packet_formats/
tcp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Parsing and serialization of TCP segments.
//!
//! The TCP segment format is defined in [RFC 791 Section 3.3].
//!
//! [RFC 793 Section 3.1]: https://datatracker.ietf.org/doc/html/rfc793#section-3.1

use core::borrow::Borrow;
use core::convert::TryInto as _;
use core::fmt::Debug;
#[cfg(test)]
use core::fmt::{self, Formatter};
use core::num::NonZeroU16;
use core::ops::Range;

use arrayvec::ArrayVec;
use explicit::ResultExt as _;
use net_types::ip::IpAddress;
use packet::records::options::OptionsRaw;
use packet::records::Records;
use packet::{
    BufferView, BufferViewMut, ByteSliceInnerPacketBuilder, EmptyBuf, FragmentedBytesMut, FromRaw,
    InnerPacketBuilder, MaybeParsed, PacketBuilder, PacketConstraints, ParsablePacket,
    ParseMetadata, SerializeTarget, Serializer,
};
use zerocopy::byteorder::network_endian::{U16, U32};
use zerocopy::{
    FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, SplitByteSliceMut, Unaligned,
};

use crate::error::{ParseError, ParseResult};
use crate::ip::IpProto;
use crate::{compute_transport_checksum_parts, compute_transport_checksum_serialize};

use self::data_offset_reserved_flags::DataOffsetReservedFlags;
use self::options::{TcpOption, TcpOptionsImpl};

/// The length of the fixed prefix of a TCP header (preceding the options).
pub const HDR_PREFIX_LEN: usize = 20;

/// The maximum length of a TCP header.
pub const MAX_HDR_LEN: usize = 60;

/// The maximum length of the options in a TCP header.
pub const MAX_OPTIONS_LEN: usize = MAX_HDR_LEN - HDR_PREFIX_LEN;

const CHECKSUM_OFFSET: usize = 16;
const CHECKSUM_RANGE: Range<usize> = CHECKSUM_OFFSET..CHECKSUM_OFFSET + 2;

#[derive(Debug, Default, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned, PartialEq)]
#[repr(C)]
struct HeaderPrefix {
    src_port: U16,
    dst_port: U16,
    seq_num: U32,
    ack: U32,
    data_offset_reserved_flags: DataOffsetReservedFlags,
    window_size: U16,
    checksum: [u8; 2],
    urg_ptr: U16,
}

impl HeaderPrefix {
    #[allow(clippy::too_many_arguments)]
    fn new(
        src_port: u16,
        dst_port: u16,
        seq_num: u32,
        ack: u32,
        data_offset_reserved_flags: DataOffsetReservedFlags,
        window_size: u16,
        checksum: [u8; 2],
        urg_ptr: u16,
    ) -> HeaderPrefix {
        HeaderPrefix {
            src_port: U16::new(src_port),
            dst_port: U16::new(dst_port),
            seq_num: U32::new(seq_num),
            ack: U32::new(ack),
            data_offset_reserved_flags,
            window_size: U16::new(window_size),
            checksum,
            urg_ptr: U16::new(urg_ptr),
        }
    }

    fn data_offset(&self) -> u8 {
        self.data_offset_reserved_flags.data_offset()
    }

    fn ack_num(&self) -> Option<u32> {
        if self.data_offset_reserved_flags.ack() {
            Some(self.ack.get())
        } else {
            None
        }
    }

    fn builder<A: IpAddress>(&self, src_ip: A, dst_ip: A) -> TcpSegmentBuilder<A> {
        TcpSegmentBuilder {
            src_ip,
            dst_ip,
            // Might be zero, which is illegal.
            src_port: NonZeroU16::new(self.src_port.get()),
            // Might be zero, which is illegal.
            dst_port: NonZeroU16::new(self.dst_port.get()),
            // All values are valid.
            seq_num: self.seq_num.get(),
            // Might be nonzero even if the ACK flag is not set.
            ack_num: self.ack.get(),
            // Reserved zero bits may be set.
            data_offset_reserved_flags: self.data_offset_reserved_flags,
            // All values are valid.
            window_size: self.window_size.get(),
        }
    }
}

mod data_offset_reserved_flags {
    use super::*;

    /// The Data Offset field, the reserved zero bits, and the flags.
    ///
    /// When constructed from a packet, `DataOffsetReservedFlags` ensures that
    /// all bits are preserved even if they are reserved as of this writing.
    /// This allows us to be forwards-compatible with future uses of these bits.
    /// This forwards-compatibility doesn't matter when user code is only
    /// parsing a segment because we don't provide getters for any of those
    /// bits. However, it does matter when copying `DataOffsetReservedFlags`
    /// into new segments - in these cases, if we were to unconditionally set
    /// the reserved bits to zero, we could be changing the semantics of a TCP
    /// segment.
    #[derive(
        KnownLayout,
        FromBytes,
        IntoBytes,
        Immutable,
        Unaligned,
        Copy,
        Clone,
        Debug,
        Default,
        Eq,
        PartialEq,
    )]
    #[repr(transparent)]
    pub(super) struct DataOffsetReservedFlags(U16);

    impl DataOffsetReservedFlags {
        pub const EMPTY: DataOffsetReservedFlags = DataOffsetReservedFlags(U16::ZERO);
        pub const ACK_SET: DataOffsetReservedFlags =
            DataOffsetReservedFlags(U16::from_bytes(Self::ACK_FLAG_MASK.to_be_bytes()));

        const DATA_OFFSET_SHIFT: u8 = 12;
        const DATA_OFFSET_MAX: u8 = (1 << (16 - Self::DATA_OFFSET_SHIFT)) - 1;
        const DATA_OFFSET_MASK: u16 = (Self::DATA_OFFSET_MAX as u16) << Self::DATA_OFFSET_SHIFT;

        const ACK_FLAG_MASK: u16 = 0b10000;
        const PSH_FLAG_MASK: u16 = 0b01000;
        const RST_FLAG_MASK: u16 = 0b00100;
        const SYN_FLAG_MASK: u16 = 0b00010;
        const FIN_FLAG_MASK: u16 = 0b00001;

        #[cfg(test)]
        pub fn new(data_offset: u8) -> DataOffsetReservedFlags {
            let mut ret = Self::EMPTY;
            ret.set_data_offset(data_offset);
            ret
        }

        pub fn set_data_offset(&mut self, data_offset: u8) {
            debug_assert!(data_offset <= Self::DATA_OFFSET_MAX);
            let v = self.0.get();
            self.0.set(
                (v & !Self::DATA_OFFSET_MASK) | (u16::from(data_offset)) << Self::DATA_OFFSET_SHIFT,
            );
        }

        pub fn data_offset(&self) -> u8 {
            (self.0.get() >> 12) as u8
        }

        fn get_flag(&self, mask: u16) -> bool {
            self.0.get() & mask > 0
        }

        pub fn ack(&self) -> bool {
            self.get_flag(Self::ACK_FLAG_MASK)
        }

        pub fn psh(&self) -> bool {
            self.get_flag(Self::PSH_FLAG_MASK)
        }

        pub fn rst(&self) -> bool {
            self.get_flag(Self::RST_FLAG_MASK)
        }

        pub fn syn(&self) -> bool {
            self.get_flag(Self::SYN_FLAG_MASK)
        }

        pub fn fin(&self) -> bool {
            self.get_flag(Self::FIN_FLAG_MASK)
        }

        fn set_flag(&mut self, mask: u16, set: bool) {
            let v = self.0.get();
            self.0.set(if set { v | mask } else { v & !mask });
        }

        pub fn set_psh(&mut self, psh: bool) {
            self.set_flag(Self::PSH_FLAG_MASK, psh);
        }

        pub fn set_rst(&mut self, rst: bool) {
            self.set_flag(Self::RST_FLAG_MASK, rst)
        }

        pub fn set_syn(&mut self, syn: bool) {
            self.set_flag(Self::SYN_FLAG_MASK, syn)
        }

        pub fn set_fin(&mut self, fin: bool) {
            self.set_flag(Self::FIN_FLAG_MASK, fin)
        }
    }
}

/// A TCP segment.
///
/// A `TcpSegment` shares its underlying memory with the byte slice it was
/// parsed from or serialized to, meaning that no copying or extra allocation is
/// necessary.
///
/// A `TcpSegment` - whether parsed using `parse` or created using
/// `TcpSegmentBuilder` - maintains the invariant that the checksum is always
/// valid.
pub struct TcpSegment<B> {
    hdr_prefix: Ref<B, HeaderPrefix>,
    // Invariant: At most MAX_OPTIONS_LEN bytes long. This guarantees that we
    // can store these in an `ArrayVec<u8, MAX_OPTIONS_LEN>` in `builder`.
    options: Options<B>,
    body: B,
}

/// Arguments required to parse a TCP segment.
pub struct TcpParseArgs<A: IpAddress> {
    src_ip: A,
    dst_ip: A,
}

impl<A: IpAddress> TcpParseArgs<A> {
    /// Construct a new `TcpParseArgs`.
    pub fn new(src_ip: A, dst_ip: A) -> TcpParseArgs<A> {
        TcpParseArgs { src_ip, dst_ip }
    }
}

impl<B: SplitByteSlice, A: IpAddress> ParsablePacket<B, TcpParseArgs<A>> for TcpSegment<B> {
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        let header_len = Ref::bytes(&self.hdr_prefix).len() + self.options.bytes().len();
        ParseMetadata::from_packet(header_len, self.body.len(), 0)
    }

    fn parse<BV: BufferView<B>>(buffer: BV, args: TcpParseArgs<A>) -> ParseResult<Self> {
        TcpSegmentRaw::<B>::parse(buffer, ()).and_then(|u| TcpSegment::try_from_raw_with(u, args))
    }
}

impl<B: SplitByteSlice, A: IpAddress> FromRaw<TcpSegmentRaw<B>, TcpParseArgs<A>> for TcpSegment<B> {
    type Error = ParseError;

    fn try_from_raw_with(
        raw: TcpSegmentRaw<B>,
        args: TcpParseArgs<A>,
    ) -> Result<Self, Self::Error> {
        // See for details: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

        let hdr_prefix = raw
            .hdr_prefix
            .ok_or_else(|_| debug_err!(ParseError::Format, "too few bytes for header"))?;
        let options = raw
            .options
            .ok_or_else(|_| debug_err!(ParseError::Format, "Incomplete options"))
            .and_then(|o| {
                Options::try_from_raw(o)
                    .map_err(|e| debug_err!(e.into(), "Options validation failed"))
            })?;
        let body = raw.body;

        let hdr_bytes = (hdr_prefix.data_offset() * 4) as usize;
        if hdr_bytes != Ref::bytes(&hdr_prefix).len() + options.bytes().len() {
            return debug_err!(
                Err(ParseError::Format),
                "invalid data offset: {} for header={} + options={}",
                hdr_prefix.data_offset(),
                Ref::bytes(&hdr_prefix).len(),
                options.bytes().len()
            );
        }

        let parts = [Ref::bytes(&hdr_prefix), options.bytes(), body.deref().as_ref()];
        let checksum = compute_transport_checksum_parts(
            args.src_ip,
            args.dst_ip,
            IpProto::Tcp.into(),
            parts.iter(),
        )
        .ok_or_else(debug_err_fn!(ParseError::Format, "segment too large"))?;

        if checksum != [0, 0] {
            return debug_err!(Err(ParseError::Checksum), "invalid checksum");
        }

        if hdr_prefix.src_port == U16::ZERO || hdr_prefix.dst_port == U16::ZERO {
            return debug_err!(Err(ParseError::Format), "zero source or destination port");
        }

        Ok(TcpSegment { hdr_prefix, options, body })
    }
}

impl<B: SplitByteSlice> TcpSegment<B> {
    /// Iterate over the TCP header options.
    pub fn iter_options(&self) -> impl Iterator<Item = TcpOption<'_>> + Debug + Clone {
        self.options.iter()
    }

    /// The segment body.
    pub fn body(&self) -> &[u8] {
        &self.body
    }

    /// Consumes this packet and returns the body.
    ///
    /// Note that the returned `B` has the same lifetime as the buffer from
    /// which this segment was parsed. By contrast, the [`body`] method returns
    /// a slice with the same lifetime as the receiver.
    ///
    /// [`body`]: TcpSegment::body
    pub fn into_body(self) -> B {
        self.body
    }

    /// The source port.
    pub fn src_port(&self) -> NonZeroU16 {
        // Infallible because this was already validated in parse
        NonZeroU16::new(self.hdr_prefix.src_port.get()).unwrap()
    }

    /// The destination port.
    pub fn dst_port(&self) -> NonZeroU16 {
        // Infallible because this was already validated in parse
        NonZeroU16::new(self.hdr_prefix.dst_port.get()).unwrap()
    }

    /// The sequence number.
    pub fn seq_num(&self) -> u32 {
        self.hdr_prefix.seq_num.get()
    }

    /// The acknowledgement number.
    ///
    /// If the ACK flag is not set, `ack_num` returns `None`.
    pub fn ack_num(&self) -> Option<u32> {
        self.hdr_prefix.ack_num()
    }

    /// The PSH flag.
    pub fn psh(&self) -> bool {
        self.hdr_prefix.data_offset_reserved_flags.psh()
    }

    /// The RST flag.
    pub fn rst(&self) -> bool {
        self.hdr_prefix.data_offset_reserved_flags.rst()
    }

    /// The SYN flag.
    pub fn syn(&self) -> bool {
        self.hdr_prefix.data_offset_reserved_flags.syn()
    }

    /// The FIN flag.
    pub fn fin(&self) -> bool {
        self.hdr_prefix.data_offset_reserved_flags.fin()
    }

    /// The sender's window size.
    pub fn window_size(&self) -> u16 {
        self.hdr_prefix.window_size.get()
    }

    /// The length of the header prefix and options.
    pub fn header_len(&self) -> usize {
        Ref::bytes(&self.hdr_prefix).len() + self.options.bytes().len()
    }

    // The length of the segment as calculated from the header prefix, options,
    // and body.
    // TODO(rheacock): remove `allow(dead_code)` when this is used.
    #[allow(dead_code)]
    fn total_segment_len(&self) -> usize {
        self.header_len() + self.body.len()
    }

    /// Constructs a builder with the same contents as this packet.
    pub fn builder<A: IpAddress>(
        &self,
        src_ip: A,
        dst_ip: A,
    ) -> TcpSegmentBuilderWithOptions<A, ArrayVec<u8, MAX_OPTIONS_LEN>> {
        TcpSegmentBuilderWithOptions {
            prefix_builder: TcpSegmentBuilder {
                src_ip,
                dst_ip,
                src_port: Some(self.src_port()),
                dst_port: Some(self.dst_port()),
                seq_num: self.seq_num(),
                ack_num: self.hdr_prefix.ack.get(),
                data_offset_reserved_flags: self.hdr_prefix.data_offset_reserved_flags,
                window_size: self.window_size(),
            },
            // By using the raw bytes rather than parsing and using the
            // resulting iterator to construct a new builder for the options, we
            // ensure that:
            // - even if we fail to parse some options, we can still construct a
            //   builder
            // - even if our serializing code makes different choices about how
            //   to serialize (in cases in which multiple serializations are
            //   valid), the resulting builder still produces an identical
            //   packet to the original
            options: {
                let mut options = ArrayVec::new();
                // Safe because we validate that `self.options` is no longer
                // than MAX_OPTIONS_LEN.
                options.try_extend_from_slice(self.options.bytes()).unwrap_or_else(|e| {
                    panic!("TCP segment options longer than {} bytes: {:?}", MAX_OPTIONS_LEN, e)
                });
                options
            },
        }
    }

    /// Consumes this segment and constructs a [`Serializer`] with the same
    /// contents.
    ///
    /// The returned `Serializer` has the [`Buffer`] type [`EmptyBuf`], which
    /// means it is not able to reuse the buffer backing this `TcpSegment` when
    /// serializing, and will always need to allocate a new buffer.
    ///
    /// By consuming `self` instead of taking it by-reference, `into_serializer`
    /// is able to return a `Serializer` whose lifetime is restricted by the
    /// lifetime of the buffer from which this `TcpSegment` was parsed rather
    /// than by the lifetime on `&self`, which may be more restricted.
    ///
    /// [`Buffer`]: packet::Serializer::Buffer
    pub fn into_serializer<'a, A: IpAddress>(
        self,
        src_ip: A,
        dst_ip: A,
    ) -> impl Serializer<Buffer = EmptyBuf> + Debug + 'a
    where
        B: 'a,
    {
        let builder = self.builder(src_ip, dst_ip);
        ByteSliceInnerPacketBuilder(self.body).into_serializer().encapsulate(builder)
    }
}

impl<B: SplitByteSliceMut> TcpSegment<B> {
    /// Set the source port of the UDP packet.
    pub fn set_src_port(&mut self, new: NonZeroU16) {
        let old = self.hdr_prefix.src_port;
        let new = U16::from(new.get());
        self.hdr_prefix.src_port = new;
        self.hdr_prefix.checksum =
            internet_checksum::update(self.hdr_prefix.checksum, old.as_bytes(), new.as_bytes());
    }

    /// Set the destination port of the UDP packet.
    pub fn set_dst_port(&mut self, new: NonZeroU16) {
        let old = self.hdr_prefix.dst_port;
        let new = U16::from(new.get());
        self.hdr_prefix.dst_port = new;
        self.hdr_prefix.checksum =
            internet_checksum::update(self.hdr_prefix.checksum, old.as_bytes(), new.as_bytes());
    }

    /// Update the checksum to reflect an updated address in the pseudo header.
    pub fn update_checksum_pseudo_header_address<A: IpAddress>(&mut self, old: A, new: A) {
        self.hdr_prefix.checksum =
            internet_checksum::update(self.hdr_prefix.checksum, old.bytes(), new.bytes());
    }
}

/// The minimal information required from a TCP segment header.
///
/// A `TcpFlowHeader` may be the result of a partially parsed TCP segment in
/// [`TcpSegmentRaw`].
#[derive(
    Debug, Default, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned, PartialEq, Copy, Clone,
)]
#[repr(C)]
pub struct TcpFlowHeader {
    /// Source port.
    src_port: U16,
    /// Destination port.
    dst_port: U16,
}

impl TcpFlowHeader {
    /// Gets the (src, dst) port tuple.
    pub fn src_dst(&self) -> (u16, u16) {
        (self.src_port.get(), self.dst_port.get())
    }
}

#[derive(Debug)]
struct PartialHeaderPrefix<B: SplitByteSlice> {
    flow: Ref<B, TcpFlowHeader>,
    rest: B,
}

/// Contains the TCP flow info and its sequence number.
///
/// This is useful for TCP endpoints processing ingress ICMP messages so that it
/// can deliver the ICMP message to the right socket and also perform checks
/// against the sequence number to make sure it corresponds to an in-flight
/// segment.
#[derive(Debug, Default, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned, PartialEq)]
#[repr(C)]
pub struct TcpFlowAndSeqNum {
    /// The flow header.
    flow: TcpFlowHeader,
    /// The sequence number.
    seqnum: U32,
}

impl TcpFlowAndSeqNum {
    /// Gets the source port.
    pub fn src_port(&self) -> u16 {
        self.flow.src_port.get()
    }

    /// Gets the destination port.
    pub fn dst_port(&self) -> u16 {
        self.flow.dst_port.get()
    }

    /// Gets the sequence number.
    pub fn sequence_num(&self) -> u32 {
        self.seqnum.get()
    }
}

/// A partially-parsed and not yet validated TCP segment.
///
/// A `TcpSegmentRaw` shares its underlying memory with the byte slice it was
/// parsed from or serialized to, meaning that no copying or extra allocation is
/// necessary.
///
/// Parsing a `TcpSegmentRaw` from raw data will succeed as long as at least 4
/// bytes are available, which will be extracted as a [`TcpFlowHeader`] that
/// contains the TCP source and destination ports. A `TcpSegmentRaw` is, then,
/// guaranteed to always have at least that minimal information available.
///
/// [`TcpSegment`] provides a [`FromRaw`] implementation that can be used to
/// validate a `TcpSegmentRaw`.
pub struct TcpSegmentRaw<B: SplitByteSlice> {
    hdr_prefix: MaybeParsed<Ref<B, HeaderPrefix>, PartialHeaderPrefix<B>>,
    // Invariant: At most MAX_OPTIONS_LEN bytes long. This guarantees that we
    // can store these in an `ArrayVec<u8, MAX_OPTIONS_LEN>` in `builder`.
    options: MaybeParsed<OptionsRaw<B, TcpOptionsImpl>, B>,
    body: B,
}

impl<B> ParsablePacket<B, ()> for TcpSegmentRaw<B>
where
    B: SplitByteSlice,
{
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        let header_len = self.options.len()
            + match &self.hdr_prefix {
                MaybeParsed::Complete(h) => Ref::bytes(&h).len(),
                MaybeParsed::Incomplete(h) => Ref::bytes(&h.flow).len() + h.rest.len(),
            };
        ParseMetadata::from_packet(header_len, self.body.len(), 0)
    }

    fn parse<BV: BufferView<B>>(mut buffer: BV, _args: ()) -> ParseResult<Self> {
        // See for details: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

        let (hdr_prefix, options) = if let Some(pfx) = buffer.take_obj_front::<HeaderPrefix>() {
            // If the subtraction data_offset*4 - HDR_PREFIX_LEN would have been
            // negative, that would imply that data_offset has an invalid value.
            // Even though this will end up being MaybeParsed::Complete, the
            // data_offset value is validated when transforming TcpSegmentRaw to
            // TcpSegment.
            //
            // `options_bytes` upholds the invariant of being no more than
            // `MAX_OPTIONS_LEN` (40) bytes long because the Data Offset field
            // is a 4-bit field with a maximum value of 15. Thus, the maximum
            // value of `pfx.data_offset() * 4` is 15 * 4 = 60, so subtracting
            // `HDR_PREFIX_LEN` (20) leads to a maximum possible value of 40.
            let options_bytes = usize::from(pfx.data_offset() * 4).saturating_sub(HDR_PREFIX_LEN);
            debug_assert!(options_bytes <= MAX_OPTIONS_LEN, "options_bytes: {}", options_bytes);
            let options =
                MaybeParsed::take_from_buffer_with(&mut buffer, options_bytes, OptionsRaw::new);
            let hdr_prefix = MaybeParsed::Complete(pfx);
            (hdr_prefix, options)
        } else {
            let flow = buffer
                .take_obj_front::<TcpFlowHeader>()
                .ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for flow header"))?;
            let rest = buffer.take_rest_front();
            // if we can't take the entire header, the rest of options will be
            // incomplete:
            let hdr_prefix = MaybeParsed::Incomplete(PartialHeaderPrefix { flow, rest });
            let options = MaybeParsed::Incomplete(buffer.take_rest_front());
            (hdr_prefix, options)
        };

        // A TCP segment's body is always just the rest of the buffer:
        let body = buffer.into_rest();

        Ok(Self { hdr_prefix, options, body })
    }
}

impl<B: SplitByteSlice> TcpSegmentRaw<B> {
    /// Gets the flow header from this packet.
    pub fn flow_header(&self) -> TcpFlowHeader {
        match &self.hdr_prefix {
            MaybeParsed::Complete(c) => {
                let HeaderPrefix { src_port, dst_port, .. } = &**c;
                TcpFlowHeader { src_port: *src_port, dst_port: *dst_port }
            }
            MaybeParsed::Incomplete(i) => *i.flow,
        }
    }

    /// Constructs a builder with the same contents as this packet.
    ///
    /// Returns `None` if an entire TCP header was not successfully parsed.
    ///
    /// Note that, since `TcpSegmentRaw` does not validate its header fields,
    /// it's possible for `builder` to produce a `TcpSegmentBuilder` which
    /// describes an invalid TCP segment, or one which this module is not
    /// capable of building from scratch. In particular:
    /// - The source or destination ports may be zero, which is illegal (these
    ///   ports are reserved in IANA's [Service Name and Transport Protocol Port
    ///   Number Registry]).
    /// - The ACK number may be nonzero even though the ACK flag is not set.
    ///   This is not illegal according to [RFC 793], but it's possible that
    ///   some implementations expect it not to happen.
    /// - Some of the reserved zero bits between the Data Offset and Flags
    ///   fields may be set. This may be due to a noncompliant implementation or
    ///   a future change to TCP which makes use of these bits.
    ///
    /// [Service Name and Transport Protocol Port Number Registry]: https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
    /// [RFC 793]: https://datatracker.ietf.org/doc/html/rfc793
    pub fn builder<A: IpAddress>(
        &self,
        src_ip: A,
        dst_ip: A,
    ) -> Option<TcpSegmentBuilderWithOptions<A, ArrayVec<u8, MAX_OPTIONS_LEN>>> {
        self.hdr_prefix
            .as_ref()
            .complete()
            .ok_checked::<&PartialHeaderPrefix<B>>()
            .zip(self.options.as_ref().complete().ok_checked::<&B>())
            .map(|(hdr_prefix, options)| TcpSegmentBuilderWithOptions {
                prefix_builder: hdr_prefix.builder(src_ip, dst_ip),
                options: {
                    let mut opts = ArrayVec::new();
                    // Safe because we validate that `self.options` is no longer
                    // than MAX_OPTIONS_LEN.
                    opts.try_extend_from_slice(options.bytes()).unwrap_or_else(|e| {
                        panic!("TCP segment options longer than {} bytes: {:?}", MAX_OPTIONS_LEN, e)
                    });
                    opts
                },
            })
    }

    /// Transform this `TcpSegmentRaw` into the equivalent builder, parsed options, and body.
    pub fn into_builder_options<A: IpAddress>(
        self,
        src_ip: A,
        dst_ip: A,
    ) -> Option<(TcpSegmentBuilder<A>, Records<B, TcpOptionsImpl>, B)> {
        let Self { hdr_prefix, options, body } = self;

        let builder = hdr_prefix
            .complete()
            .ok_checked::<PartialHeaderPrefix<B>>()
            .map(|hdr_prefix| hdr_prefix.builder(src_ip, dst_ip))?;

        let options = Records::try_from_raw(options.complete().ok_checked::<B>()?).ok()?;

        Some((builder, options, body))
    }

    /// Consumes this segment and constructs a [`Serializer`] with the same
    /// contents.
    ///
    /// Returns `None` if an entire TCP header was not successfully parsed.
    ///
    /// This method has the same validity caveats as [`builder`].
    ///
    /// The returned `Serializer` has the [`Buffer`] type [`EmptyBuf`], which
    /// means it is not able to reuse the buffer backing this `TcpSegmentRaw`
    /// when serializing, and will always need to allocate a new buffer.
    ///
    /// By consuming `self` instead of taking it by-reference, `into_serializer`
    /// is able to return a `Serializer` whose lifetime is restricted by the
    /// lifetime of the buffer from which this `TcpSegmentRaw` was parsed rather
    /// than by the lifetime on `&self`, which may be more restricted.
    ///
    /// [`builder`]: TcpSegmentRaw::builder
    /// [`Buffer`]: packet::Serializer::Buffer
    pub fn into_serializer<'a, A: IpAddress>(
        self,
        src_ip: A,
        dst_ip: A,
    ) -> Option<impl Serializer<Buffer = EmptyBuf> + 'a>
    where
        B: 'a,
    {
        self.builder(src_ip, dst_ip).map(|builder| {
            let _ = &self;
            ByteSliceInnerPacketBuilder(self.body).into_serializer().encapsulate(builder)
        })
    }
}

/// An options parser for TCP options.
///
/// See [`Options`] for more details.
///
/// [`Options`]: packet::records::options::Options
type Options<B> = packet::records::options::Options<B, TcpOptionsImpl>;

/// An option sequence builder for TCP options.
///
/// See [`OptionSequenceBuilder`] for more details.
///
/// [`OptionSequenceBuilder`]: packet::records::options::OptionSequenceBuilder
type OptionSequenceBuilder<'a, I> =
    packet::records::options::OptionSequenceBuilder<TcpOption<'a>, I>;

/// Options provided to [`TcpSegmentBuilderWithOptions::new`] exceed
/// [`MAX_OPTIONS_LEN`] when serialized.
#[derive(Debug)]
pub struct TcpOptionsTooLongError;

/// A builder for TCP segments with options
#[derive(Debug, Clone)]
pub struct TcpSegmentBuilderWithOptions<A: IpAddress, O> {
    prefix_builder: TcpSegmentBuilder<A>,
    options: O,
}

impl<'a, A, I> TcpSegmentBuilderWithOptions<A, OptionSequenceBuilder<'a, I>>
where
    A: IpAddress,
    I: Iterator + Clone,
    I::Item: Borrow<TcpOption<'a>>,
{
    /// Creates a `TcpSegmentBuilderWithOptions`.
    ///
    /// Returns `Err` if the segment header would exceed the maximum length of
    /// [`MAX_HDR_LEN`]. This happens if the `options`, when serialized, would
    /// exceed [`MAX_OPTIONS_LEN`].
    pub fn new<T: IntoIterator<IntoIter = I>>(
        prefix_builder: TcpSegmentBuilder<A>,
        options: T,
    ) -> Result<TcpSegmentBuilderWithOptions<A, OptionSequenceBuilder<'a, I>>, TcpOptionsTooLongError>
    {
        let options = OptionSequenceBuilder::new(options.into_iter());
        if options.serialized_len() > MAX_OPTIONS_LEN {
            return Err(TcpOptionsTooLongError);
        }
        Ok(TcpSegmentBuilderWithOptions { prefix_builder, options })
    }

    /// Returns an iterator over the options set in this builder.
    pub fn iter_options(&self) -> impl Iterator<Item = I::Item> {
        self.options.records().clone().into_iter()
    }
}

impl<A: IpAddress, O> TcpSegmentBuilderWithOptions<A, O> {
    /// Returns the source port for the builder.
    pub fn src_port(&self) -> Option<NonZeroU16> {
        self.prefix_builder.src_port
    }

    /// Returns the destination port for the builder.
    pub fn dst_port(&self) -> Option<NonZeroU16> {
        self.prefix_builder.dst_port
    }

    /// Sets the source IP address for the builder.
    pub fn set_src_ip(&mut self, addr: A) {
        self.prefix_builder.src_ip = addr;
    }

    /// Sets the destination IP address for the builder.
    pub fn set_dst_ip(&mut self, addr: A) {
        self.prefix_builder.dst_ip = addr;
    }

    /// Sets the source port for the builder.
    pub fn set_src_port(&mut self, port: NonZeroU16) {
        self.prefix_builder.src_port = Some(port);
    }

    /// Sets the destination port for the builder.
    pub fn set_dst_port(&mut self, port: NonZeroU16) {
        self.prefix_builder.dst_port = Some(port);
    }

    /// Returns a shared reference to the prefix builder of the segment.
    pub fn prefix_builder(&self) -> &TcpSegmentBuilder<A> {
        &self.prefix_builder
    }
}

impl<A: IpAddress, O: InnerPacketBuilder> TcpSegmentBuilderWithOptions<A, O> {
    fn aligned_options_len(&self) -> usize {
        // Round up to the next 4-byte boundary.
        crate::utils::round_to_next_multiple_of_four(self.options.bytes_len())
    }
}

impl<A: IpAddress, O: InnerPacketBuilder> PacketBuilder for TcpSegmentBuilderWithOptions<A, O> {
    fn constraints(&self) -> PacketConstraints {
        let header_len = HDR_PREFIX_LEN + self.aligned_options_len();
        assert_eq!(header_len % 4, 0);
        PacketConstraints::new(header_len, 0, 0, (1 << 16) - 1 - header_len)
    }

    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
        let opt_len = self.aligned_options_len();
        // `take_back_zero` consumes the extent of the receiving slice, but that
        // behavior is undesirable here: `prefix_builder.serialize` also needs
        // to write into the header. To avoid changing the extent of
        // target.header, we re-slice header before calling `take_back_zero`;
        // the re-slice will be consumed, but `target.header` is unaffected.
        let mut header = &mut &mut target.header[..];
        let options = header.take_back_zero(opt_len).expect("too few bytes for TCP options");
        self.options.serialize(options);
        self.prefix_builder.serialize(target, body);
    }
}

// NOTE(joshlf): In order to ensure that the checksum is always valid, we don't
// expose any setters for the fields of the TCP segment; the only way to set
// them is via TcpSegmentBuilder. This, combined with checksum validation
// performed in TcpSegment::parse, provides the invariant that a TcpSegment
// always has a valid checksum.

/// A builder for TCP segments.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct TcpSegmentBuilder<A: IpAddress> {
    src_ip: A,
    dst_ip: A,
    src_port: Option<NonZeroU16>,
    dst_port: Option<NonZeroU16>,
    seq_num: u32,
    ack_num: u32,
    data_offset_reserved_flags: DataOffsetReservedFlags,
    window_size: u16,
}

impl<A: IpAddress> TcpSegmentBuilder<A> {
    /// Constructs a new `TcpSegmentBuilder`.
    ///
    /// If `ack_num` is `Some`, then the ACK flag will be set.
    pub fn new(
        src_ip: A,
        dst_ip: A,
        src_port: NonZeroU16,
        dst_port: NonZeroU16,
        seq_num: u32,
        ack_num: Option<u32>,
        window_size: u16,
    ) -> TcpSegmentBuilder<A> {
        let (data_offset_reserved_flags, ack_num) = ack_num
            .map(|a| (DataOffsetReservedFlags::ACK_SET, a))
            .unwrap_or((DataOffsetReservedFlags::EMPTY, 0));
        TcpSegmentBuilder {
            src_ip,
            dst_ip,
            src_port: Some(src_port),
            dst_port: Some(dst_port),
            seq_num,
            ack_num,
            data_offset_reserved_flags,
            window_size,
        }
    }

    /// Sets the PSH flag.
    pub fn psh(&mut self, psh: bool) {
        self.data_offset_reserved_flags.set_psh(psh);
    }

    /// Sets the RST flag.
    pub fn rst(&mut self, rst: bool) {
        self.data_offset_reserved_flags.set_rst(rst);
    }

    /// Returns the current value of the RST flag.
    pub fn rst_set(&self) -> bool {
        self.data_offset_reserved_flags.rst()
    }

    /// Sets the SYN flag.
    pub fn syn(&mut self, syn: bool) {
        self.data_offset_reserved_flags.set_syn(syn);
    }

    /// Returns the current value of the SYN flag.
    pub fn syn_set(&self) -> bool {
        self.data_offset_reserved_flags.syn()
    }

    /// Sets the FIN flag.
    pub fn fin(&mut self, fin: bool) {
        self.data_offset_reserved_flags.set_fin(fin);
    }

    /// Returns the current value of the FIN flag.
    pub fn fin_set(&self) -> bool {
        self.data_offset_reserved_flags.fin()
    }

    /// Returns the source port for the builder.
    pub fn src_port(&self) -> Option<NonZeroU16> {
        self.src_port
    }

    /// Returns the destination port for the builder.
    pub fn dst_port(&self) -> Option<NonZeroU16> {
        self.dst_port
    }

    /// Returns the sequence number for the builder
    pub fn seq_num(&self) -> u32 {
        self.seq_num
    }

    /// Returns the ACK number, if present.
    pub fn ack_num(&self) -> Option<u32> {
        self.data_offset_reserved_flags.ack().then(|| self.ack_num)
    }

    /// Returns the unscaled window size
    pub fn window_size(&self) -> u16 {
        self.window_size
    }

    /// Sets the source IP address for the builder.
    pub fn set_src_ip(&mut self, addr: A) {
        self.src_ip = addr;
    }

    /// Sets the destination IP address for the builder.
    pub fn set_dst_ip(&mut self, addr: A) {
        self.dst_ip = addr;
    }

    /// Sets the source port for the builder.
    pub fn set_src_port(&mut self, port: NonZeroU16) {
        self.src_port = Some(port);
    }

    /// Sets the destination port for the builder.
    pub fn set_dst_port(&mut self, port: NonZeroU16) {
        self.dst_port = Some(port);
    }
}

impl<A: IpAddress> PacketBuilder for TcpSegmentBuilder<A> {
    fn constraints(&self) -> PacketConstraints {
        PacketConstraints::new(HDR_PREFIX_LEN, 0, 0, core::usize::MAX)
    }

    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
        let hdr_len = target.header.len();
        let total_len = hdr_len + body.len() + target.footer.len();

        debug_assert_eq!(hdr_len % 4, 0, "header length isn't a multiple of 4: {}", hdr_len);
        let mut data_offset_reserved_flags = self.data_offset_reserved_flags;
        data_offset_reserved_flags.set_data_offset(
            (hdr_len / 4).try_into().expect("header length too long for TCP segment"),
        );
        // `write_obj_front` consumes the extent of the receiving slice, but
        // that behavior is undesirable here: at the end of this method, we
        // write the checksum back into the header. To avoid this, we re-slice
        // header before calling `write_obj_front`; the re-slice will be
        // consumed, but `target.header` is unaffected.
        (&mut &mut target.header[..])
            .write_obj_front(&HeaderPrefix::new(
                self.src_port.map_or(0, NonZeroU16::get),
                self.dst_port.map_or(0, NonZeroU16::get),
                self.seq_num,
                self.ack_num,
                data_offset_reserved_flags,
                self.window_size,
                // Initialize the checksum to 0 so that we will get the
                // correct value when we compute it below.
                [0, 0],
                // We don't support setting the Urgent Pointer.
                0,
            ))
            .expect("too few bytes for TCP header prefix");

        #[rustfmt::skip]
        let checksum = compute_transport_checksum_serialize(
            self.src_ip,
            self.dst_ip,
            IpProto::Tcp.into(),
            target,
            body,
        )
        .unwrap_or_else(|| {
            panic!(
                "total TCP segment length of {} bytes overflows length field of pseudo-header",
                total_len
            )
        });
        target.header[CHECKSUM_RANGE].copy_from_slice(&checksum[..]);
    }
}

/// Parsing and serialization of TCP options.
pub mod options {
    use byteorder::{ByteOrder, NetworkEndian};
    use packet::records::options::{
        OptionBuilder, OptionLayout, OptionParseErr, OptionParseLayout, OptionsImpl,
    };
    use packet::BufferViewMut as _;
    use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Unaligned};

    use super::*;

    const OPTION_KIND_EOL: u8 = 0;
    const OPTION_KIND_NOP: u8 = 1;
    const OPTION_KIND_MSS: u8 = 2;
    const OPTION_KIND_WINDOW_SCALE: u8 = 3;
    const OPTION_KIND_SACK_PERMITTED: u8 = 4;
    const OPTION_KIND_SACK: u8 = 5;
    const OPTION_KIND_TIMESTAMP: u8 = 8;

    /// A TCP header option.
    ///
    /// A TCP header option comprises an option kind byte, a length, and the
    /// option data itself.
    ///
    /// See [Wikipedia] or [RFC 793] for more details.
    ///
    /// [Wikipedia]: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
    /// [RFC 793]: https://tools.ietf.org/html/rfc793#page-17
    #[derive(Copy, Clone, Eq, PartialEq, Debug)]
    pub enum TcpOption<'a> {
        /// A Maximum Segment Size (MSS) option.
        Mss(u16),
        /// A window scale option.
        WindowScale(u8),
        /// A selective ACK permitted option.
        SackPermitted,
        /// A selective ACK option.
        ///
        /// A variable-length number of selective ACK blocks. The length is in
        /// the range [0, 4].
        Sack(&'a [TcpSackBlock]),
        /// A timestamp option.
        #[allow(missing_docs)]
        Timestamp { ts_val: u32, ts_echo_reply: u32 },
    }

    /// A TCP selective ACK block.
    ///
    /// A selective ACK block indicates that the range of bytes `[left_edge,
    /// right_edge)` have been received.
    ///
    /// See [RFC 2018] for more details.
    ///
    /// [RFC 2018]: https://tools.ietf.org/html/rfc2018
    #[derive(
        Copy, Clone, Eq, PartialEq, Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned,
    )]
    #[repr(C)]
    pub struct TcpSackBlock {
        left_edge: U32,
        right_edge: U32,
    }

    impl TcpSackBlock {
        /// Returns a `TcpSackBlock` with the specified left and right edge values.
        pub fn new(left_edge: u32, right_edge: u32) -> TcpSackBlock {
            TcpSackBlock { left_edge: U32::new(left_edge), right_edge: U32::new(right_edge) }
        }

        /// Returns the left edge of the SACK block.
        pub fn left_edge(&self) -> u32 {
            self.left_edge.get()
        }

        /// Returns the right edge of the SACK block.
        pub fn right_edge(&self) -> u32 {
            self.right_edge.get()
        }
    }

    /// An implementation of [`OptionsImpl`] for TCP options.
    #[derive(Copy, Clone, Debug)]
    pub struct TcpOptionsImpl;

    impl OptionLayout for TcpOptionsImpl {
        type KindLenField = u8;
    }

    impl OptionParseLayout for TcpOptionsImpl {
        type Error = OptionParseErr;
        const END_OF_OPTIONS: Option<u8> = Some(0);
        const NOP: Option<u8> = Some(1);
    }

    impl OptionsImpl for TcpOptionsImpl {
        type Option<'a> = TcpOption<'a>;

        fn parse<'a>(kind: u8, data: &'a [u8]) -> Result<Option<TcpOption<'a>>, OptionParseErr> {
            match kind {
                self::OPTION_KIND_EOL | self::OPTION_KIND_NOP => {
                    unreachable!("records::options::Options promises to handle EOL and NOP")
                }
                self::OPTION_KIND_MSS => {
                    if data.len() != 2 {
                        Err(OptionParseErr)
                    } else {
                        Ok(Some(TcpOption::Mss(NetworkEndian::read_u16(&data))))
                    }
                }
                self::OPTION_KIND_WINDOW_SCALE => {
                    if data.len() != 1 {
                        Err(OptionParseErr)
                    } else {
                        Ok(Some(TcpOption::WindowScale(data[0])))
                    }
                }
                self::OPTION_KIND_SACK_PERMITTED => {
                    if !data.is_empty() {
                        Err(OptionParseErr)
                    } else {
                        Ok(Some(TcpOption::SackPermitted))
                    }
                }
                self::OPTION_KIND_SACK => Ok(Some(TcpOption::Sack(Ref::into_ref(
                    Ref::from_bytes(data).map_err(|_| OptionParseErr)?,
                )))),
                self::OPTION_KIND_TIMESTAMP => {
                    if data.len() != 8 {
                        Err(OptionParseErr)
                    } else {
                        let ts_val = NetworkEndian::read_u32(&data);
                        let ts_echo_reply = NetworkEndian::read_u32(&data[4..]);
                        Ok(Some(TcpOption::Timestamp { ts_val, ts_echo_reply }))
                    }
                }
                _ => Ok(None),
            }
        }
    }

    impl<'a> OptionBuilder for TcpOption<'a> {
        type Layout = TcpOptionsImpl;

        fn serialized_len(&self) -> usize {
            match self {
                TcpOption::Mss(mss) => mss.as_bytes().len(),
                TcpOption::WindowScale(ws) => ws.as_bytes().len(),
                TcpOption::SackPermitted => 0,
                TcpOption::Sack(sack) => sack.as_bytes().len(),
                TcpOption::Timestamp { ts_val, ts_echo_reply } => {
                    ts_val.as_bytes().len() + ts_echo_reply.as_bytes().len()
                }
            }
        }

        fn option_kind(&self) -> u8 {
            match self {
                TcpOption::Mss(_) => OPTION_KIND_MSS,
                TcpOption::WindowScale(_) => OPTION_KIND_WINDOW_SCALE,
                TcpOption::SackPermitted => OPTION_KIND_SACK_PERMITTED,
                TcpOption::Sack(_) => OPTION_KIND_SACK,
                TcpOption::Timestamp { .. } => OPTION_KIND_TIMESTAMP,
            }
        }

        fn serialize_into(&self, mut buffer: &mut [u8]) {
            let mut buffer = &mut buffer;
            match self {
                TcpOption::Mss(mss) => buffer.write_obj_front(&U16::new(*mss)),
                TcpOption::WindowScale(ws) => buffer.write_obj_front(ws),
                TcpOption::SackPermitted => Some(()),
                TcpOption::Sack(block) => buffer.write_obj_front(*block),
                TcpOption::Timestamp { ts_val, ts_echo_reply } => buffer
                    .write_obj_front(&U32::new(*ts_val))
                    .and(buffer.write_obj_front(&U32::new(*ts_echo_reply))),
            }
            .expect("buffer too short for TCP header option")
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        #[test]
        fn test_tcp_sack_block() {
            let sack = TcpSackBlock::new(1, 2);
            assert_eq!(sack.left_edge.get(), 1);
            assert_eq!(sack.right_edge.get(), 2);
            assert_eq!(sack.left_edge(), 1);
            assert_eq!(sack.right_edge(), 2);
        }
    }
}

// needed by Result::unwrap_err in the tests below
#[cfg(test)]
impl<B> Debug for TcpSegment<B> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        write!(fmt, "TcpSegment")
    }
}

#[cfg(test)]
mod tests {
    use byteorder::{ByteOrder, NetworkEndian};
    use net_types::ip::{Ipv4, Ipv4Addr, Ipv6Addr};
    use packet::{Buf, ParseBuffer};

    use super::*;
    use crate::compute_transport_checksum;
    use crate::ethernet::{EthernetFrame, EthernetFrameLengthCheck};
    use crate::ipv4::{Ipv4Header, Ipv4Packet};
    use crate::ipv6::{Ipv6Header, Ipv6Packet};
    use crate::testutil::benchmarks::{black_box, Bencher};
    use crate::testutil::*;

    const TEST_SRC_IPV4: Ipv4Addr = Ipv4Addr::new([1, 2, 3, 4]);
    const TEST_DST_IPV4: Ipv4Addr = Ipv4Addr::new([5, 6, 7, 8]);
    const TEST_SRC_IPV6: Ipv6Addr =
        Ipv6Addr::from_bytes([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
    const TEST_DST_IPV6: Ipv6Addr =
        Ipv6Addr::from_bytes([17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]);

    #[test]
    fn test_parse_serialize_full_ipv4() {
        use crate::testdata::tls_client_hello_v4::*;

        let mut buf = ETHERNET_FRAME.bytes;
        let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
        verify_ethernet_frame(&frame, ETHERNET_FRAME);

        let mut body = frame.body();
        let packet = body.parse::<Ipv4Packet<_>>().unwrap();
        verify_ipv4_packet(&packet, IPV4_PACKET);

        let mut body = packet.body();
        let segment = body
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(packet.src_ip(), packet.dst_ip()))
            .unwrap();
        verify_tcp_segment(&segment, TCP_SEGMENT);

        // Serialize using `segment.builder()` to construct a
        // `TcpSegmentBuilderWithOptions`, which simply copies the bytes of the
        // options without parsing or iterating over them.
        let buffer = Buf::new(segment.body().to_vec(), ..)
            .encapsulate(segment.builder(packet.src_ip(), packet.dst_ip()))
            .encapsulate(packet.builder())
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buffer.as_ref(), ETHERNET_FRAME.bytes);

        // Serialize using a manually-created `TcpSegmentBuilderWithOptions`
        // which uses `segment.iter_options()` as its options. This allows us to
        // test both `iter_options` and serializing from an options iterator.
        //
        // Note that we cannot compare the serialized bytes verbatim. The reason
        // is that the TCP segment in `ETHERNET_FRAME` uses a different strategy
        // to ensure that the options are a multiple of four bytes in length
        // than we do (`ETHERNET_FRAME`'s approach is to add NOP options in the
        // middle of the sequence, while ours is to pad with End of Options
        // options at the end). Instead, we parse and verify the parsed segment.
        let mut buffer = Buf::new(segment.body().to_vec(), ..)
            .encapsulate(
                TcpSegmentBuilderWithOptions::new(
                    segment.builder(packet.src_ip(), packet.dst_ip()).prefix_builder,
                    segment.iter_options(),
                )
                .unwrap(),
            )
            .encapsulate(packet.builder())
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        let _: EthernetFrame<_> = buffer.parse_with(EthernetFrameLengthCheck::Check).unwrap();
        let _: Ipv4Packet<_> = buffer.parse().unwrap();
        let segment = buffer
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(packet.src_ip(), packet.dst_ip()))
            .unwrap();
        verify_tcp_segment(&segment, TCP_SEGMENT);
    }

    #[test]
    fn test_parse_serialize_full_ipv6() {
        use crate::testdata::syn_v6::*;

        let mut buf = ETHERNET_FRAME.bytes;
        let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
        verify_ethernet_frame(&frame, ETHERNET_FRAME);

        let mut body = frame.body();
        let packet = body.parse::<Ipv6Packet<_>>().unwrap();
        verify_ipv6_packet(&packet, IPV6_PACKET);

        let mut body = packet.body();
        let segment = body
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(packet.src_ip(), packet.dst_ip()))
            .unwrap();
        verify_tcp_segment(&segment, TCP_SEGMENT);

        // Serialize using `segment.builder()` to construct a
        // `TcpSegmentBuilderWithOptions`, which simply copies the bytes of the
        // options without parsing or iterating over them.
        let buffer = Buf::new(segment.body().to_vec(), ..)
            .encapsulate(segment.builder(packet.src_ip(), packet.dst_ip()))
            .encapsulate(packet.builder())
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buffer.as_ref(), ETHERNET_FRAME.bytes);

        // Serialize using a manually-created `TcpSegmentBuilderWithOptions`
        // which uses `segment.iter_options()` as its options. This allows us to
        // test both `iter_options` and serializing from an options iterator.
        //
        // Note that we cannot compare the serialized bytes verbatim. The reason
        // is that the TCP segment in `ETHERNET_FRAME` uses a different strategy
        // to ensure that the options are a multiple of four bytes in length
        // than we do (`ETHERNET_FRAME`'s approach is to add NOP options in the
        // middle of the sequence, while ours is to pad with End of Options
        // options at the end). Instead, we parse and verify the parsed segment.
        let mut buffer = Buf::new(segment.body().to_vec(), ..)
            .encapsulate(
                TcpSegmentBuilderWithOptions::new(
                    segment.builder(packet.src_ip(), packet.dst_ip()).prefix_builder,
                    segment.iter_options(),
                )
                .unwrap(),
            )
            .encapsulate(packet.builder())
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        let _: EthernetFrame<_> = buffer.parse_with(EthernetFrameLengthCheck::Check).unwrap();
        let _: Ipv6Packet<_> = buffer.parse().unwrap();
        let segment = buffer
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(packet.src_ip(), packet.dst_ip()))
            .unwrap();
        verify_tcp_segment(&segment, TCP_SEGMENT);
    }

    fn hdr_prefix_to_bytes(hdr_prefix: HeaderPrefix) -> [u8; HDR_PREFIX_LEN] {
        zerocopy::transmute!(hdr_prefix)
    }

    // Return a new HeaderPrefix with reasonable defaults, including a valid
    // checksum (assuming no body and the src/dst IPs TEST_SRC_IPV4 and
    // TEST_DST_IPV4).
    fn new_hdr_prefix() -> HeaderPrefix {
        HeaderPrefix::new(1, 2, 0, 0, DataOffsetReservedFlags::new(5), 0, [0x9f, 0xce], 0)
    }

    #[test]
    fn test_parse() {
        let mut buf = &hdr_prefix_to_bytes(new_hdr_prefix())[..];
        let segment = buf
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
            .unwrap();
        assert_eq!(segment.src_port().get(), 1);
        assert_eq!(segment.dst_port().get(), 2);
        assert_eq!(segment.body(), []);
    }

    #[test]
    fn test_parse_error() {
        // Assert that parsing a particular header prefix results in an error.
        // This function is responsible for ensuring that the checksum is
        // correct so that checksum errors won't hide the errors we're trying to
        // test.
        fn assert_header_err(hdr_prefix: HeaderPrefix, err: ParseError) {
            let mut buf = &mut hdr_prefix_to_bytes(hdr_prefix)[..];
            NetworkEndian::write_u16(&mut buf[CHECKSUM_OFFSET..], 0);
            let checksum =
                compute_transport_checksum(TEST_SRC_IPV4, TEST_DST_IPV4, IpProto::Tcp.into(), buf)
                    .unwrap();
            buf[CHECKSUM_RANGE].copy_from_slice(&checksum[..]);
            assert_eq!(
                buf.parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
                    .unwrap_err(),
                err
            );
        }

        // Set the source port to 0, which is illegal.
        let mut hdr_prefix = new_hdr_prefix();
        hdr_prefix.src_port = U16::ZERO;
        assert_header_err(hdr_prefix, ParseError::Format);

        // Set the destination port to 0, which is illegal.
        let mut hdr_prefix = new_hdr_prefix();
        hdr_prefix.dst_port = U16::ZERO;
        assert_header_err(hdr_prefix, ParseError::Format);

        // Set the data offset to 4, implying a header length of 16. This is
        // smaller than the minimum of 20.
        let mut hdr_prefix = new_hdr_prefix();
        hdr_prefix.data_offset_reserved_flags = DataOffsetReservedFlags::new(4);
        assert_header_err(hdr_prefix, ParseError::Format);

        // Set the data offset to 6, implying a header length of 24. This is
        // larger than the actual segment length of 20.
        let mut hdr_prefix = new_hdr_prefix();
        hdr_prefix.data_offset_reserved_flags = DataOffsetReservedFlags::new(12);
        assert_header_err(hdr_prefix, ParseError::Format);
    }

    // Return a stock TcpSegmentBuilder with reasonable default values.
    fn new_builder<A: IpAddress>(src_ip: A, dst_ip: A) -> TcpSegmentBuilder<A> {
        TcpSegmentBuilder::new(
            src_ip,
            dst_ip,
            NonZeroU16::new(1).unwrap(),
            NonZeroU16::new(2).unwrap(),
            3,
            Some(4),
            5,
        )
    }

    #[test]
    fn test_serialize() {
        let mut builder = new_builder(TEST_SRC_IPV4, TEST_DST_IPV4);
        builder.fin(true);
        builder.rst(true);
        builder.syn(true);

        let mut buf = (&[0, 1, 2, 3, 3, 4, 5, 7, 8, 9])
            .into_serializer()
            .encapsulate(builder)
            .serialize_vec_outer()
            .unwrap();
        // assert that we get the literal bytes we expected
        assert_eq!(
            buf.as_ref(),
            [
                0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 80, 23, 0, 5, 141, 137, 0, 0, 0, 1, 2, 3, 3, 4,
                5, 7, 8, 9
            ]
        );
        let segment = buf
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
            .unwrap();
        // assert that when we parse those bytes, we get the values we set in
        // the builder
        assert_eq!(segment.src_port().get(), 1);
        assert_eq!(segment.dst_port().get(), 2);
        assert_eq!(segment.seq_num(), 3);
        assert_eq!(segment.ack_num(), Some(4));
        assert_eq!(segment.window_size(), 5);
        assert_eq!(segment.body(), [0, 1, 2, 3, 3, 4, 5, 7, 8, 9]);
    }

    #[test]
    fn test_serialize_zeroes() {
        // Test that TcpSegmentBuilder::serialize properly zeroes memory before
        // serializing the header.
        let mut buf_0 = [0; HDR_PREFIX_LEN];
        let _: Buf<&mut [u8]> = Buf::new(&mut buf_0[..], HDR_PREFIX_LEN..)
            .encapsulate(new_builder(TEST_SRC_IPV4, TEST_DST_IPV4))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_a();
        let mut buf_1 = [0xFF; HDR_PREFIX_LEN];
        let _: Buf<&mut [u8]> = Buf::new(&mut buf_1[..], HDR_PREFIX_LEN..)
            .encapsulate(new_builder(TEST_SRC_IPV4, TEST_DST_IPV4))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_a();
        assert_eq!(&buf_0[..], &buf_1[..]);
    }

    #[test]
    fn test_parse_serialize_reserved_bits() {
        // Test that we are forwards-compatible with the reserved zero bits in
        // the header being set - we can parse packets with these bits set and
        // we will not reject them. Test that we serialize these bits when
        // serializing from the `builder` methods.

        let mut buffer = (&[])
            .into_serializer()
            .encapsulate(new_builder(TEST_SRC_IPV4, TEST_DST_IPV4))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_b();

        // Set all three reserved bits and update the checksum.
        let mut hdr_prefix = Ref::<_, HeaderPrefix>::from_bytes(buffer.as_mut()).unwrap();
        let old_checksum = hdr_prefix.checksum;
        let old_data_offset_reserved_flags = hdr_prefix.data_offset_reserved_flags;
        hdr_prefix.data_offset_reserved_flags.as_mut_bytes()[0] |= 0b00000111;
        hdr_prefix.checksum = internet_checksum::update(
            old_checksum,
            old_data_offset_reserved_flags.as_bytes(),
            hdr_prefix.data_offset_reserved_flags.as_bytes(),
        );

        let mut buf0 = buffer.clone();
        let mut buf1 = buffer.clone();

        let segment_raw = buf0.parse_with::<_, TcpSegmentRaw<_>>(()).unwrap();
        let segment = buf1
            .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
            .unwrap();

        // Serialize using the results of `TcpSegmentRaw::builder` and `TcpSegment::builder`.
        assert_eq!(
            (&[])
                .into_serializer()
                .encapsulate(segment_raw.builder(TEST_SRC_IPV4, TEST_DST_IPV4).unwrap())
                .serialize_vec_outer()
                .unwrap()
                .unwrap_b()
                .as_ref(),
            buffer.as_ref()
        );
        assert_eq!(
            (&[])
                .into_serializer()
                .encapsulate(segment.builder(TEST_SRC_IPV4, TEST_DST_IPV4))
                .serialize_vec_outer()
                .unwrap()
                .unwrap_b()
                .as_ref(),
            buffer.as_ref()
        );
    }

    #[test]
    #[should_panic(
        expected = "total TCP segment length of 65536 bytes overflows length field of pseudo-header"
    )]
    fn test_serialize_panic_segment_too_long_ipv4() {
        // Test that a segment length which overflows u16 is rejected because it
        // can't fit in the length field in the IPv4 pseudo-header.
        let _: Buf<&mut [u8]> = Buf::new(&mut [0; (1 << 16) - HDR_PREFIX_LEN][..], ..)
            .encapsulate(new_builder(TEST_SRC_IPV4, TEST_DST_IPV4))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_a();
    }

    #[test]
    #[ignore] // this test panics with stack overflow; TODO(joshlf): Fix
    #[cfg(target_pointer_width = "64")] // 2^32 overflows on 32-bit platforms
    fn test_serialize_panic_segment_too_long_ipv6() {
        // Test that a segment length which overflows u32 is rejected because it
        // can't fit in the length field in the IPv4 pseudo-header.
        let _: Buf<&mut [u8]> = Buf::new(&mut [0; (1 << 32) - HDR_PREFIX_LEN][..], ..)
            .encapsulate(new_builder(TEST_SRC_IPV6, TEST_DST_IPV6))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_a();
    }

    #[test]
    fn test_partial_parse() {
        use core::ops::Deref as _;

        // Parse options partially:
        let make_hdr_prefix = || {
            let mut hdr_prefix = new_hdr_prefix();
            hdr_prefix.data_offset_reserved_flags.set_data_offset(8);
            hdr_prefix
        };
        let hdr_prefix = hdr_prefix_to_bytes(make_hdr_prefix());
        let mut bytes = hdr_prefix[..].to_owned();
        const OPTIONS: &[u8] = &[1, 2, 3, 4, 5];
        bytes.extend(OPTIONS);
        let mut buf = &bytes[..];
        let packet = buf.parse::<TcpSegmentRaw<_>>().unwrap();
        let TcpSegmentRaw { hdr_prefix, options, body } = &packet;
        assert_eq!(hdr_prefix.as_ref().complete().unwrap().deref(), &make_hdr_prefix());
        assert_eq!(options.as_ref().incomplete().unwrap(), &OPTIONS);
        assert_eq!(body, &[]);
        // validation should fail:
        assert!(TcpSegment::try_from_raw_with(
            packet,
            TcpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4),
        )
        .is_err());

        // Parse header partially:
        let hdr_prefix = new_hdr_prefix();
        let HeaderPrefix { src_port, dst_port, .. } = hdr_prefix;
        let bytes = hdr_prefix_to_bytes(hdr_prefix);
        let mut buf = &bytes[0..10];
        // Copy the rest portion since the buffer is mutably borrowed after parsing.
        let bytes_rest = buf[4..].to_owned();
        let packet = buf.parse::<TcpSegmentRaw<_>>().unwrap();
        let TcpSegmentRaw { hdr_prefix, options, body } = &packet;
        let PartialHeaderPrefix { flow, rest } = hdr_prefix.as_ref().incomplete().unwrap();
        assert_eq!(flow.deref(), &TcpFlowHeader { src_port, dst_port });
        assert_eq!(*rest, &bytes_rest[..]);
        assert_eq!(options.as_ref().incomplete().unwrap(), &[]);
        assert_eq!(body, &[]);
        // validation should fail:
        assert!(TcpSegment::try_from_raw_with(
            packet,
            TcpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4),
        )
        .is_err());

        let hdr_prefix = new_hdr_prefix();
        let bytes = hdr_prefix_to_bytes(hdr_prefix);
        // If we don't even have enough header bytes, we should fail partial
        // parsing:
        let mut buf = &bytes[0..3];
        assert!(buf.parse::<TcpSegmentRaw<_>>().is_err());
        // If we don't even have exactly 4 header bytes, we should succeed
        // partial parsing:
        let mut buf = &bytes[0..4];
        assert!(buf.parse::<TcpSegmentRaw<_>>().is_ok());
    }

    //
    // Benchmarks
    //

    fn bench_parse_inner<B: Bencher>(b: &mut B) {
        use crate::testdata::tls_client_hello_v4::*;
        let bytes = parse_ip_packet_in_ethernet_frame::<Ipv4>(
            ETHERNET_FRAME.bytes,
            EthernetFrameLengthCheck::Check,
        )
        .unwrap()
        .0;

        b.iter(|| {
            let buf = bytes;
            let _: TcpSegment<_> = black_box(
                black_box(buf)
                    .parse_with::<_, TcpSegment<_>>(TcpParseArgs::new(
                        IPV4_PACKET.metadata.src_ip,
                        IPV4_PACKET.metadata.dst_ip,
                    ))
                    .unwrap(),
            );
        })
    }

    bench!(bench_parse, bench_parse_inner);

    fn bench_serialize_inner<B: Bencher>(b: &mut B) {
        use crate::testdata::tls_client_hello_v4::*;

        let builder = TcpSegmentBuilder::new(
            IPV4_PACKET.metadata.src_ip,
            IPV4_PACKET.metadata.dst_ip,
            NonZeroU16::new(TCP_SEGMENT.metadata.src_port).unwrap(),
            NonZeroU16::new(TCP_SEGMENT.metadata.dst_port).unwrap(),
            0,
            None,
            0,
        );

        let header_len = builder.constraints().header_len();
        let total_len = header_len + TCP_SEGMENT.bytes[TCP_SEGMENT.body_range].len();
        let mut buf = vec![0; total_len];
        buf[header_len..].copy_from_slice(&TCP_SEGMENT.bytes[TCP_SEGMENT.body_range]);

        b.iter(|| {
            let _: Buf<_> = black_box(
                black_box(Buf::new(&mut buf[..], header_len..total_len).encapsulate(builder))
                    .serialize_no_alloc_outer(),
            )
            .unwrap();
        })
    }

    bench!(bench_serialize, bench_serialize_inner);
}