1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::{prf, Error};
use anyhow::ensure;
use ieee80211::MacAddr;
use mundane::hash::Sha256;
use std::cmp::{max, min};
use wlan_common::ie::rsn::{
    akm::{self, Akm},
    cipher::Cipher,
};
use wlan_sae::hmac_utils;

/// A PTK is derived from a PMK and provides access to the PTK's key-hierarchy which yields a KEK,
/// KCK, and TK, used for EAPOL frame protection, integrity check and unicast frame protection
/// respectively.
#[derive(Debug, Clone, PartialEq)]
pub struct Ptk {
    pub ptk: Vec<u8>,
    kck_len: usize,
    kek_len: usize,
    tk_len: usize,
    pub cipher: Cipher,
    // TODO(hahnr): Add TKIP Tx/Rx MIC support (IEEE 802.11-2016, 12.8.1).
}

impl Ptk {
    pub fn from_ptk(ptk: Vec<u8>, akm: &Akm, cipher: Cipher) -> Result<Self, anyhow::Error> {
        let kck_len = akm.kck_bytes().ok_or(Error::PtkHierarchyUnsupportedAkmError)? as usize;
        let kek_len = akm.kek_bytes().ok_or(Error::PtkHierarchyUnsupportedAkmError)? as usize;
        let tk_len: usize =
            cipher.tk_bytes().ok_or(Error::PtkHierarchyUnsupportedCipherError)?.into();
        ensure!(kck_len + kek_len + tk_len == ptk.len(), "invalid ptk length");
        Ok(Ptk { ptk, kck_len, kek_len, tk_len, cipher })
    }

    // IEEE 802.11-2016, 12.7.1.3
    pub fn new(
        pmk: &[u8],
        aa: &MacAddr,
        spa: &MacAddr,
        anonce: &[u8],
        snonce: &[u8],
        akm: &Akm,
        cipher: Cipher,
    ) -> Result<Ptk, anyhow::Error> {
        ensure!(anonce.len() == 32 && snonce.len() == 32, Error::InvalidNonceSize(anonce.len()));

        let pmk_len = akm
            .pmk_bits()
            .map(|bits| (bits / 8) as usize)
            .ok_or(Error::PtkHierarchyUnsupportedAkmError)?;
        ensure!(pmk.len() == pmk_len, Error::PtkHierarchyInvalidPmkError);

        let kck_bits = akm.kck_bits().ok_or(Error::PtkHierarchyUnsupportedAkmError)?;
        let kek_bits = akm.kek_bits().ok_or(Error::PtkHierarchyUnsupportedAkmError)?;
        let tk_bits = cipher.tk_bits().ok_or(Error::PtkHierarchyUnsupportedCipherError)?;
        let prf_bits = kck_bits + kek_bits + tk_bits;

        // data length = 6 (aa) + 6 (spa) + 32 (anonce) + 32 (snonce)
        let mut data: [u8; 76] = [0; 76];
        data[0..6].copy_from_slice(&min(aa.as_slice(), spa.as_slice())[..]);
        data[6..12].copy_from_slice(&max(aa.as_slice(), spa.as_slice())[..]);
        data[12..44].copy_from_slice(&min(anonce, snonce)[..]);
        data[44..].copy_from_slice(&max(anonce, snonce)[..]);

        // IEEE 802.11-2016, 12.7.1.2
        // Derive the PTK from the PMK, providing access to the KEK, KCK and TK.
        let ptk_bytes = match akm.suite_type {
            // IEEE 802.11-2016 does not specify this PRF for SAE, but in practice it is used.
            akm::SAE => hmac_utils::kdf_hash_length::<Sha256>(
                pmk,
                "Pairwise key expansion",
                &data,
                prf_bits as usize,
            ),
            _ => prf::prf(pmk, "Pairwise key expansion", &data, prf_bits as usize)?,
        };
        let ptk = Ptk {
            ptk: ptk_bytes,
            kck_len: (kck_bits / 8) as usize,
            kek_len: (kek_bits / 8) as usize,
            tk_len: (tk_bits / 8) as usize,
            cipher,
        };
        Ok(ptk)
    }

    pub fn kck(&self) -> &[u8] {
        &self.ptk[0..self.kck_len]
    }

    pub fn kek(&self) -> &[u8] {
        let start = self.kck_len;
        &self.ptk[start..start + self.kek_len]
    }

    pub fn tk(&self) -> &[u8] {
        let start = self.kck_len + self.kek_len;
        &self.ptk[start..start + self.tk_len]
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use hex::FromHex;
    use wlan_common::ie::rsn::{
        akm::PSK,
        cipher::{CCMP_128, TKIP},
    };

    struct TestData {
        pmk: Vec<u8>,
        aa: MacAddr,
        spa: MacAddr,
        anonce: [u8; 32],
        snonce: [u8; 32],
    }

    // IEEE Std 802.11-2016, J.7.1, Table J-13
    fn ieee_test_data() -> TestData {
        let pmk = Vec::from_hex("0dc0d6eb90555ed6419756b9a15ec3e3209b63df707dd508d14581f8982721af")
            .unwrap();
        let aa = MacAddr::from(<[u8; 6]>::from_hex("a0a1a1a3a4a5").unwrap());
        let spa = MacAddr::from(<[u8; 6]>::from_hex("b0b1b2b3b4b5").unwrap());
        let anonce = <[u8; 32]>::from_hex(
            "e0e1e2e3e4e5e6e7e8e9f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff000102030405",
        )
        .unwrap();
        let snonce = <[u8; 32]>::from_hex(
            "c0c1c2c3c4c5c6c7c8c9d0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5",
        )
        .unwrap();
        TestData { pmk, aa, spa, anonce, snonce }
    }

    fn new_ptk(data: &TestData, akm_suite: u8, cipher_suite: u8) -> Result<Ptk, anyhow::Error> {
        let akm = Akm::new_dot11(akm_suite);
        let cipher = Cipher::new_dot11(cipher_suite);
        Ptk::new(&data.pmk[..], &data.aa, &data.spa, &data.anonce, &data.snonce, &akm, cipher)
    }

    // IEEE Std 802.11-2016, J.7.1 & J.7.2
    #[test]
    fn test_pairwise_key_hierarchy_ccmp() {
        let data = ieee_test_data();
        let ptk_result = new_ptk(&data, PSK, CCMP_128);
        assert_eq!(ptk_result.is_ok(), true);

        // IEEE Std 802.11-2016, J.7.2, Table J-14
        let expected_kck = Vec::from_hex("379f9852d0199236b94e407ce4c00ec8").unwrap();
        let expected_kek = Vec::from_hex("47c9edc01c2c6e5b4910caddfb3e51a7").unwrap();
        let expected_tk = Vec::from_hex("b2360c79e9710fdd58bea93deaf06599").unwrap();
        let ptk = ptk_result.unwrap();
        assert_eq!(ptk.kck(), &expected_kck[..]);
        assert_eq!(ptk.kek(), &expected_kek[..]);
        assert_eq!(ptk.tk(), &expected_tk[..]);
    }

    // IEEE Std 802.11-2016, J.7.1 & J.7.3
    #[test]
    fn test_pairwise_key_hierarchy_tkip() {
        let data = ieee_test_data();
        let ptk_result = new_ptk(&data, PSK, TKIP);
        assert_eq!(ptk_result.is_ok(), true);

        // IEEE Std 802.11-2016, J.7.3, Table J-15
        let expected_kck = Vec::from_hex("379f9852d0199236b94e407ce4c00ec8").unwrap();
        let expected_kek = Vec::from_hex("47c9edc01c2c6e5b4910caddfb3e51a7").unwrap();
        let expected_tk =
            Vec::from_hex("b2360c79e9710fdd58bea93deaf06599db980afbc29c152855740a6ce5ae3827")
                .unwrap();
        let ptk = ptk_result.unwrap();
        assert_eq!(ptk.kck(), &expected_kck[..]);
        assert_eq!(ptk.kek(), &expected_kek[..]);
        assert_eq!(ptk.tk(), &expected_tk[..]);
    }

    #[test]
    fn test_pairwise_key_hierarchy_invalid_pmk() {
        let mut data = ieee_test_data();
        data.pmk.remove(0); // Invalidate PMK.
        let ptk_result = new_ptk(&data, PSK, CCMP_128);
        assert_eq!(ptk_result.is_err(), true);
    }

    #[test]
    fn test_pairwise_key_hierarchy_unsupported_akm() {
        let data = ieee_test_data();
        let ptk_result = new_ptk(&data, 200, CCMP_128);
        assert_eq!(ptk_result.is_err(), true);
    }

    #[test]
    fn test_pairwise_key_hierarchy_unsupported_cipher() {
        let data = ieee_test_data();
        let ptk_result = new_ptk(&data, PSK, 200);
        assert_eq!(ptk_result.is_err(), true);
    }
}