub fn with_lengths(readable: &[u32], writable: &[u32], mem: &IdentityDriverMem) -> Self {
let builder = readable
.iter()
.cloned()
.fold(ChainBuilder::new(), |build, range| build.readable_zeroed(range, mem));
writable.iter().cloned().fold(builder, |build, range| build.writable(range, mem)).build()
}
/// Build a descriptor chain providing data for readable descriptors.
///
/// Similar to [`with_lengths`](#with_lengths) except the readable descriptors are populated
/// with a copy of the provided data slice instead.
pub fn with_data<T: Copy>(
readable: &[&[T]],
writable: &[u32],
mem: &IdentityDriverMem,
) -> Self {
let builder = readable
.iter()
.cloned()
.fold(ChainBuilder::new(), |build, range| build.readable(range, mem));
writable.iter().cloned().fold(builder, |build, range| build.writable(range, mem)).build()
}
/// Build a descriptor chain with raw data references.
///
/// Does not allocate data for any descriptors, instead puts the provided address and length
/// directly into the final descriptor. This is intentionally designed to allow to you to build
/// corrupt and invalid descriptor chains for the purposes of testing.
pub fn with_exact_data(chain: &[(ring::DescAccess, u64, u32)]) -> Self {
chain
.iter()
.fold(ChainBuilder::new(), |builder, (writable, addr, len)| {
builder.reference(*writable, *addr, *len)
})
.build()
}
}
/// Builder for a [`Chain`]
pub struct ChainBuilder(Chain);
impl ChainBuilder {
/// Construct a new [`ChainBuilder`]
pub fn new() -> Self {
ChainBuilder(Chain { descriptors: Vec::new() })
}
/// Amend the last descriptor added with a specific next value.
///
/// By default the next field in the published [`ring::Desc`] will be set automatically by the
/// [`FakeQueue`] when publishing the chain, since the [`FakeQueue`] is the one allocating the
/// actual descriptor ring slots.
///
/// For testing this can be used to override the next field that [`FakeQueue::publish`] will
/// generate and is intended for creating broken descriptor chains. It is not intended that this
/// can be used and result in a properly functioning chain and queue.
///
/// # Panics
///
/// Will panic if no descriptor has yet been added to the chain.
pub fn amend_next(mut self, next: u16) -> Self {
self.0.descriptors.last_mut().unwrap().next = Some(next);
self
}
/// Append new readable descriptor with a copy of `data`
///
/// # Panics
///
/// Will panic if there is not enough memory to allocate a buffer to hold `data`.
pub fn readable<T: Copy>(mut self, data: &[T], mem: &IdentityDriverMem) -> Self {
let layout = alloc::Layout::for_value(data);
let mem = mem.range_with_layout(layout).unwrap();
// This usage of copy_nonoverlapping is valid since
// * src region is from a slice reference and can assumed to be valid and correctly aligned
// * dst region produced from [`DeviceRange`] is defined to be valid as long as
// the DeviceRange is held alive, which it is over the duration of the unsafe block.
// * dst region is known to be correctly aligned as it was constructed aligned, and
// try_mut_ptr only returns validly aligned pointers.
// * src and dst do not overlap as the [`DeviceRange`] is valid, and valid device ranges do
// not overlap with other rust objects.
unsafe {
std::ptr::copy_nonoverlapping::<T>(
data.as_ptr(),
// unwrap cannot fail since we allocated with alignment of T.
mem.try_mut_ptr::<T>().unwrap(),
data.len(),
)
};
self.0.descriptors.push(DescriptorInfo {
access: DescAccess::DeviceRead,
data_addr: mem.get().start as u64,
data_len: layout.size() as u32,
next: None,
});
self
}
/// Append an empty descriptor of the specified type and length
///
/// # Panics
///
/// Will panic if there is not enough memory to allocate a buffer of len `data_len`.
pub fn zeroed(mut self, access: DescAccess, data_len: u32, mem: &IdentityDriverMem) -> Self {
let mem = mem.new_range(data_len as usize).unwrap();
self.0.descriptors.push(DescriptorInfo {
access,
data_addr: mem.get().start as u64,
data_len,
next: None,
});
self
}
/// Append a descriptor with raw data.
///
/// This does not perform any allocations and will pass through the exact `data_addr` and
/// `data_len` provided.
pub fn reference(mut self, access: DescAccess, data_addr: u64, data_len: u32) -> Self {
self.0.descriptors.push(DescriptorInfo { access, data_addr, data_len, next: None });
self
}
pub fn readable_zeroed(self, len: u32, mem: &IdentityDriverMem) -> Self {
self.zeroed(DescAccess::DeviceRead, len, mem)
}
pub fn readable_reference(self, addr: u64, len: u32) -> Self {
self.reference(DescAccess::DeviceRead, addr, len)
}
pub fn writable(self, len: u32, mem: &IdentityDriverMem) -> Self {
self.zeroed(DescAccess::DeviceWrite, len, mem)
}
pub fn writable_reference(self, addr: u64, len: u32) -> Self {
self.reference(DescAccess::DeviceWrite, addr, len)
}
/// Consume the builder and produce a [`Chain`].
pub fn build(self) -> Chain {
self.0
}
}
/// Wraps common state needed for writing test code with a [`FakeQueue`].
pub struct TestQueue<'a> {
pub queue: Queue<'a, NotificationCounter>,
pub notify: NotificationCounter,
pub fake_queue: FakeQueue<'a>,
}
impl<'a> TestQueue<'a> {
/// Allocates a [`Queue`] and [`FakeQueue`] for unit tests.
pub fn new(size: usize, mem: &'a IdentityDriverMem) -> Self {
let mem = mem.alloc_queue_memory(size as u16).unwrap();
let notify = NotificationCounter::new();
let driver = ring::Driver::new(mem.desc.clone(), mem.avail.clone()).unwrap();
let device = ring::Device::new(mem.used.clone()).unwrap();
let fake_queue = FakeQueue::new(&driver, &device).unwrap();
let queue = Queue::new_from_rings(driver, device, notify.clone()).unwrap();
TestQueue { queue, notify, fake_queue }
}
}