virtio_device/
fake_queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Fake queue for simulating driver interactions in unittests
//!
//! To facilitate writing unittests it is useful to manipulate the queues from the perspective of a
//! a driver. This module contains helpers that allow for:
//!  * Building simple descriptor chains
//!  * Publishing the build descriptors in the available ring
//!  * Receiving written descriptors from the used ring
//! This functionality centers around the [`FakeQueue`] implementation.
//!
//! For simplicity of writing tests the [`TestQueue`] struct packages together all the pieces
//! commonly needed to write a test.
//!
//! This module is available as, in addition to be used for writing the unittests for this library,
//! it can also be used for writing unittests for actual virtio device drivers without needing a
//! guest environment.

use crate::mem::{DeviceRange, DriverRange};
use crate::queue::{Queue, QueueMemory};
use crate::ring::{self, DescAccess, VRING_DESC_F_INDIRECT};
use crate::util::NotificationCounter;
use fuchsia_sync::Mutex;
use std::alloc::{self, GlobalAlloc};
use std::collections::HashMap;

// Helper struct that just holds an allocation and returns it to the system allocator on drop.
struct IdentityAlloc {
    // alloc must not be null and be the return result from having passed layout to System.alloc,
    // such that it is safe to pass alloc and layout to System.dealloc.
    alloc: *mut u8,
    layout: alloc::Layout,
}

impl IdentityAlloc {
    fn new(layout: alloc::Layout) -> Option<Self> {
        if layout.size() == 0 {
            return None;
        }
        // The safety requirement on alloc_zeroed is that layout not be for a zero size, which we
        // validated just above.
        let alloc = unsafe { alloc::System.alloc_zeroed(layout) };
        if alloc.is_null() {
            return None;
        }
        Some(IdentityAlloc { alloc, layout })
    }
    fn base(&self) -> usize {
        self.alloc as usize
    }
}

impl Drop for IdentityAlloc {
    fn drop(&mut self) {
        // It is an invariant on alloc and layout that alloc is not null and that these are valid to
        // pass to System.dealloc.
        unsafe { alloc::System.dealloc(self.alloc, self.layout) };
    }
}

/// Implementation of [`crate::mem::DriverMem`] assuming the identity translation.
///
/// Can be used to allocate valid [`DeviceRange`] using the [`range_with_layout`] or [`new_range`]
/// methods. This then implements the identity transformation in [`translate`] meaning that:
///
/// ```
/// let range = identity_driver_mem.new_range(64)?;
/// assert_eq!(identity_driver_mem.translate(range.get().into()), Some(range)
/// ```
///
/// There is no mechanism to free or deallocate any constructed ranges, this is neccessary to ensure
/// they remain valid their provided lifetimes. Allocations will be freed once the
/// [`IdentityDriverMem`] is dropped.
pub struct IdentityDriverMem {
    // Allocations are stored using a DriverRange as the key, instead of a DeviceRange, to avoid
    // needing to invent a fake lifetime annotation. It is a requirement that these allocations only
    // be added to over the lifetime of the IdentityDriverMem.
    allocations: Mutex<Vec<(DriverRange, IdentityAlloc)>>,
}

impl crate::mem::DriverMem for IdentityDriverMem {
    fn translate<'a>(&'a self, driver: DriverRange) -> Option<DeviceRange<'a>> {
        if driver.len() == 0 {
            return None;
        }
        // See `driver` is contained in any of the ranges we have.
        let range = self
            .allocations
            .lock()
            .iter()
            .map(|x| x.0.clone())
            .find(|x| x.0.contains(&driver.0.start) && x.0.contains(&(driver.0.end - 1)))?
            .0;
        // We know (see `register`) that the DriverRange in allocations is a valid DeviceRange. As
        // the backing memory will not be free'd until IdentityDriverMem is dropped, we can safely
        // provide the lifetime `'a` on the range.
        let device = unsafe { DeviceRange::new(range) };
        // Now trim device down to the potential sub range that was requested.
        let device = device.split_at(driver.0.start - device.get().start)?.1;
        Some(device.split_at(driver.len())?.0)
    }
}

impl IdentityDriverMem {
    /// Construct a new [`IdentityDriverMem`]
    pub fn new() -> IdentityDriverMem {
        IdentityDriverMem { allocations: Mutex::new(Vec::new()) }
    }

    // Helper method for localizing the reasoning on the allocations map.
    // # Safety
    //
    // Require that `alloc` be a valid `IdentityAlloc` and that range.start == alloc.base and
    // range.len() <= alloc.layout.size(). This ensures range can be safely re-interpreted as a
    // DeviceRange.
    unsafe fn register(&self, range: DriverRange, alloc: IdentityAlloc) {
        self.allocations.lock().push((range, alloc));
    }

    fn range_with_layout_size<'a>(
        &'a self,
        size_bytes: usize,
        layout: alloc::Layout,
    ) -> Option<DeviceRange<'a>> {
        // Validate that our desired length fits inside the amount we are going to allocate
        if size_bytes > layout.size() {
            return None;
        }
        let alloc = IdentityAlloc::new(layout)?;
        let base = alloc.base();
        // The memory we provide to DeviceRange is valid as it just came from the allocator. And it
        // will remain valid until the [`IdentityAlloc`] is dropped and the memory freed, which does
        // not happen till this object is destroyed, and we have a borrow against this object of the
        // same lifetime as we provide in the DeviceRange.
        let range = unsafe { DeviceRange::new(base..(base + size_bytes)) };
        // register is safe to call since we provide a range that is pulled out of a valid
        // DeviceRange and range was is from the provided allocation.
        unsafe { self.register(DriverRange(range.get()), alloc) };
        Some(range)
    }

    /// Allocate with a specific [`alloc::Layout`]
    ///
    /// Specifying a specific [`alloc::Layout`] for the range is to allow for alignments to be
    /// specified so that [underlying](#get) [`DeviceRange`] can be accessed directly as a desired
    /// object using [`DeviceRange::try_ptr`].
    ///
    /// The allocated range will be zeroed.
    pub fn range_with_layout<'a>(&'a self, layout: alloc::Layout) -> Option<DeviceRange<'a>> {
        self.range_with_layout_size(layout.size(), layout)
    }

    /// Allocate a range to hold `size_bytes`
    ///
    /// The backing allocation will be aligned to match a [`u64`], but the [`DeviceRange`] reported
    /// by [`get`](#get) will be exactly `size_bytes` long.
    ///
    /// The allocated range will be zeroed.
    pub fn new_range<'a>(&'a self, size_bytes: usize) -> Option<DeviceRange<'a>> {
        if size_bytes == 0 {
            return None;
        }
        let layout = alloc::Layout::from_size_align(size_bytes, std::mem::align_of::<u64>())
            .ok()?
            .pad_to_align();
        self.range_with_layout_size(size_bytes, layout)
    }

    /// Allocates ranges to fill and return a [`QueueMemory`]
    pub fn alloc_queue_memory<'a>(&'a self, queue_size: u16) -> Option<QueueMemory<'a>> {
        let desc = self.new_range(std::mem::size_of::<ring::Desc>() * queue_size as usize)?;
        let avail = self.new_range(ring::Driver::avail_len_for_queue_size(queue_size))?;
        let used = self.new_range(ring::Device::used_len_for_queue_size(queue_size))?;
        Some(QueueMemory { desc, avail, used })
    }
}

/// Simulates driver side interactions of a queue for facilitating tests.
///
/// This is termed a `FakeQueue` as, whilst it can correctly function as a driver side queue
/// manager, its methods and internal book keeping are aimed at writing tests and not being
/// efficient.
pub struct FakeQueue<'a> {
    device: ring::as_driver::Device<'a>,
    driver: ring::as_driver::Driver<'a>,
    queue_size: u16,
    next_desc: u16,
    next_avail: u16,
    next_used: u16,
    chains: HashMap<u16, Chain>,
}

impl<'a> FakeQueue<'a> {
    /// Construct a [`FakeQueue`] to act as driver for provided rings.
    ///
    /// Takes a [`ring::Driver`] and [`ring::Device`] and constructs a view to the same memory to
    /// act as the driver.
    ///
    /// This assumes the rings have been correctly initialized, which by the virtio
    /// specification means they have been zeroed.
    pub fn new(driver: &ring::Driver<'a>, device: &ring::Device<'a>) -> Option<Self> {
        let queue_size = driver.queue_size();
        if queue_size != device.queue_size() {
            return None;
        }
        let driver = ring::as_driver::Driver::new(driver);
        let device = ring::as_driver::Device::new(device);
        Some(FakeQueue {
            device,
            driver,
            queue_size,
            next_desc: 0,
            next_avail: 0,
            next_used: 0,
            chains: HashMap::new(),
        })
    }

    pub fn publish_indirect(
        &mut self,
        chain: Chain,
        mem: &IdentityDriverMem,
    ) -> Option<(u16, u16)> {
        if chain.descriptors.len() == 0 {
            return None;
        }

        let indirect_range =
            mem.new_range(chain.descriptors.len() * std::mem::size_of::<ring::Desc>())?;

        let mut iter = chain.descriptors.iter().enumerate().peekable();
        while let Some((index, desc)) = iter.next() {
            let has_next = iter.peek().is_some();

            let write_flags =
                if desc.access == DescAccess::DeviceWrite { ring::VRING_DESC_F_WRITE } else { 0 };
            let next_flags = if has_next { ring::VRING_DESC_F_NEXT } else { 0 };
            let next_desc = if has_next { index as u16 + 1 } else { 0 };
            let ring_desc = ring::as_driver::make_desc(
                desc.data_addr,
                desc.data_len,
                write_flags | next_flags,
                next_desc,
            );

            let ptr = indirect_range.try_mut_ptr::<ring::Desc>()?;
            unsafe {
                std::ptr::copy_nonoverlapping::<ring::Desc>(
                    &ring_desc as *const ring::Desc,
                    ptr.add(index as usize),
                    1,
                )
            };
        }
        self.driver.write_desc(
            self.next_desc,
            ring::as_driver::make_desc(
                indirect_range.get().start as u64,
                indirect_range.len() as u32,
                VRING_DESC_F_INDIRECT,
                0,
            ),
        );
        self.update_index(chain, 1)
    }

    /// Attempt to publish a [`Chain`] into the ring.
    ///
    /// This returns a `None` if the chain is of zero length, or there are not enough available
    /// descriptors in the ring for the chain. Otherwise it returns the current available index, and
    /// the index of the first descriptor in the chain.
    pub fn publish(&mut self, chain: Chain) -> Option<(u16, u16)> {
        if chain.descriptors.len() == 0 {
            return None;
        }
        // Need to validate that enough descriptors are available. We know next_desc is either the
        // start of a chain, or is free, as such we just need to walk forward and check if any
        // chains start in our desired descriptor range.
        let desc_count = chain.descriptors.len() as u16;
        // Use a loop to check so that we can wrap indexes in a clearly readable way.
        for offset in 0..desc_count {
            let index = self.next_desc.wrapping_add(offset) % self.queue_size;
            if self.chains.get(&index).is_some() {
                return None;
            }
        }
        // Write descriptors
        let mut iter = chain.descriptors.iter().enumerate().peekable();
        while let Some((index, desc)) = iter.next() {
            let has_next = iter.peek().is_some();
            let ring_index = self.next_desc.wrapping_add(index as u16) % self.queue_size;
            let write_flags =
                if desc.access == DescAccess::DeviceWrite { ring::VRING_DESC_F_WRITE } else { 0 };
            let next_flags = if has_next { ring::VRING_DESC_F_NEXT } else { 0 };
            // If a specific next descriptor was supplied by the chain then use it, otherwise
            // calculate the actual next index we will insert.
            let next_desc = if has_next {
                desc.next.unwrap_or_else(|| ring_index.wrapping_add(1) % self.queue_size)
            } else {
                0
            };
            self.driver.write_desc(
                ring_index,
                ring::as_driver::make_desc(
                    desc.data_addr,
                    desc.data_len,
                    write_flags | next_flags,
                    next_desc,
                ),
            );
        }
        self.update_index(chain, desc_count)
    }

    fn update_index(&mut self, chain: Chain, desc_count: u16) -> Option<(u16, u16)> {
        // Mark the start of the descriptor chain.
        let first_desc = self.next_desc % self.queue_size;
        let avail_index = self.next_avail;
        self.driver.write_avail(avail_index, first_desc);
        // Available index is monotonic increasing and does not wrap at queue_size.
        self.next_avail = self.next_avail.wrapping_add(1);
        // Signal it as existing.
        self.driver.write_idx(self.next_avail);
        // Record the index we should start allocating descriptors from next time. This range may
        // or may not be free right now.
        self.next_desc = self.next_desc.wrapping_add(desc_count) % self.queue_size;
        // Store the descriptor in our map so we can return it in next_used.
        self.chains.insert(first_desc, chain);
        // Return the avail index we used and where the descriptor chain starts.
        Some((avail_index, first_desc))
    }

    /// Retrieve the next returned chain, if any.
    ///
    /// If a chain has been returned by the device return a [`UsedChain`], otherwise a `None.
    pub fn next_used(&mut self) -> Option<UsedChain> {
        // Check if the device has returned anything.
        if self.device.read_idx() == self.next_used {
            return None;
        }
        // Read out the chain that was returned.
        let (id, written) =
            ring::as_driver::deconstruct_used(self.device.read_used(self.next_used));
        // Expect something in the next slot next time.
        self.next_used = self.next_used.wrapping_add(1);
        // Remove the chain from our internal map and return it.
        self.chains.remove(&(id as u16)).map(|chain| UsedChain { written, chain })
    }
}

/// Represents a chain returned by a device.
pub struct UsedChain {
    written: u32,
    chain: Chain,
}

impl UsedChain {
    /// Get the amount of data written to the chain.
    ///
    /// This is the amount of data the device claimed it wrote to the chain and could be incorrect,
    /// for example some devices do not zero this field when they return a read only chain.
    pub fn written(&self) -> u32 {
        self.written
    }

    /// Iterate over any written portions.
    ///
    /// Iterates over the writable portion of the descriptor chain, up to the amount that was
    /// claimed to be [`written`](#written). The iterator produces
    /// `(driver_addr as u64, length as u32)` tuples and it is the responsibility of the caller to
    /// know if this range is valid and how to access it.
    pub fn data_iter<'a>(&'a self) -> ChainDataIter<'a> {
        ChainDataIter { next: Some(0), remaining: self.written, chain: &self.chain }
    }
}

/// Iterator for the data in a [`UsedChain`]
pub struct ChainDataIter<'a> {
    next: Option<usize>,
    remaining: u32,
    chain: &'a Chain,
}

impl<'a> Iterator for ChainDataIter<'a> {
    type Item = (u64, u32);

    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        }
        let next = self.next.take()?;
        // Walk the descriptors till we find a writable one.
        let (index, desc) = self
            .chain
            .descriptors
            .iter()
            .enumerate()
            .skip(next)
            .find(|(_, desc)| desc.access == DescAccess::DeviceWrite)?;
        self.next = Some(index + 1);
        let size = std::cmp::min(self.remaining, desc.data_len);
        self.remaining = self.remaining - size;
        Some((desc.data_addr, size))
    }
}

struct DescriptorInfo {
    access: DescAccess,
    data_addr: u64,
    data_len: u32,
    next: Option<u16>,
}

/// Descriptor chain that can be published in a [`FakeQueue`]
pub struct Chain {
    descriptors: Vec<DescriptorInfo>,
}

impl Chain {
    /// Build a descriptor chain with zeroed readable and writable descriptors.
    ///
    /// For every value in the `readable` and `writable` slice provided, allocates a descriptor of
    /// that many bytes in the descriptor chain.
    pub fn with_lengths(readable: &[u32], writable: &[u32], mem: &IdentityDriverMem) -> Self {
        let builder = readable
            .iter()
            .cloned()
            .fold(ChainBuilder::new(), |build, range| build.readable_zeroed(range, mem));
        writable.iter().cloned().fold(builder, |build, range| build.writable(range, mem)).build()
    }

    /// Build a descriptor chain providing data for readable descriptors.
    ///
    /// Similar to [`with_lengths`](#with_lengths) except the readable descriptors are populated
    /// with a copy of the provided data slice instead.
    pub fn with_data<T: Copy>(
        readable: &[&[T]],
        writable: &[u32],
        mem: &IdentityDriverMem,
    ) -> Self {
        let builder = readable
            .iter()
            .cloned()
            .fold(ChainBuilder::new(), |build, range| build.readable(range, mem));
        writable.iter().cloned().fold(builder, |build, range| build.writable(range, mem)).build()
    }

    /// Build a descriptor chain with raw data references.
    ///
    /// Does not allocate data for any descriptors, instead puts the provided address and length
    /// directly into the final descriptor. This is intentionally designed to allow to you to build
    /// corrupt and invalid descriptor chains for the purposes of testing.
    pub fn with_exact_data(chain: &[(ring::DescAccess, u64, u32)]) -> Self {
        chain
            .iter()
            .fold(ChainBuilder::new(), |builder, (writable, addr, len)| {
                builder.reference(*writable, *addr, *len)
            })
            .build()
    }
}

/// Builder for a [`Chain`]
pub struct ChainBuilder(Chain);

impl ChainBuilder {
    /// Construct a new [`ChainBuilder`]
    pub fn new() -> Self {
        ChainBuilder(Chain { descriptors: Vec::new() })
    }

    /// Amend the last descriptor added with a specific next value.
    ///
    /// By default the next field in the published [`ring::Desc`] will be set automatically by the
    /// [`FakeQueue`] when publishing the chain, since the [`FakeQueue`] is the one allocating the
    /// actual descriptor ring slots.
    ///
    /// For testing this can be used to override the next field that [`FakeQueue::publish`] will
    /// generate and is intended for creating broken descriptor chains. It is not intended that this
    /// can be used and result in a properly functioning chain and queue.
    ///
    /// # Panics
    ///
    /// Will panic if no descriptor has yet been added to the chain.
    pub fn amend_next(mut self, next: u16) -> Self {
        self.0.descriptors.last_mut().unwrap().next = Some(next);
        self
    }

    /// Append new readable descriptor with a copy of `data`
    ///
    /// # Panics
    ///
    /// Will panic if there is not enough memory to allocate a buffer to hold `data`.
    pub fn readable<T: Copy>(mut self, data: &[T], mem: &IdentityDriverMem) -> Self {
        let layout = alloc::Layout::for_value(data);
        let mem = mem.range_with_layout(layout).unwrap();
        // This usage of copy_nonoverlapping is valid since
        //  * src region is from a slice reference and can assumed to be valid and correctly aligned
        //  * dst region produced from [`DeviceRange`] is defined to be valid as long as
        //    the DeviceRange is held alive, which it is over the duration of the unsafe block.
        //  * dst region is known to be correctly aligned as it was constructed aligned, and
        //    try_mut_ptr only returns validly aligned pointers.
        //  * src and dst do not overlap as the [`DeviceRange`] is valid, and valid device ranges do
        //    not overlap with other rust objects.
        unsafe {
            std::ptr::copy_nonoverlapping::<T>(
                data.as_ptr(),
                // unwrap cannot fail since we allocated with alignment of T.
                mem.try_mut_ptr::<T>().unwrap(),
                data.len(),
            )
        };
        self.0.descriptors.push(DescriptorInfo {
            access: DescAccess::DeviceRead,
            data_addr: mem.get().start as u64,
            data_len: layout.size() as u32,
            next: None,
        });
        self
    }

    /// Append an empty descriptor of the specified type and length
    ///
    /// # Panics
    ///
    /// Will panic if there is not enough memory to allocate a buffer of len `data_len`.
    pub fn zeroed(mut self, access: DescAccess, data_len: u32, mem: &IdentityDriverMem) -> Self {
        let mem = mem.new_range(data_len as usize).unwrap();
        self.0.descriptors.push(DescriptorInfo {
            access,
            data_addr: mem.get().start as u64,
            data_len,
            next: None,
        });
        self
    }

    /// Append a descriptor with raw data.
    ///
    /// This does not perform any allocations and will pass through the exact `data_addr` and
    /// `data_len` provided.
    pub fn reference(mut self, access: DescAccess, data_addr: u64, data_len: u32) -> Self {
        self.0.descriptors.push(DescriptorInfo { access, data_addr, data_len, next: None });
        self
    }

    pub fn readable_zeroed(self, len: u32, mem: &IdentityDriverMem) -> Self {
        self.zeroed(DescAccess::DeviceRead, len, mem)
    }
    pub fn readable_reference(self, addr: u64, len: u32) -> Self {
        self.reference(DescAccess::DeviceRead, addr, len)
    }
    pub fn writable(self, len: u32, mem: &IdentityDriverMem) -> Self {
        self.zeroed(DescAccess::DeviceWrite, len, mem)
    }
    pub fn writable_reference(self, addr: u64, len: u32) -> Self {
        self.reference(DescAccess::DeviceWrite, addr, len)
    }

    /// Consume the builder and produce a [`Chain`].
    pub fn build(self) -> Chain {
        self.0
    }
}

/// Wraps common state needed for writing test code with a [`FakeQueue`].
pub struct TestQueue<'a> {
    pub queue: Queue<'a, NotificationCounter>,
    pub notify: NotificationCounter,
    pub fake_queue: FakeQueue<'a>,
}

impl<'a> TestQueue<'a> {
    /// Allocates a [`Queue`] and [`FakeQueue`] for unit tests.
    pub fn new(size: usize, mem: &'a IdentityDriverMem) -> Self {
        let mem = mem.alloc_queue_memory(size as u16).unwrap();
        let notify = NotificationCounter::new();
        let driver = ring::Driver::new(mem.desc.clone(), mem.avail.clone()).unwrap();
        let device = ring::Device::new(mem.used.clone()).unwrap();

        let fake_queue = FakeQueue::new(&driver, &device).unwrap();
        let queue = Queue::new_from_rings(driver, device, notify.clone()).unwrap();
        TestQueue { queue, notify, fake_queue }
    }
}