1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
use alloc::boxed::Box;
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::ptr;
use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use crossbeam_utils::{Backoff, CachePadded};
// Bits indicating the state of a slot:
// * If a value has been written into the slot, `WRITE` is set.
// * If a value has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;
// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of values a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Indicates that the block is not the last one.
const HAS_NEXT: usize = 1;
/// A slot in a block.
struct Slot<T> {
/// The value.
value: UnsafeCell<MaybeUninit<T>>,
/// The state of the slot.
state: AtomicUsize,
}
impl<T> Slot<T> {
/// Waits until a value is written into the slot.
fn wait_write(&self) {
let backoff = Backoff::new();
while self.state.load(Ordering::Acquire) & WRITE == 0 {
backoff.snooze();
}
}
}
/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` values.
struct Block<T> {
/// The next block in the linked list.
next: AtomicPtr<Block<T>>,
/// Slots for values.
slots: [Slot<T>; BLOCK_CAP],
}
impl<T> Block<T> {
/// Creates an empty block that starts at `start_index`.
fn new() -> Block<T> {
// SAFETY: This is safe because:
// [1] `Block::next` (AtomicPtr) may be safely zero initialized.
// [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
// [3] `Slot::value` (UnsafeCell) may be safely zero initialized because it
// holds a MaybeUninit.
// [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
unsafe { MaybeUninit::zeroed().assume_init() }
}
/// Waits until the next pointer is set.
fn wait_next(&self) -> *mut Block<T> {
let backoff = Backoff::new();
loop {
let next = self.next.load(Ordering::Acquire);
if !next.is_null() {
return next;
}
backoff.snooze();
}
}
/// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
unsafe fn destroy(this: *mut Block<T>, start: usize) {
// It is not necessary to set the `DESTROY` bit in the last slot because that slot has
// begun destruction of the block.
for i in start..BLOCK_CAP - 1 {
let slot = (*this).slots.get_unchecked(i);
// Mark the `DESTROY` bit if a thread is still using the slot.
if slot.state.load(Ordering::Acquire) & READ == 0
&& slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
{
// If a thread is still using the slot, it will continue destruction of the block.
return;
}
}
// No thread is using the block, now it is safe to destroy it.
drop(Box::from_raw(this));
}
}
/// A position in a queue.
struct Position<T> {
/// The index in the queue.
index: AtomicUsize,
/// The block in the linked list.
block: AtomicPtr<Block<T>>,
}
/// An unbounded multi-producer multi-consumer queue.
///
/// This queue is implemented as a linked list of segments, where each segment is a small buffer
/// that can hold a handful of elements. There is no limit to how many elements can be in the queue
/// at a time. However, since segments need to be dynamically allocated as elements get pushed,
/// this queue is somewhat slower than [`ArrayQueue`].
///
/// [`ArrayQueue`]: super::ArrayQueue
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push('a');
/// q.push('b');
///
/// assert_eq!(q.pop(), Some('a'));
/// assert_eq!(q.pop(), Some('b'));
/// assert!(q.pop().is_none());
/// ```
pub struct SegQueue<T> {
/// The head of the queue.
head: CachePadded<Position<T>>,
/// The tail of the queue.
tail: CachePadded<Position<T>>,
/// Indicates that dropping a `SegQueue<T>` may drop values of type `T`.
_marker: PhantomData<T>,
}
unsafe impl<T: Send> Send for SegQueue<T> {}
unsafe impl<T: Send> Sync for SegQueue<T> {}
impl<T> SegQueue<T> {
/// Creates a new unbounded queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::<i32>::new();
/// ```
pub const fn new() -> SegQueue<T> {
SegQueue {
head: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
tail: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
_marker: PhantomData,
}
}
/// Pushes an element into the queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push(10);
/// q.push(20);
/// ```
pub fn push(&self, value: T) {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
let mut block = self.tail.block.load(Ordering::Acquire);
let mut next_block = None;
loop {
// Calculate the offset of the index into the block.
let offset = (tail >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
// If we're going to have to install the next block, allocate it in advance in order to
// make the wait for other threads as short as possible.
if offset + 1 == BLOCK_CAP && next_block.is_none() {
next_block = Some(Box::new(Block::<T>::new()));
}
// If this is the first push operation, we need to allocate the first block.
if block.is_null() {
let new = Box::into_raw(Box::new(Block::<T>::new()));
if self
.tail
.block
.compare_and_swap(block, new, Ordering::Release)
== block
{
self.head.block.store(new, Ordering::Release);
block = new;
} else {
next_block = unsafe { Some(Box::from_raw(new)) };
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
}
let new_tail = tail + (1 << SHIFT);
// Try advancing the tail forward.
match self.tail.index.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, install the next one.
if offset + 1 == BLOCK_CAP {
let next_block = Box::into_raw(next_block.unwrap());
let next_index = new_tail.wrapping_add(1 << SHIFT);
self.tail.block.store(next_block, Ordering::Release);
self.tail.index.store(next_index, Ordering::Release);
(*block).next.store(next_block, Ordering::Release);
}
// Write the value into the slot.
let slot = (*block).slots.get_unchecked(offset);
slot.value.get().write(MaybeUninit::new(value));
slot.state.fetch_or(WRITE, Ordering::Release);
return;
},
Err(t) => {
tail = t;
block = self.tail.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Pops an element from the queue.
///
/// If the queue is empty, `None` is returned.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push(10);
/// assert_eq!(q.pop(), Some(10));
/// assert!(q.pop().is_none());
/// ```
pub fn pop(&self) -> Option<T> {
let backoff = Backoff::new();
let mut head = self.head.index.load(Ordering::Acquire);
let mut block = self.head.block.load(Ordering::Acquire);
loop {
// Calculate the offset of the index into the block.
let offset = (head >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
let mut new_head = head + (1 << SHIFT);
if new_head & HAS_NEXT == 0 {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::Relaxed);
// If the tail equals the head, that means the queue is empty.
if head >> SHIFT == tail >> SHIFT {
return None;
}
// If head and tail are not in the same block, set `HAS_NEXT` in head.
if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
new_head |= HAS_NEXT;
}
}
// The block can be null here only if the first push operation is in progress. In that
// case, just wait until it gets initialized.
if block.is_null() {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
// Try moving the head index forward.
match self.head.index.compare_exchange_weak(
head,
new_head,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, move to the next one.
if offset + 1 == BLOCK_CAP {
let next = (*block).wait_next();
let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
if !(*next).next.load(Ordering::Relaxed).is_null() {
next_index |= HAS_NEXT;
}
self.head.block.store(next, Ordering::Release);
self.head.index.store(next_index, Ordering::Release);
}
// Read the value.
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
let value = slot.value.get().read().assume_init();
// Destroy the block if we've reached the end, or if another thread wanted to
// destroy but couldn't because we were busy reading from the slot.
if offset + 1 == BLOCK_CAP {
Block::destroy(block, 0);
} else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
Block::destroy(block, offset + 1);
}
return Some(value);
},
Err(h) => {
head = h;
block = self.head.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Returns `true` if the queue is empty.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// assert!(q.is_empty());
/// q.push(1);
/// assert!(!q.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
let head = self.head.index.load(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::SeqCst);
head >> SHIFT == tail >> SHIFT
}
/// Returns the number of elements in the queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
/// assert_eq!(q.len(), 0);
///
/// q.push(10);
/// assert_eq!(q.len(), 1);
///
/// q.push(20);
/// assert_eq!(q.len(), 2);
/// ```
pub fn len(&self) -> usize {
loop {
// Load the tail index, then load the head index.
let mut tail = self.tail.index.load(Ordering::SeqCst);
let mut head = self.head.index.load(Ordering::SeqCst);
// If the tail index didn't change, we've got consistent indices to work with.
if self.tail.index.load(Ordering::SeqCst) == tail {
// Erase the lower bits.
tail &= !((1 << SHIFT) - 1);
head &= !((1 << SHIFT) - 1);
// Fix up indices if they fall onto block ends.
if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
tail = tail.wrapping_add(1 << SHIFT);
}
if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
head = head.wrapping_add(1 << SHIFT);
}
// Rotate indices so that head falls into the first block.
let lap = (head >> SHIFT) / LAP;
tail = tail.wrapping_sub((lap * LAP) << SHIFT);
head = head.wrapping_sub((lap * LAP) << SHIFT);
// Remove the lower bits.
tail >>= SHIFT;
head >>= SHIFT;
// Return the difference minus the number of blocks between tail and head.
return tail - head - tail / LAP;
}
}
}
}
impl<T> Drop for SegQueue<T> {
fn drop(&mut self) {
let mut head = self.head.index.load(Ordering::Relaxed);
let mut tail = self.tail.index.load(Ordering::Relaxed);
let mut block = self.head.block.load(Ordering::Relaxed);
// Erase the lower bits.
head &= !((1 << SHIFT) - 1);
tail &= !((1 << SHIFT) - 1);
unsafe {
// Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
while head != tail {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the value in the slot.
let slot = (*block).slots.get_unchecked(offset);
let p = &mut *slot.value.get();
p.as_mut_ptr().drop_in_place();
} else {
// Deallocate the block and move to the next one.
let next = (*block).next.load(Ordering::Relaxed);
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
}
}
impl<T> fmt::Debug for SegQueue<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("SegQueue { .. }")
}
}
impl<T> Default for SegQueue<T> {
fn default() -> SegQueue<T> {
SegQueue::new()
}
}