tracing_mutex/
parkinglot.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//! Wrapper types and type aliases for tracing [`parking_lot`] mutexes.
//!
//! This module provides type aliases that use the [`lockapi`][crate::lockapi] module to provide
//! tracing variants of the `parking_lot` primitives. The [`tracing`] module contains type aliases
//! that use dependency tracking, while the main `parking_lot` primitives are reexported as [`raw`].
//!
//! This main module imports from [`tracing`] when `debug_assertions` are enabled, and from [`raw`]
//! when they're not. Note that primitives for which no tracing wrapper exists are not imported into
//! the main module.
//!
//! # Usage
//!
//! ```
//! # use std::sync::Arc;
//! # use std::thread;
//! use tracing_mutex::parkinglot::Mutex;
//! let mutex = Arc::new(Mutex::new(0));
//!
//! let handles: Vec<_> = (0..10).map(|_| {
//!    let mutex = Arc::clone(&mutex);
//!    thread::spawn(move || *mutex.lock() += 1)
//! }).collect();
//!
//! handles.into_iter().for_each(|handle| handle.join().unwrap());
//!
//! // All threads completed so the value should be 10.
//! assert_eq!(10, *mutex.lock());
//! ```
//!
//! # Limitations
//!
//! The main lock for the global state is still provided by `std::sync` and the tracing primitives
//! are larger than the `parking_lot` primitives they wrap, so there can be a performance
//! degradation between using this and using `parking_lot` directly. If this is of concern to you,
//! try using the `DebugX`-structs, which provide cycle detection only when `debug_assertions` are
//! enabled and have no overhead when they're not.
//!
//! In addition, the mutex guards returned by the tracing wrappers are `!Send`, regardless of
//! whether `parking_lot` is configured to have `Send` mutex guards. This is a limitation of the
//! current bookkeeping system.

pub use parking_lot as raw;

#[cfg(debug_assertions)]
pub use tracing::{
    FairMutex, FairMutexGuard, MappedFairMutexGuard, MappedMutexGuard, MappedReentrantMutexGuard,
    MappedRwLockReadGuard, MappedRwLockWriteGuard, Mutex, MutexGuard, Once, OnceState,
    ReentrantMutex, ReentrantMutexGuard, RwLock, RwLockReadGuard, RwLockUpgradableReadGuard,
    RwLockWriteGuard,
};

#[cfg(not(debug_assertions))]
pub use parking_lot::{
    FairMutex, FairMutexGuard, MappedFairMutexGuard, MappedMutexGuard, MappedReentrantMutexGuard,
    MappedRwLockReadGuard, MappedRwLockWriteGuard, Mutex, MutexGuard, Once, OnceState,
    ReentrantMutex, ReentrantMutexGuard, RwLock, RwLockReadGuard, RwLockUpgradableReadGuard,
    RwLockWriteGuard,
};

/// Dependency tracing wrappers for [`parking_lot`].
pub mod tracing {
    pub use parking_lot::OnceState;

    use crate::lockapi::TracingWrapper;
    use crate::LazyMutexId;

    type RawFairMutex = TracingWrapper<parking_lot::RawFairMutex>;
    type RawMutex = TracingWrapper<parking_lot::RawMutex>;
    type RawRwLock = TracingWrapper<parking_lot::RawRwLock>;

    /// Dependency tracking fair mutex. See: [`parking_lot::FairMutex`].
    pub type FairMutex<T> = lock_api::Mutex<RawFairMutex, T>;
    /// Mutex guard for [`FairMutex`].
    pub type FairMutexGuard<'a, T> = lock_api::MutexGuard<'a, RawFairMutex, T>;
    /// RAII guard for [`FairMutexGuard::map`].
    pub type MappedFairMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawFairMutex, T>;

    /// Dependency tracking mutex. See: [`parking_lot::Mutex`].
    pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;
    /// Mutex guard for [`Mutex`].
    pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;
    /// RAII guard for [`MutexGuard::map`].
    pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;

    /// Dependency tracking reentrant mutex. See: [`parking_lot::ReentrantMutex`].
    ///
    /// **Note:** due to the way dependencies are tracked, this mutex can only be acquired directly
    /// after itself. Acquiring any other mutex in between introduces a dependency cycle, and will
    /// therefore be rejected.
    pub type ReentrantMutex<T> = lock_api::ReentrantMutex<RawMutex, parking_lot::RawThreadId, T>;
    /// Mutex guard for [`ReentrantMutex`].
    pub type ReentrantMutexGuard<'a, T> =
        lock_api::ReentrantMutexGuard<'a, RawMutex, parking_lot::RawThreadId, T>;
    /// RAII guard for `ReentrantMutexGuard::map`.
    pub type MappedReentrantMutexGuard<'a, T> =
        lock_api::MappedReentrantMutexGuard<'a, RawMutex, parking_lot::RawThreadId, T>;

    /// Dependency tracking RwLock. See: [`parking_lot::RwLock`].
    pub type RwLock<T> = lock_api::RwLock<RawRwLock, T>;
    /// Read guard for [`RwLock`].
    pub type RwLockReadGuard<'a, T> = lock_api::RwLockReadGuard<'a, RawRwLock, T>;
    /// Upgradable Read guard for [`RwLock`].
    pub type RwLockUpgradableReadGuard<'a, T> =
        lock_api::RwLockUpgradableReadGuard<'a, RawRwLock, T>;
    /// Write guard for [`RwLock`].
    pub type RwLockWriteGuard<'a, T> = lock_api::RwLockWriteGuard<'a, RawRwLock, T>;
    /// RAII guard for `RwLockReadGuard::map`.
    pub type MappedRwLockReadGuard<'a, T> = lock_api::MappedRwLockReadGuard<'a, RawRwLock, T>;
    /// RAII guard for `RwLockWriteGuard::map`.
    pub type MappedRwLockWriteGuard<'a, T> = lock_api::MappedRwLockWriteGuard<'a, RawRwLock, T>;

    /// A dependency-tracking wrapper for [`parking_lot::Once`].
    #[derive(Debug, Default)]
    pub struct Once {
        inner: parking_lot::Once,
        id: LazyMutexId,
    }

    impl Once {
        /// Create a new `Once` value.
        pub const fn new() -> Self {
            Self {
                inner: parking_lot::Once::new(),
                id: LazyMutexId::new(),
            }
        }

        /// Returns the current state of this `Once`.
        pub fn state(&self) -> OnceState {
            self.inner.state()
        }

        /// This call is considered as "locking this `Once`" and it participates in dependency
        /// tracking as such.
        ///
        /// # Panics
        ///
        /// This method will panic if `f` panics, poisoning this `Once`. In addition, this function
        /// panics when the lock acquisition order is determined to be inconsistent.
        pub fn call_once(&self, f: impl FnOnce()) {
            let _borrow = self.id.get_borrowed();
            self.inner.call_once(f);
        }

        /// Performs the given initialization routine once and only once.
        ///
        /// This method is identical to [`Once::call_once`] except it ignores poisoning.
        pub fn call_once_force(&self, f: impl FnOnce(OnceState)) {
            let _borrow = self.id.get_borrowed();
            self.inner.call_once_force(f);
        }
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;
    use std::thread;

    use super::tracing;

    #[test]
    fn test_mutex_usage() {
        let mutex = Arc::new(tracing::Mutex::new(()));
        let local_lock = mutex.lock();
        drop(local_lock);

        thread::spawn(move || {
            let _remote_lock = mutex.lock();
        })
        .join()
        .unwrap();
    }

    #[test]
    #[should_panic]
    fn test_mutex_conflict() {
        let mutexes = [
            tracing::Mutex::new(()),
            tracing::Mutex::new(()),
            tracing::Mutex::new(()),
        ];

        for i in 0..3 {
            let _first_lock = mutexes[i].lock();
            let _second_lock = mutexes[(i + 1) % 3].lock();
        }
    }

    #[test]
    fn test_rwlock_usage() {
        let lock = Arc::new(tracing::RwLock::new(()));
        let lock2 = Arc::clone(&lock);

        let _read_lock = lock.read();

        // Should be able to acquire lock in the background
        thread::spawn(move || {
            let _read_lock = lock2.read();
        })
        .join()
        .unwrap();
    }

    #[test]
    fn test_rwlock_upgradable_read_usage() {
        let lock = tracing::RwLock::new(());

        // Should be able to acquire an upgradable read lock.
        let upgradable_guard: tracing::RwLockUpgradableReadGuard<'_, _> = lock.upgradable_read();

        // Should be able to upgrade the guard.
        let _write_guard: tracing::RwLockWriteGuard<'_, _> =
            tracing::RwLockUpgradableReadGuard::upgrade(upgradable_guard);
    }

    #[test]
    fn test_once_usage() {
        let once = Arc::new(tracing::Once::new());
        let once_clone = once.clone();

        assert!(!once_clone.state().done());

        let handle = thread::spawn(move || {
            assert!(!once_clone.state().done());

            once_clone.call_once(|| {});

            assert!(once_clone.state().done());
        });

        handle.join().unwrap();

        assert!(once.state().done());
    }
}