ttf_parser/tables/
gvar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
// https://docs.microsoft.com/en-us/typography/opentype/spec/gvar
// https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuple-variation-store

use core::cmp;
use core::convert::TryFrom;
use core::num::NonZeroU16;

use crate::{loca, GlyphId, OutlineBuilder, Rect, BBox, NormalizedCoordinate};
use crate::parser::{Stream, Offset, Offset16, Offset32, LazyArray16, F2DOT14};
use crate::glyf::{self, Transform};

/// 'The TrueType rasterizer dynamically generates 'phantom' points for each glyph
/// that represent horizontal and vertical advance widths and side bearings,
/// and the variation data within the `gvar` table includes data for these phantom points.'
///
/// We don't actually use them, but they are required during deltas parsing.
const PHANTOM_POINTS_LEN: usize = 4;

#[derive(Clone, Copy)]
enum GlyphVariationDataOffsets<'a> {
    Short(LazyArray16<'a, Offset16>),
    Long(LazyArray16<'a, Offset32>),
}

#[derive(Clone, Copy)]
pub struct Table<'a> {
    axis_count: NonZeroU16,
    shared_tuple_records: LazyArray16<'a, F2DOT14>,
    offsets: GlyphVariationDataOffsets<'a>,
    glyphs_variation_data: &'a [u8],
}

impl<'a> Table<'a> {
    // https://docs.microsoft.com/en-us/typography/opentype/spec/gvar#gvar-header
    pub fn parse(data: &'a [u8]) -> Option<Self> {
        let mut s = Stream::new(data);
        let version: u32 = s.read()?;
        if version != 0x00010000 {
            return None;
        }

        let axis_count: u16 = s.read()?;
        let shared_tuple_count: u16 = s.read()?;
        let shared_tuples_offset: Offset32 = s.read()?;
        let glyph_count: u16 = s.read()?;
        let flags: u16 = s.read()?;
        let glyph_variation_data_array_offset: Offset32 = s.read()?;

        // The axis count cannot be zero.
        let axis_count = NonZeroU16::new(axis_count)?;

        let shared_tuple_records = {
            let mut sub_s = Stream::new_at(data, shared_tuples_offset.to_usize())?;
            sub_s.read_array16::<F2DOT14>(shared_tuple_count.checked_mul(axis_count.get())?)?
        };

        let glyphs_variation_data = data.get(glyph_variation_data_array_offset.to_usize()..)?;
        let offsets = {
            let offsets_count = glyph_count.checked_add(1)?;
            let is_long_format = flags & 1 == 1; // The first bit indicates a long format.
            if is_long_format {
                GlyphVariationDataOffsets::Long(s.read_array16::<Offset32>(offsets_count)?)
            } else {
                GlyphVariationDataOffsets::Short(s.read_array16::<Offset16>(offsets_count)?)
            }
        };

        Some(Table {
            axis_count,
            shared_tuple_records,
            offsets,
            glyphs_variation_data,
        })
    }

    #[inline]
    fn parse_variation_data(
        &self,
        glyph_id: GlyphId,
        coordinates: &[NormalizedCoordinate],
        points_len: u16,
        tuples: &mut VariationTuples<'a>,
    ) -> Option<()> {
        tuples.len = 0;

        if coordinates.len() != usize::from(self.axis_count.get()) {
            return None;
        }

        let next_glyph_id = glyph_id.0.checked_add(1)?;

        let (start, end) = match self.offsets {
            GlyphVariationDataOffsets::Short(ref array) => {
                // 'If the short format (Offset16) is used for offsets,
                // the value stored is the offset divided by 2.'
                (array.get(glyph_id.0)?.to_usize() * 2, array.get(next_glyph_id)?.to_usize() * 2)
            }
            GlyphVariationDataOffsets::Long(ref array) => {
                (array.get(glyph_id.0)?.to_usize(), array.get(next_glyph_id)?.to_usize())
            }
        };

        // Ignore empty data.
        if start == end {
            return Some(());
        }

        let data = self.glyphs_variation_data.get(start..end)?;
        parse_variation_data(coordinates, &self.shared_tuple_records, points_len, data, tuples)
    }
}


pub(crate) fn outline(
    loca_table: loca::Table,
    glyf_table: &[u8],
    gvar_table: &Table,
    coordinates: &[NormalizedCoordinate],
    glyph_id: GlyphId,
    builder: &mut dyn OutlineBuilder,
) -> Option<Rect> {
    let mut b = glyf::Builder::new(Transform::default(), Some(BBox::new()), builder);

    let range = loca_table.glyph_range(glyph_id)?;
    let glyph_data = glyf_table.get(range)?;

    outline_var_impl(loca_table, glyf_table, gvar_table,
                     glyph_id, glyph_data, coordinates, 0, &mut b);
    b.bbox.and_then(|bbox| bbox.to_rect())
}

fn outline_var_impl<'a>(
    loca_table: loca::Table,
    glyf_table: &[u8],
    gvar_table: &Table,
    glyph_id: GlyphId,
    data: &[u8],
    coordinates: &[NormalizedCoordinate],
    depth: u8,
    builder: &mut glyf::Builder,
) -> Option<()> {
    if depth >= glyf::MAX_COMPONENTS {
        return None;
    }

    let mut s = Stream::new(data);
    let number_of_contours: i16 = s.read()?;

    // Skip bbox.
    //
    // In case of a variable font, a bounding box defined in the `glyf` data
    // refers to the default variation values. Which is not what we want.
    // Instead, we have to manually calculate outline's bbox.
    s.advance(8);

    // TODO: This is the most expensive part. Find a way to allocate it only once.
    // `VariationTuples` is a very large struct, so allocate it once.
    let mut tuples = VariationTuples {
        headers: [VariationTuple::default(); MAX_TUPLES_LEN as usize],
        len: 0,
    };

    if number_of_contours > 0 {
        // Simple glyph.

        let number_of_contours = NonZeroU16::new(number_of_contours as u16)?;
        let mut glyph_points = glyf::parse_simple_outline(s.tail()?, number_of_contours)?;
        let all_glyph_points = glyph_points.clone();
        let points_len = glyph_points.points_left;
        gvar_table.parse_variation_data(glyph_id, coordinates, points_len, &mut tuples)?;

        while let Some(point) = glyph_points.next() {
            let (x, y) = tuples.apply(all_glyph_points.clone(), glyph_points.clone(), point)?;
            builder.push_point(x, y, point.on_curve_point, point.last_point);
        }

        Some(())
    } else if number_of_contours < 0 {
        // Composite glyph.

        // In case of a composite glyph, `gvar` data contains position adjustments
        // for each component.
        // Basically, an additional translation used during transformation.
        // So we have to push zero points manually, instead of parsing the `glyf` data.
        //
        // Details:
        // https://docs.microsoft.com/en-us/typography/opentype/spec/gvar#point-numbers-and-processing-for-composite-glyphs

        let mut components = glyf::CompositeGlyphIter::new(s.tail()?);
        let components_count = components.clone().count() as u16;
        gvar_table.parse_variation_data(glyph_id, coordinates, components_count, &mut tuples)?;

        while let Some(component) = components.next() {
            let (tx, ty) = tuples.apply_null()?;

            let mut transform = builder.transform;

            // Variation component offset should be applied only when
            // the ARGS_ARE_XY_VALUES flag is set.
            if component.flags.args_are_xy_values() {
                transform = Transform::combine(transform, Transform::new_translate(tx, ty));
            }

            transform = Transform::combine(transform, component.transform);

            let mut b = glyf::Builder::new(transform, builder.bbox, builder.builder);
            let range = loca_table.glyph_range(component.glyph_id)?;
            let glyph_data = glyf_table.get(range)?;
            outline_var_impl(
                loca_table, glyf_table, gvar_table, component.glyph_id,
                glyph_data, coordinates, depth + 1, &mut b,
            )?;

            // Take updated bbox.
            builder.bbox = b.bbox;
        }

        Some(())
    } else {
        // An empty glyph.
        None
    }
}

// https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuple-variation-store-header
fn parse_variation_data<'a>(
    coordinates: &[NormalizedCoordinate],
    shared_tuple_records: &LazyArray16<F2DOT14>,
    points_len: u16,
    data: &'a [u8],
    tuples: &mut VariationTuples<'a>,
) -> Option<()> {
    const SHARED_POINT_NUMBERS_FLAG: u16 = 0x8000;
    const COUNT_MASK: u16 = 0x0FFF;

    let mut main_stream = Stream::new(data);
    let tuple_variation_count: u16 = main_stream.read()?;
    let data_offset: Offset16 = main_stream.read()?;

    // 'The high 4 bits are flags, and the low 12 bits
    // are the number of tuple variation tables for this glyph.'
    let has_shared_point_numbers = tuple_variation_count & SHARED_POINT_NUMBERS_FLAG != 0;
    let tuple_variation_count = tuple_variation_count & COUNT_MASK;

    // 'The number of tuple variation tables can be any number between 1 and 4095.'
    // No need to check for 4095, because this is 0x0FFF that we masked before.
    if tuple_variation_count == 0 {
        return None;
    }

    if tuple_variation_count >= MAX_TUPLES_LEN {
        return None;
    }

    // A glyph variation data consists of three parts: header + variation tuples + serialized data.
    // Each tuple has it's own chunk in the serialized data.
    // Because of that, we are using two parsing streams: one for tuples and one for serialized data.
    // So we can parse them in parallel and avoid needless allocations.
    let mut serialized_stream = Stream::new_at(data, data_offset.to_usize())?;

    // All tuples in the variation data can reference the same point numbers,
    // which are defined at the start of the serialized data.
    let mut shared_point_numbers = None;
    if has_shared_point_numbers {
        shared_point_numbers = PackedPointsIter::new(&mut serialized_stream)?;
    }

    parse_variation_tuples(
        tuple_variation_count,
        coordinates,
        shared_tuple_records,
        shared_point_numbers,
        points_len.checked_add(PHANTOM_POINTS_LEN as u16)?,
        main_stream,
        serialized_stream,
        tuples,
    )
}

#[derive(Clone, Copy, Default, Debug)]
struct PointAndDelta {
    x: i16,
    y: i16,
    x_delta: f32,
    y_delta: f32,
}

// This structure will be used by the `VariationTuples` stack buffer,
// so it has to be as small as possible.
#[derive(Clone, Copy, Default)]
struct VariationTuple<'a> {
    set_points: Option<SetPointsIter<'a>>,
    deltas: PackedDeltasIter<'a>,
    /// The last parsed point with delta in the contour.
    /// Used during delta resolving.
    prev_point: Option<PointAndDelta>,
}

/// The maximum number of variation tuples.
///
/// The TrueType spec allows up to 4095 tuples, which is way larger
/// than we do. But in reality, an average font will have less than 10 tuples.
const MAX_TUPLES_LEN: u16 = 32;

/// A list of variation tuples.
///
/// This is the only part of the `gvar` algorithm that actually allocates a data.
/// On stack and not on heap, but still.
/// This is probably unavoidable due to `gvar` structure,
/// since we have to iterate all tuples in parallel.
struct VariationTuples<'a> {
    headers: [VariationTuple<'a>; MAX_TUPLES_LEN as usize], // 2560B
    len: u16,
}

impl<'a> VariationTuples<'a> {
    #[inline]
    fn as_mut_slice(&mut self) -> &mut [VariationTuple<'a>] {
        &mut self.headers[0..usize::from(self.len)]
    }

    fn apply(
        &mut self,
        all_points: glyf::GlyphPointsIter,
        points: glyf::GlyphPointsIter,
        point: glyf::GlyphPoint,
    ) -> Option<(f32, f32)> {
        let mut x = f32::from(point.x);
        let mut y = f32::from(point.y);

        for tuple in self.as_mut_slice() {
            if let Some(ref mut set_points) = tuple.set_points {
                if set_points.next()? {
                    if let Some((x_delta, y_delta)) = tuple.deltas.next() {
                        // Remember the last set point and delta.
                        tuple.prev_point = Some(PointAndDelta {
                            x: point.x, y: point.y, x_delta, y_delta
                        });

                        x += x_delta;
                        y += y_delta;
                    } else {
                        // If there are no more deltas, we have to resolve them manually.
                        let set_points = set_points.clone();
                        let (x_delta, y_delta) = infer_deltas(
                            tuple, set_points, points.clone(), all_points.clone(), point
                        );

                        x += x_delta;
                        y += y_delta;
                    }
                } else {
                    // Point is not referenced, so we have to resolve it.
                    let set_points = set_points.clone();
                    let (x_delta, y_delta) = infer_deltas(
                        tuple, set_points, points.clone(), all_points.clone(), point
                    );

                    x += x_delta;
                    y += y_delta;
                }

                if point.last_point {
                    tuple.prev_point = None;
                }
            } else {
                if let Some((x_delta, y_delta)) = tuple.deltas.next() {
                    x += x_delta;
                    y += y_delta;
                }
            }
        }

        Some((x, y))
    }

    // This is just like `apply()`, but without `infer_deltas`,
    // since we use it only for component points and not a contour.
    // And since there are no contour and no points, `infer_deltas()` will do nothing.
    fn apply_null(&mut self) -> Option<(f32, f32)> {
        let mut x = 0.0;
        let mut y = 0.0;

        for tuple in self.as_mut_slice() {
            if let Some(ref mut set_points) = tuple.set_points {
                if set_points.next()? {
                    if let Some((x_delta, y_delta)) = tuple.deltas.next() {
                        x += x_delta;
                        y += y_delta;
                    }
                }
            } else {
                if let Some((x_delta, y_delta)) = tuple.deltas.next() {
                    x += x_delta;
                    y += y_delta;
                }
            }
        }

        Some((x, y))
    }
}


#[derive(Clone, Copy, Default, Debug)]
struct TupleVariationHeaderData {
    scalar: f32,
    has_private_point_numbers: bool,
    serialized_data_len: u16,
}

// https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader
fn parse_variation_tuples<'a>(
    count: u16,
    coordinates: &[NormalizedCoordinate],
    shared_tuple_records: &LazyArray16<F2DOT14>,
    shared_point_numbers: Option<PackedPointsIter<'a>>,
    points_len: u16,
    mut main_s: Stream<'a>,
    mut serialized_s: Stream<'a>,
    tuples: &mut VariationTuples<'a>,
) -> Option<()> {
    debug_assert!(core::mem::size_of::<VariationTuple>() <= 80);

    // `TupleVariationHeader` has a variable size, so we cannot use a `LazyArray`.
    for _ in 0..count {
        let header = parse_tuple_variation_header(coordinates, shared_tuple_records, &mut main_s)?;
        if !(header.scalar > 0.0) {
            // Serialized data for headers with non-positive scalar should be skipped.
            serialized_s.advance(usize::from(header.serialized_data_len));
            continue;
        }

        let serialized_data_start = serialized_s.offset();

        // Resolve point numbers source.
        let point_numbers = if header.has_private_point_numbers {
            PackedPointsIter::new(&mut serialized_s)?
        } else {
            shared_point_numbers.clone()
        };

        // TODO: this
        // Since the packed representation can include zero values,
        // it is possible for a given point number to be repeated in the derived point number list.
        // In that case, there will be multiple delta values in the deltas data
        // associated with that point number. All of these deltas must be applied
        // cumulatively to the given point.

        let deltas_count = if let Some(point_numbers) = point_numbers.clone() {
            u16::try_from(point_numbers.clone().count()).ok()?
        } else {
            points_len
        };

        let deltas = {
            // Use `checked_sub` in case we went over the `serialized_data_len`.
            let left = usize::from(header.serialized_data_len)
                .checked_sub(serialized_s.offset() - serialized_data_start)?;
            let deltas_data = serialized_s.read_bytes(left)?;
            PackedDeltasIter::new(header.scalar, deltas_count, deltas_data)
        };

        let tuple = VariationTuple {
            set_points: point_numbers.map(SetPointsIter::new),
            deltas,
            prev_point: None,
        };

        tuples.headers[usize::from(tuples.len)] = tuple;
        tuples.len += 1;
    }

    Some(())
}

// https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader
fn parse_tuple_variation_header(
    coordinates: &[NormalizedCoordinate],
    shared_tuple_records: &LazyArray16<F2DOT14>,
    s: &mut Stream,
) -> Option<TupleVariationHeaderData> {
    const EMBEDDED_PEAK_TUPLE_FLAG: u16 = 0x8000;
    const INTERMEDIATE_REGION_FLAG: u16 = 0x4000;
    const PRIVATE_POINT_NUMBERS_FLAG: u16 = 0x2000;
    const TUPLE_INDEX_MASK: u16 = 0x0FFF;

    let serialized_data_size: u16 = s.read()?;
    let tuple_index: u16 = s.read()?;

    let has_embedded_peak_tuple = tuple_index & EMBEDDED_PEAK_TUPLE_FLAG != 0;
    let has_intermediate_region = tuple_index & INTERMEDIATE_REGION_FLAG != 0;
    let has_private_point_numbers = tuple_index & PRIVATE_POINT_NUMBERS_FLAG != 0;
    let tuple_index = tuple_index & TUPLE_INDEX_MASK;

    let axis_count = coordinates.len() as u16;

    let peak_tuple = if has_embedded_peak_tuple {
        s.read_array16::<F2DOT14>(axis_count)?
    } else {
        // Use shared tuples.
        let start = tuple_index.checked_mul(axis_count)?;
        let end = start.checked_add(axis_count)?;
        shared_tuple_records.slice(start..end)?
    };

    let (start_tuple, end_tuple) = if has_intermediate_region {
        (s.read_array16::<F2DOT14>(axis_count)?, s.read_array16::<F2DOT14>(axis_count)?)
    } else {
        (LazyArray16::<F2DOT14>::default(), LazyArray16::<F2DOT14>::default())
    };

    let mut header = TupleVariationHeaderData {
        scalar: 0.0,
        has_private_point_numbers,
        serialized_data_len: serialized_data_size,
    };

    // Calculate the scalar value according to the pseudo-code described at:
    // https://docs.microsoft.com/en-us/typography/opentype/spec/otvaroverview#algorithm-for-interpolation-of-instance-values
    let mut scalar = 1.0;
    for i in 0..axis_count {
        let v = coordinates[usize::from(i)].get();
        let peak = peak_tuple.get(i)?.0;
        if peak == 0 || v == peak {
            continue;
        }

        if has_intermediate_region {
            let start = start_tuple.get(i)?.0;
            let end = end_tuple.get(i)?.0;
            if start > peak || peak > end || (start < 0 && end > 0 && peak != 0) {
                continue;
            }

            if v < start || v > end {
                return Some(header);
            }

            if v < peak {
                if peak != start {
                    scalar *= f32::from(v - start) / f32::from(peak - start);
                }
            } else {
                if peak != end {
                    scalar *= f32::from(end - v) / f32::from(end - peak);
                }
            }
        } else if v == 0 || v < cmp::min(0, peak) || v > cmp::max(0, peak) {
            // 'If the instance coordinate is out of range for some axis, then the
            // region and its associated deltas are not applicable.'
            return Some(header);
        } else {
            scalar *= f32::from(v) / f32::from(peak);
        }
    }

    header.scalar = scalar;
    Some(header)
}


// https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#packed-point-numbers
mod packed_points {
    use crate::parser::{Stream, FromData};

    struct Control(u8);

    impl Control {
        const POINTS_ARE_WORDS_FLAG: u8 = 0x80;
        const POINT_RUN_COUNT_MASK: u8 = 0x7F;

        #[inline]
        fn is_points_are_words(&self) -> bool { self.0 & Self::POINTS_ARE_WORDS_FLAG != 0 }

        // 'Mask for the low 7 bits to provide the number of point values in the run, minus one.'
        // So we have to add 1.
        // It will never overflow because of a mask.
        #[inline]
        fn run_count(&self) -> u8 { (self.0 & Self::POINT_RUN_COUNT_MASK) + 1 }
    }

    impl FromData for Control {
        const SIZE: usize = 1;

        #[inline]
        fn parse(data: &[u8]) -> Option<Self> { data.get(0).copied().map(Control) }
    }


    #[derive(Clone, Copy, PartialEq)]
    enum State {
        Control,
        ShortPoint,
        LongPoint,
    }

    // This structure will be used by the `VariationTuples` stack buffer,
    // so it has to be as small as possible.
    // Therefore we cannot use `Stream` and other abstractions.
    #[derive(Clone, Copy)]
    pub struct PackedPointsIter<'a> {
        data: &'a [u8],
        // u16 is enough, since the maximum number of points is 32767.
        offset: u16,
        state: State,
        points_left: u8,
    }

    impl<'a> PackedPointsIter<'a> {
        // The first Option::None indicates a parsing error.
        // The second Option::None indicates "no points".
        pub fn new<'b>(s: &'b mut Stream<'a>) -> Option<Option<Self>> {
            // The total amount of points can be set as one or two bytes
            // depending on the first bit.
            let b1: u8 = s.read()?;
            let mut count = u16::from(b1);
            if b1 & Control::POINTS_ARE_WORDS_FLAG != 0 {
                let b2: u8 = s.read()?;
                count = (u16::from(b1 & Control::POINT_RUN_COUNT_MASK) << 8) | u16::from(b2);
            }

            if count == 0 {
                // No points is not an error.
                return Some(None);
            }

            let start = s.offset();
            let tail = s.tail()?;

            // The actual packed points data size is not stored,
            // so we have to parse the points first to advance the provided stream.
            // Since deltas will be right after points.
            let mut i = 0;
            while i < count {
                let control: Control = s.read()?;
                let run_count = u16::from(control.run_count());
                let is_points_are_words = control.is_points_are_words();
                // Do not actually parse the number, simply advance.
                s.advance_checked(if is_points_are_words { 2 } else { 1 } * usize::from(run_count))?;
                i += run_count;
            }

            if i == 0 {
                // No points is not an error.
                return Some(None);
            }

            if i > count {
                // Malformed font.
                return None;
            }

            // Check that points data size is smaller than the storage type
            // used by the iterator.
            let data_len = s.offset() - start;
            if data_len > usize::from(core::u16::MAX) {
                return None;
            }

            Some(Some(PackedPointsIter {
                data: &tail[0..data_len],
                offset: 0,
                state: State::Control,
                points_left: 0,
            }))
        }
    }

    impl<'a> Iterator for PackedPointsIter<'a> {
        type Item = u16;

        fn next(&mut self) -> Option<Self::Item> {
            if usize::from(self.offset) >= self.data.len() {
                return None;
            }

            if self.state == State::Control {
                let control = Control(self.data[usize::from(self.offset)]);
                self.offset += 1;

                self.points_left = control.run_count();
                self.state = if control.is_points_are_words() {
                    State::LongPoint
                } else {
                    State::ShortPoint
                };

                self.next()
            } else {
                let mut s = Stream::new_at(self.data, usize::from(self.offset))?;
                let point = if self.state == State::LongPoint {
                    self.offset += 2;
                    s.read::<u16>()?
                } else {
                    self.offset += 1;
                    u16::from(s.read::<u8>()?)
                };

                self.points_left -= 1;
                if self.points_left == 0 {
                    self.state = State::Control;
                }

                Some(point)
            }
        }
    }


    // The `PackedPointsIter` will return referenced point numbers as deltas.
    // i.e. 1 2 4 is actually 1 3 7
    // But this is not very useful in our current algorithm,
    // so we will convert it once again into:
    // false true false true false false false true
    // This way we can iterate glyph points and point numbers in parallel.
    #[derive(Clone, Copy)]
    pub struct SetPointsIter<'a> {
        iter: PackedPointsIter<'a>,
        unref_count: u16,
    }

    impl<'a> SetPointsIter<'a> {
        #[inline]
        pub fn new(mut iter: PackedPointsIter<'a>) -> Self {
            let unref_count = iter.next().unwrap_or(0);
            SetPointsIter { iter, unref_count }
        }

        #[inline]
        pub fn restart(self) -> Self {
            let mut iter = self.iter.clone();
            iter.offset = 0;
            iter.state = State::Control;
            iter.points_left = 0;

            let unref_count = iter.next().unwrap_or(0);
            SetPointsIter { iter, unref_count }
        }
    }

    impl<'a> Iterator for SetPointsIter<'a> {
        type Item = bool;

        #[inline]
        fn next(&mut self) -> Option<Self::Item> {
            if self.unref_count != 0 {
                self.unref_count -= 1;
                return Some(false);
            }

            if let Some(unref_count) = self.iter.next() {
                self.unref_count = unref_count;
                if self.unref_count != 0 {
                    self.unref_count -= 1;
                }
            }

            // Iterator will be returning `Some(true)` after "finished".
            // This is because this iterator will be zipped with the `glyf::GlyphPointsIter`
            // and the number of glyph points can be larger than the amount of set points.
            // Anyway, this is a non-issue in a well-formed font.
            Some(true)
        }
    }


    #[cfg(test)]
    mod tests {
        use super::*;

        struct NewControl {
            deltas_are_words: bool,
            run_count: u8,
        }

        fn gen_control(control: NewControl) -> u8 {
            assert!(control.run_count > 0, "run count cannot be zero");

            let mut n = 0;
            if control.deltas_are_words { n |= 0x80; }
            n |= (control.run_count - 1) & 0x7F;
            n
        }

        #[test]
        fn empty() {
            let mut s = Stream::new(&[]);
            assert!(PackedPointsIter::new(&mut s).is_none());
        }

        #[test]
        fn single_zero_control() {
            let mut s = Stream::new(&[0]);
            assert!(PackedPointsIter::new(&mut s).unwrap().is_none());
        }

        #[test]
        fn single_point() {
            let data = vec![
                1, // total count
                gen_control(NewControl { deltas_are_words: false, run_count: 1 }),
                1
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn set_0_and_2() {
            let data = vec![
                2, // total count
                gen_control(NewControl { deltas_are_words: false, run_count: 2 }),
                0, 2
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn set_1_and_2() {
            let data = vec![
                2, // total count
                gen_control(NewControl { deltas_are_words: false, run_count: 2 }),
                1, 1
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn set_1_and_3() {
            let data = vec![
                2, // total count
                gen_control(NewControl { deltas_are_words: false, run_count: 2 }),
                1, 2
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn set_2_5_7() {
            let data = vec![
                3, // total count
                gen_control(NewControl { deltas_are_words: false, run_count: 3 }),
                2, 3, 2
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn more_than_127_points() {
            let mut data = vec![];
            // total count
            data.push(Control::POINTS_ARE_WORDS_FLAG);
            data.push(150);

            data.push(gen_control(NewControl { deltas_are_words: false, run_count: 100 }));
            for _ in 0..100 {
                data.push(2);
            }
            data.push(gen_control(NewControl { deltas_are_words: false, run_count: 50 }));
            for _ in 0..50 {
                data.push(2);
            }

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            for _ in 0..150 {
                assert_eq!(iter.next().unwrap(), false);
                assert_eq!(iter.next().unwrap(), true);
            }
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn long_points() {
            let data = vec![
                2, // total count
                gen_control(NewControl { deltas_are_words: true, run_count: 2 }),
                0, 2, 0, 3
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn multiple_runs() {
            let data = vec![
                5, // total count
                gen_control(NewControl { deltas_are_words: true, run_count: 2 }),
                0, 2, 0, 3,
                gen_control(NewControl { deltas_are_words: false, run_count: 3 }),
                2, 3, 2
            ];

            let points_iter = PackedPointsIter::new(&mut Stream::new(&data)).unwrap().unwrap();
            let mut iter = SetPointsIter::new(points_iter);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), false);
            assert_eq!(iter.next().unwrap(), true);
            assert_eq!(iter.next().unwrap(), true); // Endlessly true.
        }

        #[test]
        fn runs_overflow() {
            // TrueType allows up to 32767 points.
            let data = vec![0xFF; 0xFFFF * 2];
            assert!(PackedPointsIter::new(&mut Stream::new(&data)).is_none());
        }
    }
}

use packed_points::*;


// https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#packed-deltas
mod packed_deltas {
    use crate::parser::Stream;

    struct Control(u8);

    impl Control {
        const DELTAS_ARE_ZERO_FLAG: u8 = 0x80;
        const DELTAS_ARE_WORDS_FLAG: u8 = 0x40;
        const DELTA_RUN_COUNT_MASK: u8 = 0x3F;

        #[inline]
        fn is_deltas_are_zero(&self) -> bool { self.0 & Self::DELTAS_ARE_ZERO_FLAG != 0 }

        #[inline]
        fn is_deltas_are_words(&self) -> bool { self.0 & Self::DELTAS_ARE_WORDS_FLAG != 0 }

        // 'Mask for the low 6 bits to provide the number of delta values in the run, minus one.'
        // So we have to add 1.
        // It will never overflow because of a mask.
        #[inline]
        fn run_count(&self) -> u8 { (self.0 & Self::DELTA_RUN_COUNT_MASK) + 1 }
    }


    #[derive(Clone, Copy, PartialEq, Debug)]
    enum State {
        Control,
        ZeroDelta,
        ShortDelta,
        LongDelta,
    }

    impl Default for State {
        #[inline]
        fn default() -> Self {
            State::Control
        }
    }


    #[derive(Clone, Copy, Default)]
    struct RunState {
        data_offset: u16,
        state: State,
        run_deltas_left: u8,
    }

    impl RunState {
        fn next(&mut self, data: &[u8], scalar: f32) -> Option<f32> {
            if self.state == State::Control {
                if usize::from(self.data_offset) == data.len() {
                    return None;
                }

                let control = Control(Stream::read_at::<u8>(data, usize::from(self.data_offset))?);
                self.data_offset += 1;

                self.run_deltas_left = control.run_count();
                self.state = if control.is_deltas_are_zero() {
                    State::ZeroDelta
                } else if control.is_deltas_are_words() {
                    State::LongDelta
                } else {
                    State::ShortDelta
                };

                self.next(data, scalar)
            } else {
                let mut s = Stream::new_at(data, usize::from(self.data_offset))?;
                let delta = if self.state == State::LongDelta {
                    self.data_offset += 2;
                    f32::from(s.read::<i16>()?) * scalar
                } else if self.state == State::ZeroDelta {
                    0.0
                } else {
                    self.data_offset += 1;
                    f32::from(s.read::<i8>()?) * scalar
                };

                self.run_deltas_left -= 1;
                if self.run_deltas_left == 0 {
                    self.state = State::Control;
                }

                Some(delta)
            }
        }
    }


    // This structure will be used by the `VariationTuples` stack buffer,
    // so it has to be as small as possible.
    // Therefore we cannot use `Stream` and other abstractions.
    #[derive(Clone, Copy, Default)]
    pub struct PackedDeltasIter<'a> {
        data: &'a [u8],
        x_run: RunState,
        y_run: RunState,

        /// A total number of deltas per axis.
        ///
        /// Required only by restart()
        total_count: u16,

        scalar: f32,
    }

    impl<'a> PackedDeltasIter<'a> {
        /// `count` indicates a number of delta pairs.
        pub fn new(scalar: f32, count: u16, data: &'a [u8]) -> Self {
            debug_assert!(core::mem::size_of::<PackedDeltasIter>() <= 32);

            let mut iter = PackedDeltasIter {
                data,
                total_count: count,
                scalar,
                ..PackedDeltasIter::default()
            };

            // 'The packed deltas are arranged with all of the deltas for X coordinates first,
            // followed by the deltas for Y coordinates.'
            // So we have to skip X deltas in the Y deltas iterator.
            //
            // Note that Y deltas doesn't necessarily start with a Control byte
            // and can actually start in the middle of the X run.
            // So we can't simply split the input data in half
            // and process those chunks separately.
            for _ in 0..count {
                iter.y_run.next(data, scalar);
            }

            iter
        }

        #[inline]
        pub fn restart(self) -> Self {
            PackedDeltasIter::new(self.scalar, self.total_count, self.data)
        }

        #[inline]
        pub fn next(&mut self) -> Option<(f32, f32)> {
            let x = self.x_run.next(self.data, self.scalar)?;
            let y = self.y_run.next(self.data, self.scalar)?;
            Some((x, y))
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        struct NewControl {
            deltas_are_zero: bool,
            deltas_are_words: bool,
            run_count: u8,
        }

        fn gen_control(control: NewControl) -> u8 {
            assert!(control.run_count > 0, "run count cannot be zero");

            let mut n = 0;
            if control.deltas_are_zero  { n |= 0x80; }
            if control.deltas_are_words { n |= 0x40; }
            n |= (control.run_count - 1) & 0x3F;
            n
        }

        #[test]
        fn empty() {
            let mut iter = PackedDeltasIter::new(1.0, 1, &[]);
            assert!(iter.next().is_none());
        }

        #[test]
        fn single_delta() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
                2, 3
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert_eq!(iter.next().unwrap(), (2.0, 3.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn two_deltas() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 4 }),
                2, 3, 4, 5,
            ];

            let mut iter = PackedDeltasIter::new(1.0, 2, &data);
            // Remember that X deltas are defined first.
            assert_eq!(iter.next().unwrap(), (2.0, 4.0));
            assert_eq!(iter.next().unwrap(), (3.0, 5.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn single_long_delta() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: true, run_count: 2 }),
                0, 2, 0, 3
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert_eq!(iter.next().unwrap(), (2.0, 3.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn zeros() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: false, run_count: 4 }),
            ];

            let mut iter = PackedDeltasIter::new(1.0, 2, &data);
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn zero_words() {
            // When `deltas_are_zero` is set, `deltas_are_words` should be ignored.

            let data = vec![
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: true, run_count: 4 }),
            ];

            let mut iter = PackedDeltasIter::new(1.0, 2, &data);
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn zero_runs() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: false, run_count: 2 }),
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: false, run_count: 4 }),
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: false, run_count: 6 }),
            ];

            let mut iter = PackedDeltasIter::new(1.0, 6, &data);
            // First run.
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            // Second run.
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            // Third run.
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn delta_after_zeros() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: false, run_count: 2 }),
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
                2, 3
            ];

            let mut iter = PackedDeltasIter::new(1.0, 2, &data);
            assert_eq!(iter.next().unwrap(), (0.0, 2.0));
            assert_eq!(iter.next().unwrap(), (0.0, 3.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn unexpected_end_of_data_1() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn unexpected_end_of_data_2() {
            // Only X is set.

            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
                1
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn unexpected_end_of_data_3() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: true, run_count: 2 }),
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn unexpected_end_of_data_4() {
            // X data is too short.

            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: true, run_count: 2 }),
                1
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn unexpected_end_of_data_6() {
            // Only X is set.

            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: true, run_count: 2 }),
                0, 1
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn unexpected_end_of_data_7() {
            // Y data is too short.

            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: true, run_count: 2 }),
                0, 1, 0
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn single_run() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 1 }),
                2, 3
            ];

            let mut iter = PackedDeltasIter::new(1.0, 1, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn too_many_pairs() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
                2, 3
            ];

            // We have only one pair, not 10.
            let mut iter = PackedDeltasIter::new(1.0, 10, &data);
            assert!(iter.next().is_none());
        }

        #[test]
        fn invalid_number_of_pairs() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
                2, 3, 4, 5, 6, 7,
            ];

            // We have 3 pairs, not 4.
            // We don't actually check this, since it will be very expensive.
            // And it should not happen in a well-formed font anyway.
            // So as long as it doesn't panic - we are fine.
            let mut iter = PackedDeltasIter::new(1.0, 4, &data);
            assert_eq!(iter.next().unwrap(), (2.0, 7.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn mixed_runs() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 3 }),
                2, 3, 4,
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: true, run_count: 2 }),
                0, 5, 0, 6,
                gen_control(NewControl { deltas_are_zero: true, deltas_are_words: false, run_count: 1 }),
            ];

            let mut iter = PackedDeltasIter::new(1.0, 3, &data);
            assert_eq!(iter.next().unwrap(), (2.0, 5.0));
            assert_eq!(iter.next().unwrap(), (3.0, 6.0));
            assert_eq!(iter.next().unwrap(), (4.0, 0.0));
            assert!(iter.next().is_none());
        }

        #[test]
        fn non_default_scalar() {
            let data = vec![
                gen_control(NewControl { deltas_are_zero: false, deltas_are_words: false, run_count: 2 }),
                2, 3
            ];

            let mut iter = PackedDeltasIter::new(0.5, 1, &data);
            assert_eq!(iter.next().unwrap(), (1.0, 1.5));
            assert!(iter.next().is_none());
        }

        #[test]
        fn runs_overflow() {
            let data = vec![0xFF; 0xFFFF];
            let mut iter = PackedDeltasIter::new(1.0, 0xFFFF, &data);
            // As long as it doesn't panic - we are fine.
            assert_eq!(iter.next().unwrap(), (0.0, 0.0));
        }
    }
}

use packed_deltas::PackedDeltasIter;


/// Infer unreferenced deltas.
///
/// A font can define deltas only for specific points, to reduce the file size.
/// In this case, we have to infer undefined/unreferenced deltas manually,
/// depending on the context.
///
/// This is already a pretty complex task, since deltas should be resolved
/// only inside the current contour (do not confuse with component).
/// And during resolving we can actually wrap around the contour.
/// So if there is no deltas after the current one, we have to use
/// the first delta of the current contour instead.
/// Same goes for the previous delta. If there are no deltas
/// before the current one, we have to use the last one in the current contour.
///
/// And in case of `ttf-parser` everything is becoming even more complex,
/// since we don't actually have a list of points and deltas, only iterators.
/// Because of `ttf-parser`'s allocation free policy.
/// Which makes the code even more complicated.
///
/// https://docs.microsoft.com/en-us/typography/opentype/spec/gvar#inferred-deltas-for-un-referenced-point-numbers
fn infer_deltas(
    tuple: &VariationTuple,
    points_set: SetPointsIter,
    // A points iterator that starts after the current point.
    points: glyf::GlyphPointsIter,
    // A points iterator that starts from the first point in the glyph.
    all_points: glyf::GlyphPointsIter,
    curr_point: glyf::GlyphPoint,
) -> (f32, f32) {
    let mut current_contour = points.current_contour();
    if curr_point.last_point && current_contour != 0 {
        // When we parsed the last point of a contour,
        // an iterator had switched to the next contour.
        // So we have to move to the previous one.
        current_contour -= 1;
    }

    let prev_point = if let Some(prev_point) = tuple.prev_point {
        // If a contour already had a delta - just use it.
        prev_point
    } else {
        // If not, find the last point with delta in the current contour.
        let mut last_point = None;
        let mut deltas = tuple.deltas.clone();
        for (point, is_set) in points.clone().zip(points_set.clone()) {
            if is_set {
                if let Some((x_delta, y_delta)) = deltas.next() {
                    last_point = Some(PointAndDelta {
                        x: point.x,
                        y: point.y,
                        x_delta,
                        y_delta,
                    });
                }
            }

            if point.last_point {
                break;
            }
        }

        // If there is no last point, there are no deltas.
        match last_point {
            Some(p) => p,
            None => return (0.0, 0.0),
        }
    };

    let mut next_point = None;
    if !curr_point.last_point {
        // If the current point is not the last one in the contour,
        // find the first set delta in the current contour.
        let mut deltas = tuple.deltas.clone();
        for (point, is_set) in points.clone().zip(points_set.clone()) {
            if is_set {
                if let Some((x_delta, y_delta)) = deltas.next() {
                    next_point = Some(PointAndDelta {
                        x: point.x,
                        y: point.y,
                        x_delta,
                        y_delta,
                    });
                }

                break;
            }

            if point.last_point {
                break;
            }
        }
    }

    if next_point.is_none() {
        // If there were no deltas after the current point,
        // restart from the start of the contour.
        //
        // This is probably the most expensive branch,
        // but nothing we can do about it since `glyf`/`gvar` data structure
        // doesn't allow implementing a reverse iterator.
        // So we have to parse everything once again.

        let mut all_points = all_points.clone();
        let mut deltas = tuple.deltas.clone().restart();
        let mut points_set = points_set.clone().restart();

        let mut contour = 0;
        while let (Some(point), Some(is_set)) = (all_points.next(), points_set.next()) {
            // First, we have to skip already processed contours.
            if contour != current_contour {
                if is_set {
                    let _ = deltas.next();
                }

                contour = all_points.current_contour();
                continue;
            }

            if is_set {
                let (x_delta, y_delta) = deltas.next().unwrap_or((0.0, 0.0));
                next_point = Some(PointAndDelta {
                    x: point.x,
                    y: point.y,
                    x_delta,
                    y_delta,
                });

                break;
            }

            if point.last_point {
                break;
            }
        }
    }

    // If there is no next point, there are no deltas.
    let next_point = match next_point {
        Some(p) => p,
        None => return (0.0, 0.0),
    };

    let dx = infer_delta(prev_point.x, curr_point.x, next_point.x,
                         prev_point.x_delta, next_point.x_delta);

    let dy = infer_delta(prev_point.y, curr_point.y, next_point.y,
                         prev_point.y_delta, next_point.y_delta);

    (dx, dy)
}

fn infer_delta(
    prev_point: i16,
    target_point: i16,
    next_point: i16,
    prev_delta: f32,
    next_delta: f32,
) -> f32 {
    if prev_point == next_point {
        if prev_delta == next_delta { prev_delta } else { 0.0 }
    } else if target_point <= prev_point.min(next_point) {
        if prev_point < next_point { prev_delta } else { next_delta }
    } else if target_point >= prev_point.max(next_point) {
        if prev_point > next_point { prev_delta } else { next_delta }
    } else {
        // 'Target point coordinate is between adjacent point coordinates.'
        //
        // 'Target point delta is derived from the adjacent point deltas
        // using linear interpolation.'
        let d =   f32::from(try_opt_or!(target_point.checked_sub(prev_point), 0.0))
                / f32::from(try_opt_or!(next_point.checked_sub(prev_point), 0.0));
        (1.0 - d) * prev_delta + d * next_delta
    }
}