process_builder/
elf_load.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Utilities for loading ELF files into an existing address space.

use crate::{elf_parse as elf, util};
use thiserror::Error;
use zx::{self as zx, AsHandleRef};

/// Possible errors that can occur during ELF loading.
#[derive(Error, Debug)]
pub enum ElfLoadError {
    #[error("ELF load segments were empty")]
    NothingToLoad,
    #[error("Failed to allocate VMAR for ELF: {}", _0)]
    VmarAllocate(zx::Status),
    #[error("Failed to map VMAR: {}", _0)]
    VmarMap(zx::Status),
    #[error("Failed to create CoW VMO clone: {}", _0)]
    VmoCowClone(zx::Status),
    #[error("Failed to create VMO: {}", _0)]
    VmoCreate(zx::Status),
    #[error("Failed to read from VMO: {}", _0)]
    VmoRead(zx::Status),
    #[error("Failed to write to VMO: {}", _0)]
    VmoWrite(zx::Status),
    #[error("Failed to get VMO name: {}", _0)]
    GetVmoName(zx::Status),
    #[error("Failed to set VMO name: {}", _0)]
    SetVmoName(zx::Status),
}

impl ElfLoadError {
    /// Returns an appropriate zx::Status code for the given error.
    pub fn as_zx_status(&self) -> zx::Status {
        match self {
            ElfLoadError::NothingToLoad => zx::Status::NOT_FOUND,
            ElfLoadError::VmarAllocate(s)
            | ElfLoadError::VmarMap(s)
            | ElfLoadError::VmoCowClone(s)
            | ElfLoadError::VmoCreate(s)
            | ElfLoadError::VmoRead(s)
            | ElfLoadError::VmoWrite(s)
            | ElfLoadError::GetVmoName(s)
            | ElfLoadError::SetVmoName(s) => *s,
        }
    }
}

/// Information on what an ELF requires of its address space.
#[derive(Debug)]
pub struct LoadedElfInfo {
    /// The lowest address of the loaded ELF.
    pub low: usize,

    /// The highest address of the loaded ELF.
    pub high: usize,

    /// Union of all address space permissions required to load the ELF.
    pub max_perm: elf::SegmentFlags,
}

/// Returns the address space requirements to load this ELF. Attempting to load it into a VMAR with
/// permissions less than max_perm, or at a base such that the range [base+low, base+high] is not
/// entirely valid, will fail.
pub fn loaded_elf_info(headers: &elf::Elf64Headers) -> LoadedElfInfo {
    let (mut first, mut low, mut high) = (true, 0, 0);
    let mut max_perm = elf::SegmentFlags::empty();
    for hdr in headers.program_headers_with_type(elf::SegmentType::Load) {
        // elf_parse already checked that segments are ordered by vaddr and do not overlap.
        if first {
            low = util::page_start(hdr.vaddr);
            first = false;
        }
        high = util::page_end(hdr.vaddr + hdr.memsz as usize);
        max_perm |= hdr.flags();
    }
    LoadedElfInfo { low, high, max_perm }
}

/// Return value of load_elf.
#[derive(Debug)]
pub struct LoadedElf {
    /// The VMAR that the ELF file was loaded into.
    pub vmar: zx::Vmar,

    /// The virtual address of the VMAR.
    pub vmar_base: usize,

    /// The ELF entry point, adjusted for the base address of the VMAR.
    pub entry: usize,
}

/// A trait so that callers of map_elf_segments can hook the map operation.
pub trait Mapper {
    /// Map memory from the given VMO at the specified location.
    ///
    /// See zx::Vmar::map for more details.
    fn map(
        &self,
        vmar_offset: usize,
        vmo: &zx::Vmo,
        vmo_offset: u64,
        length: usize,
        flags: zx::VmarFlags,
    ) -> Result<usize, zx::Status>;
}

impl Mapper for zx::Vmar {
    fn map(
        &self,
        vmar_offset: usize,
        vmo: &zx::Vmo,
        vmo_offset: u64,
        length: usize,
        flags: zx::VmarFlags,
    ) -> Result<usize, zx::Status> {
        Self::map(self, vmar_offset, vmo, vmo_offset, length, flags)
    }
}

/// Load an ELF into a new sub-VMAR of the specified root.
pub fn load_elf(
    vmo: &zx::Vmo,
    headers: &elf::Elf64Headers,
    root_vmar: &zx::Vmar,
) -> Result<LoadedElf, ElfLoadError> {
    let info = loaded_elf_info(headers);
    let size = info.high - info.low;
    if size == 0 {
        return Err(ElfLoadError::NothingToLoad);
    }

    // Individual mappings with be restricted based on segment permissions, but we also limit the
    // overall VMAR to the maximum permissions required across all load segments.
    let flags = zx::VmarFlags::CAN_MAP_SPECIFIC | elf_to_vmar_can_map_flags(&info.max_perm);
    let (vmar, vmar_base) =
        root_vmar.allocate(0, size, flags).map_err(|s| ElfLoadError::VmarAllocate(s))?;

    // Get the relative bias between p_vaddr addresses in the headers and the allocated VMAR,
    // rather than for the root VMAR. Should be equal to the first segment's starting vaddr
    // negated, so that the first mapping starts at 0 within the allocated VMAR.
    let vaddr_bias = vmar_base.wrapping_sub(info.low);

    map_elf_segments(vmo, headers, &vmar, vmar_base, vaddr_bias)?;
    Ok(LoadedElf { vmar, vmar_base, entry: headers.file_header().entry.wrapping_add(vaddr_bias) })
}

/// Map the segments of an ELF into an existing VMAR.
pub fn map_elf_segments(
    vmo: &zx::Vmo,
    headers: &elf::Elf64Headers,
    mapper: &dyn Mapper,
    mapper_base: usize,
    vaddr_bias: usize,
) -> Result<(), ElfLoadError> {
    // We intentionally use wrapping subtraction here, in case the ELF file happens to use vaddr's
    // that are higher than the VMAR base chosen by the kernel. Wrapping addition will be used when
    // adding this bias to vaddr values.
    //
    // For arch32 entries, the caller must assure that the relative bias will
    // not underflow. Beyond that, no virtual offset supplied by an ELF32 header
    // is able to overflow 64-bit addition and if the mapping lands outside of
    // addressable User memory, the Mapper/MemoryManager will disallow the
    // mapping.
    let mapper_relative_bias = vaddr_bias.wrapping_sub(mapper_base);
    let vmo_name = vmo.get_name().map_err(|s| ElfLoadError::GetVmoName(s))?;
    for hdr in headers.program_headers_with_type(elf::SegmentType::Load) {
        // Shift the start of the mapping down to the nearest page.
        let adjust = util::page_offset(hdr.offset);
        let mut file_offset = hdr.offset - adjust;
        let file_size = hdr.filesz + adjust as u64;
        let virt_offset = hdr.vaddr - adjust;
        let virt_size = hdr.memsz + adjust as u64;

        // Calculate the virtual address range that this mapping needs to cover. These addresses
        // are relative to the allocated VMAR, not the root VMAR.
        let virt_addr = virt_offset.wrapping_add(mapper_relative_bias);

        // If the segment is specified as larger than the data in the file, and the data in the file
        // does not end at a page boundary, we will need to zero out the remaining memory in the
        // page.
        let must_write = virt_size > file_size && util::page_offset(file_size as usize) != 0;

        // If this segment is writeable (and we're mapping in some VMO content, i.e. it's not
        // all zero initialized) or the segment has a BSS section that needs to be zeroed, create
        // a writeable clone of the VMO. Otherwise use the potentially read-only VMO passed in.
        let vmo_to_map: &zx::Vmo;
        let writeable_vmo: zx::Vmo;
        if must_write || (file_size > 0 && hdr.flags().contains(elf::SegmentFlags::WRITE)) {
            writeable_vmo = vmo
                .create_child(
                    zx::VmoChildOptions::SNAPSHOT_AT_LEAST_ON_WRITE,
                    file_offset as u64,
                    util::page_end(file_size as usize) as u64,
                )
                .map_err(ElfLoadError::VmoCowClone)?;
            writeable_vmo
                .set_name(&vmo_name_with_prefix(&vmo_name, VMO_NAME_PREFIX_DATA))
                .map_err(ElfLoadError::SetVmoName)?;
            // Update addresses into the VMO that will be mapped.
            file_offset = 0;

            // Zero-out the memory between the end of the filesize and the end of the page.
            if virt_size > file_size {
                // If the space to be zero-filled overlaps with the VMO, we need to memset it.
                let memset_size = util::page_end(file_size as usize) - file_size as usize;
                if memset_size > 0 {
                    writeable_vmo
                        .write(&vec![0u8; memset_size], file_size)
                        .map_err(|s| ElfLoadError::VmoWrite(s))?;
                }
            }
            vmo_to_map = &writeable_vmo;
        } else {
            vmo_to_map = vmo;
        }

        // Create the VMO part of the mapping.
        // The VMO can be pager-backed, so include the ALLOW_FAULTS flag. ALLOW_FAULTS is a no-op
        // if not applicable to the VMO type.
        let flags = zx::VmarFlags::SPECIFIC
            | zx::VmarFlags::ALLOW_FAULTS
            | elf_to_vmar_perm_flags(&hdr.flags());
        if file_size != 0 {
            mapper
                .map(
                    virt_addr,
                    vmo_to_map,
                    file_offset as u64,
                    util::page_end(file_size as usize),
                    flags,
                )
                .map_err(ElfLoadError::VmarMap)?;
        }

        // If the mapping is specified as larger than the data in the file (i.e. virt_size is
        // larger than file_size), the remainder of the space (from virt_addr + file_size to
        // virt_addr + virt_size) is the BSS and must be filled with zeros.
        if virt_size > file_size {
            // The rest of the BSS is created as an anonymous vmo.
            let bss_vmo_start = util::page_end(file_size as usize);
            let bss_vmo_size = util::page_end(virt_size as usize) - bss_vmo_start;
            if bss_vmo_size > 0 {
                let anon_vmo =
                    zx::Vmo::create(bss_vmo_size as u64).map_err(|s| ElfLoadError::VmoCreate(s))?;
                anon_vmo
                    .set_name(&vmo_name_with_prefix(&vmo_name, VMO_NAME_PREFIX_BSS))
                    .map_err(ElfLoadError::SetVmoName)?;
                mapper
                    .map(virt_addr + bss_vmo_start, &anon_vmo, 0, bss_vmo_size, flags)
                    .map_err(ElfLoadError::VmarMap)?;
            }
        }
    }
    Ok(())
}

// These must not be longer than zx::sys::ZX_MAX_NAME_LEN.
const VMO_NAME_PREFIX_BSS: &str = "bss:";
const VMO_NAME_PREFIX_DATA: &str = "data:";

// prefix length must be less than zx::sys::ZX_MAX_NAME_LEN-1 and not contain any nul bytes.
fn vmo_name_with_prefix(name: &zx::Name, prefix: &str) -> zx::Name {
    assert!(prefix.len() <= zx::sys::ZX_MAX_NAME_LEN - 1);
    if name.is_empty() {
        zx::Name::new_lossy(&format!("{prefix}<unknown ELF>"))
    } else {
        zx::Name::new_lossy(&format!("{prefix}{name}"))
    }
}

fn elf_to_vmar_can_map_flags(elf_flags: &elf::SegmentFlags) -> zx::VmarFlags {
    let mut flags = zx::VmarFlags::empty();
    if elf_flags.contains(elf::SegmentFlags::READ) {
        flags |= zx::VmarFlags::CAN_MAP_READ;
    }
    if elf_flags.contains(elf::SegmentFlags::WRITE) {
        flags |= zx::VmarFlags::CAN_MAP_WRITE;
    }
    if elf_flags.contains(elf::SegmentFlags::EXECUTE) {
        flags |= zx::VmarFlags::CAN_MAP_EXECUTE | zx::VmarFlags::CAN_MAP_READ;
    }
    flags
}

fn elf_to_vmar_perm_flags(elf_flags: &elf::SegmentFlags) -> zx::VmarFlags {
    let mut flags = zx::VmarFlags::empty();
    if elf_flags.contains(elf::SegmentFlags::READ) {
        flags |= zx::VmarFlags::PERM_READ;
    }
    if elf_flags.contains(elf::SegmentFlags::WRITE) {
        flags |= zx::VmarFlags::PERM_WRITE;
    }
    if elf_flags.contains(elf::SegmentFlags::EXECUTE) {
        flags |= zx::VmarFlags::PERM_EXECUTE | zx::VmarFlags::PERM_READ_IF_XOM_UNSUPPORTED;
    }
    flags
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::elf_parse;
    use assert_matches::assert_matches;
    use fidl::HandleBased;
    use lazy_static::lazy_static;
    use std::cell::RefCell;
    use std::mem::size_of;

    #[test]
    fn test_vmo_name_with_prefix() {
        let empty_vmo_name = zx::Name::default();
        let short_vmo_name = zx::Name::new("short_vmo_name").unwrap();
        let max_vmo_name = zx::Name::new("a_great_maximum_length_vmo_name").unwrap();

        assert_eq!(vmo_name_with_prefix(&empty_vmo_name, VMO_NAME_PREFIX_BSS), "bss:<unknown ELF>");
        assert_eq!(
            vmo_name_with_prefix(&short_vmo_name, VMO_NAME_PREFIX_BSS),
            "bss:short_vmo_name",
        );
        assert_eq!(
            vmo_name_with_prefix(&max_vmo_name, VMO_NAME_PREFIX_BSS),
            "bss:a_great_maximum_length_vmo_",
        );
        assert_eq!(
            vmo_name_with_prefix(&max_vmo_name, VMO_NAME_PREFIX_DATA),
            "data:a_great_maximum_length_vmo",
        );

        assert_eq!(
            vmo_name_with_prefix(&empty_vmo_name, "a_long_vmo_name_prefix:"),
            "a_long_vmo_name_prefix:<unknown",
        );
        assert_eq!(
            vmo_name_with_prefix(&empty_vmo_name, "a_great_maximum_length_vmo_name"),
            max_vmo_name,
        );
        assert_eq!(
            vmo_name_with_prefix(&max_vmo_name, "anystringhere"),
            "anystringherea_great_maximum_le"
        );
    }

    #[derive(Debug)]
    struct RecordedMapping {
        vmo: zx::Vmo,
        vmo_offset: u64,
        length: usize,
        flags: zx::VmarFlags,
    }

    /// Records which VMOs and the offset within them are to be mapped.
    struct TrackingMapper(RefCell<Vec<RecordedMapping>>);

    impl TrackingMapper {
        fn new() -> Self {
            Self(RefCell::new(Vec::new()))
        }
    }

    impl IntoIterator for TrackingMapper {
        type Item = RecordedMapping;
        type IntoIter = std::vec::IntoIter<Self::Item>;

        fn into_iter(self) -> Self::IntoIter {
            self.0.into_inner().into_iter()
        }
    }

    impl Mapper for TrackingMapper {
        fn map(
            &self,
            vmar_offset: usize,
            vmo: &zx::Vmo,
            vmo_offset: u64,
            length: usize,
            flags: zx::VmarFlags,
        ) -> Result<usize, zx::Status> {
            self.0.borrow_mut().push(RecordedMapping {
                vmo: vmo.as_handle_ref().duplicate(zx::Rights::SAME_RIGHTS).unwrap().into(),
                vmo_offset,
                length,
                flags,
            });
            Ok(vmar_offset)
        }
    }

    /// A basic ELF64 File header with one program header.
    const ELF_FILE_HEADER: &elf_parse::Elf64FileHeader = &elf_parse::Elf64FileHeader {
        ident: elf_parse::ElfIdent {
            magic: elf_parse::ELF_MAGIC,
            class: elf_parse::ElfClass::Elf64 as u8,
            data: elf_parse::NATIVE_ENCODING as u8,
            version: elf_parse::ElfVersion::Current as u8,
            osabi: 0x00,
            abiversion: 0x00,
            pad: [0; 7],
        },
        elf_type: elf_parse::ElfType::SharedObject as u16,
        machine: elf_parse::CURRENT_ARCH as u16,
        version: elf_parse::ElfVersion::Current as u32,
        entry: 0x10000,
        phoff: size_of::<elf_parse::Elf64FileHeader>(),
        shoff: 0,
        flags: 0,
        ehsize: size_of::<elf_parse::Elf64FileHeader>() as u16,
        phentsize: size_of::<elf_parse::Elf64ProgramHeader>() as u16,
        phnum: 1,
        shentsize: 0,
        shnum: 0,
        shstrndx: 0,
    };

    // The bitwise `|` operator for `bitflags` is implemented through the `std::ops::BitOr` trait,
    // which cannot be used in a const context. The workaround is to bitwise OR the raw bits.
    const VMO_DEFAULT_RIGHTS: zx::Rights = zx::Rights::from_bits_truncate(
        zx::Rights::DUPLICATE.bits()
            | zx::Rights::TRANSFER.bits()
            | zx::Rights::READ.bits()
            | zx::Rights::WRITE.bits()
            | zx::Rights::MAP.bits()
            | zx::Rights::GET_PROPERTY.bits()
            | zx::Rights::SET_PROPERTY.bits(),
    );

    #[test]
    fn map_read_only_with_page_unaligned_bss() {
        const ELF_DATA: &[u8; 8] = b"FUCHSIA!";

        // Contains a PT_LOAD segment where the filesz is less than memsz (BSS).
        lazy_static! {
            static ref PAGE_SIZE: usize = zx::system_get_page_size() as usize;
            static ref ELF_PROGRAM_HEADER: elf_parse::Elf64ProgramHeader =
                elf_parse::Elf64ProgramHeader {
                    segment_type: elf_parse::SegmentType::Load as u32,
                    flags: elf_parse::SegmentFlags::from_bits_truncate(
                        elf_parse::SegmentFlags::READ.bits()
                            | elf_parse::SegmentFlags::EXECUTE.bits(),
                    )
                    .bits(),
                    offset: *PAGE_SIZE,
                    vaddr: 0x10000,
                    paddr: 0x10000,
                    filesz: ELF_DATA.len() as u64,
                    memsz: 0x100,
                    align: *PAGE_SIZE as u64,
                };
        }
        let headers = elf_parse::Elf64Headers::new_for_test(
            ELF_FILE_HEADER,
            Some(std::slice::from_ref(&ELF_PROGRAM_HEADER)),
        );
        let vmo = zx::Vmo::create(*PAGE_SIZE as u64 * 2).expect("create VMO");

        // Fill the VMO with 0xff, so that we can verify that the BSS section is correctly zeroed.
        let data = vec![0xff; *PAGE_SIZE * 2];
        vmo.write(&data, 0).expect("fill VMO with 0xff");
        // Write the PT_LOAD segment's data at the defined offset.
        vmo.write(ELF_DATA, *PAGE_SIZE as u64).expect("write data to VMO");

        // Remove the ZX_RIGHT_WRITE right. Page zeroing should happen in a COW VMO.
        let vmo =
            vmo.replace_handle(VMO_DEFAULT_RIGHTS - zx::Rights::WRITE).expect("remove WRITE right");

        let mapper = TrackingMapper::new();
        map_elf_segments(&vmo, &headers, &mapper, 0, 0).expect("map ELF segments");

        let mut mapping_iter = mapper.into_iter();

        // Extract the VMO and offset that was supposed to be mapped.
        let mapping = mapping_iter.next().expect("mapping from ELF VMO");

        // Read a page of data that was "mapped".
        let mut data = vec![0; *PAGE_SIZE];
        mapping.vmo.read(&mut data, mapping.vmo_offset).expect("read VMO");

        // Construct the expected memory, which is ASCII "FUCHSIA!" followed by 0s for the rest of
        // the page.
        let expected = ELF_DATA
            .into_iter()
            .cloned()
            .chain(std::iter::repeat(0).take(*PAGE_SIZE - ELF_DATA.len()))
            .collect::<Vec<u8>>();

        assert_eq!(&expected, &data);

        // No more mappings expected.
        assert_matches!(mapping_iter.next(), None);
    }

    #[test]
    fn map_read_only_vmo_with_page_aligned_bss() {
        // Contains a PT_LOAD segment where the BSS starts at a page boundary.
        lazy_static! {
            static ref PAGE_SIZE: usize = zx::system_get_page_size() as usize;
            static ref ELF_PROGRAM_HEADER: elf_parse::Elf64ProgramHeader =
                elf_parse::Elf64ProgramHeader {
                    segment_type: elf_parse::SegmentType::Load as u32,
                    flags: elf_parse::SegmentFlags::from_bits_truncate(
                        elf_parse::SegmentFlags::READ.bits()
                            | elf_parse::SegmentFlags::EXECUTE.bits(),
                    )
                    .bits(),
                    offset: *PAGE_SIZE as usize,
                    vaddr: 0x10000,
                    paddr: 0x10000,
                    filesz: *PAGE_SIZE as u64,
                    memsz: *PAGE_SIZE as u64 * 2,
                    align: *PAGE_SIZE as u64,
                };
        }
        let headers = elf_parse::Elf64Headers::new_for_test(
            ELF_FILE_HEADER,
            Some(std::slice::from_ref(&ELF_PROGRAM_HEADER)),
        );
        let vmo = zx::Vmo::create(*PAGE_SIZE as u64 * 2).expect("create VMO");
        // Fill the VMO with 0xff, so we can verify the BSS section is correctly allocated.
        let pattern = vec![0xff; *PAGE_SIZE * 2];
        vmo.write(&pattern, 0).expect("fill VMO with 0xff");

        // Remove the ZX_RIGHT_WRITE right. Since the BSS ends at a page boundary, we shouldn't
        // need to zero out any of the pages in this VMO.
        let vmo =
            vmo.replace_handle(VMO_DEFAULT_RIGHTS - zx::Rights::WRITE).expect("remove WRITE right");

        let mapper = TrackingMapper::new();
        map_elf_segments(&vmo, &headers, &mapper, 0, 0).expect("map ELF segments");

        let mut mapping_iter = mapper.into_iter();

        // Verify that a COW VMO was not created, since we didn't need to write to the original VMO.
        // We must check that KOIDs are the same, since we duplicate the handle when recording it
        // in TrackingMapper.
        let mapping = mapping_iter.next().expect("mapping from ELF VMO");
        assert_eq!(mapping.vmo.get_koid().unwrap(), vmo.get_koid().unwrap());

        let mut data = vec![0; *PAGE_SIZE];

        // Ensure the first page is from the ELF.
        mapping.vmo.read(&mut data, mapping.vmo_offset).expect("read ELF VMO");
        assert_eq!(&data, &pattern[0..*PAGE_SIZE]);

        let mapping = mapping_iter.next().expect("mapping from BSS VMO");

        // Ensure the second page is BSS.
        mapping.vmo.read(&mut data, mapping.vmo_offset).expect("read BSS VMO");
        let zero = vec![0; *PAGE_SIZE];
        assert_eq!(&data, &zero);

        // No more mappings expected.
        assert_matches!(mapping_iter.next(), None);
    }

    #[test]
    fn map_read_only_vmo_with_no_bss() {
        // Contains a PT_LOAD segment where there is no BSS.
        lazy_static! {
            static ref PAGE_SIZE: usize = zx::system_get_page_size() as usize;
            static ref ELF_PROGRAM_HEADER: elf_parse::Elf64ProgramHeader =
                elf_parse::Elf64ProgramHeader {
                    segment_type: elf_parse::SegmentType::Load as u32,
                    flags: elf_parse::SegmentFlags::from_bits_truncate(
                        elf_parse::SegmentFlags::READ.bits()
                            | elf_parse::SegmentFlags::EXECUTE.bits(),
                    )
                    .bits(),
                    offset: *PAGE_SIZE as usize,
                    vaddr: 0x10000,
                    paddr: 0x10000,
                    filesz: *PAGE_SIZE as u64,
                    memsz: *PAGE_SIZE as u64,
                    align: *PAGE_SIZE as u64,
                };
        }
        let headers = elf_parse::Elf64Headers::new_for_test(
            ELF_FILE_HEADER,
            Some(std::slice::from_ref(&ELF_PROGRAM_HEADER)),
        );
        let vmo = zx::Vmo::create(*PAGE_SIZE as u64 * 2).expect("create VMO");
        // Fill the VMO with 0xff, so we can verify the BSS section is correctly allocated.
        let pattern = vec![0xff; *PAGE_SIZE * 2];
        vmo.write(&pattern, 0).expect("fill VMO with 0xff");

        // Remove the ZX_RIGHT_WRITE right. Since the BSS ends at a page boundary, we shouldn't
        // need to zero out any of the pages in this VMO.
        let vmo =
            vmo.replace_handle(VMO_DEFAULT_RIGHTS - zx::Rights::WRITE).expect("remove WRITE right");

        let mapper = TrackingMapper::new();
        map_elf_segments(&vmo, &headers, &mapper, 0, 0).expect("map ELF segments");

        let mut mapping_iter = mapper.into_iter();

        // Verify that a COW VMO was not created, since we didn't need to write to the original VMO.
        // We must check that KOIDs are the same, since we duplicate the handle when recording it
        // in TrackingMapper.
        let mapping = mapping_iter.next().expect("mapping from ELF VMO");
        assert_eq!(mapping.vmo.get_koid().unwrap(), vmo.get_koid().unwrap());

        let mut data = vec![0; *PAGE_SIZE];

        // Ensure the first page is from the ELF.
        mapping.vmo.read(&mut data, mapping.vmo_offset).expect("read ELF VMO");
        assert_eq!(&data, &pattern[0..*PAGE_SIZE]);

        // No more mappings expected.
        assert_matches!(mapping_iter.next(), None);
    }

    #[test]
    fn map_read_only_vmo_with_write_flag() {
        // Contains a PT_LOAD segment where there is no BSS.
        lazy_static! {
            static ref PAGE_SIZE: usize = zx::system_get_page_size() as usize;
            static ref ELF_PROGRAM_HEADER: elf_parse::Elf64ProgramHeader =
                elf_parse::Elf64ProgramHeader {
                    segment_type: elf_parse::SegmentType::Load as u32,
                    flags: elf_parse::SegmentFlags::from_bits_truncate(
                        elf_parse::SegmentFlags::READ.bits()
                            | elf_parse::SegmentFlags::WRITE.bits(),
                    )
                    .bits(),
                    offset: *PAGE_SIZE as usize,
                    vaddr: 0x10000,
                    paddr: 0x10000,
                    filesz: *PAGE_SIZE as u64,
                    memsz: *PAGE_SIZE as u64,
                    align: *PAGE_SIZE as u64,
                };
        }
        let headers = elf_parse::Elf64Headers::new_for_test(
            ELF_FILE_HEADER,
            Some(std::slice::from_ref(&ELF_PROGRAM_HEADER)),
        );
        let vmo = zx::Vmo::create(*PAGE_SIZE as u64 * 2).expect("create VMO");

        // Remove the ZX_RIGHT_WRITE right. Since the segment has a WRITE flag, a COW child VMO
        // will be created.
        let vmo =
            vmo.replace_handle(VMO_DEFAULT_RIGHTS - zx::Rights::WRITE).expect("remove WRITE right");

        let mapper = TrackingMapper::new();
        map_elf_segments(&vmo, &headers, &mapper, 0, 0).expect("map ELF segments");

        let mut mapping_iter = mapper.into_iter();

        // Verify that a COW VMO was created, since the segment had a WRITE flag.
        // We must check that KOIDs are different, since we duplicate the handle when recording it
        // in TrackingMapper.
        let mapping = mapping_iter.next().expect("mapping from ELF VMO");
        assert_ne!(mapping.vmo.get_koid().unwrap(), vmo.get_koid().unwrap());

        // Attempt to write to the VMO to ensure it has the ZX_RIGHT_WRITE right.
        mapping.vmo.write(b"FUCHSIA!", mapping.vmo_offset).expect("write to COW VMO");

        // No more mappings expected.
        assert_matches!(mapping_iter.next(), None);
    }

    #[test]
    fn segment_with_zero_file_size() {
        // Contains a PT_LOAD segment whose filesz is 0.
        lazy_static! {
            static ref PAGE_SIZE: usize = zx::system_get_page_size() as usize;
            static ref ELF_PROGRAM_HEADER: elf_parse::Elf64ProgramHeader =
                elf_parse::Elf64ProgramHeader {
                    segment_type: elf_parse::SegmentType::Load as u32,
                    flags: elf_parse::SegmentFlags::from_bits_truncate(
                        elf_parse::SegmentFlags::READ.bits()
                            | elf_parse::SegmentFlags::WRITE.bits(),
                    )
                    .bits(),
                    offset: *PAGE_SIZE as usize,
                    vaddr: 0x10000,
                    paddr: 0x10000,
                    filesz: 0,
                    memsz: 1,
                    align: *PAGE_SIZE as u64,
                };
        }
        let headers = elf_parse::Elf64Headers::new_for_test(
            ELF_FILE_HEADER,
            Some(std::slice::from_ref(&ELF_PROGRAM_HEADER)),
        );
        let vmo = zx::Vmo::create(*PAGE_SIZE as u64 * 2).expect("create VMO");

        let mapper = TrackingMapper::new();
        map_elf_segments(&vmo, &headers, &mapper, 0, 0).expect("map ELF segments");
        for mapping in mapper.into_iter() {
            assert!(mapping.length != 0);
        }
    }

    #[test]
    fn map_execute_only_segment() {
        lazy_static! {
            static ref PAGE_SIZE: usize = zx::system_get_page_size() as usize;
            static ref ELF_PROGRAM_HEADER: elf_parse::Elf64ProgramHeader =
                elf_parse::Elf64ProgramHeader {
                    segment_type: elf_parse::SegmentType::Load as u32,
                    flags: elf_parse::SegmentFlags::from_bits_truncate(
                        elf_parse::SegmentFlags::EXECUTE.bits(),
                    )
                    .bits(),
                    offset: *PAGE_SIZE as usize,
                    vaddr: 0x10000,
                    paddr: 0x10000,
                    filesz: 0x10,
                    memsz: 0x10,
                    align: *PAGE_SIZE as u64,
                };
        }
        let headers = elf_parse::Elf64Headers::new_for_test(
            ELF_FILE_HEADER,
            Some(std::slice::from_ref(&ELF_PROGRAM_HEADER)),
        );
        let vmo = zx::Vmo::create(*PAGE_SIZE as u64 * 2).expect("create VMO");

        let mapper = TrackingMapper::new();
        map_elf_segments(&vmo, &headers, &mapper, 0, 0).expect("map ELF segments");

        let mut mapping_iter = mapper.into_iter();
        let mapping = mapping_iter.next().expect("mapping from ELF VMO");
        assert_eq!(
            mapping.flags,
            zx::VmarFlags::SPECIFIC
                | zx::VmarFlags::ALLOW_FAULTS
                | zx::VmarFlags::PERM_EXECUTE
                | zx::VmarFlags::PERM_READ_IF_XOM_UNSUPPORTED
        );

        // No more mappings expected.
        assert_matches!(mapping_iter.next(), None);
    }
}