tracing_mutex/graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
use std::cell::Cell;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::collections::HashSet;
use std::hash::Hash;
type Order = usize;
/// Directed Graph with dynamic topological sorting
///
/// Design and implementation based "A Dynamic Topological Sort Algorithm for Directed Acyclic
/// Graphs" by David J. Pearce and Paul H.J. Kelly which can be found on [the author's
/// website][paper].
///
/// Variable- and method names have been chosen to reflect most closely resemble the names in the
/// original paper.
///
/// This digraph tracks its own topological order and updates it when new edges are added to the
/// graph. If a cycle is added that would create a cycle, that edge is rejected and the graph is not
/// visibly changed.
///
/// [paper]: https://whileydave.com/publications/pk07_jea/
#[derive(Debug)]
pub struct DiGraph<V, E>
where
V: Eq + Hash + Copy,
{
nodes: HashMap<V, Node<V, E>>,
// Instead of reordering the orders in the graph whenever a node is deleted, we maintain a list
// of unused ids that can be handed out later again.
unused_order: Vec<Order>,
}
#[derive(Debug)]
struct Node<V, E>
where
V: Eq + Hash + Clone,
{
in_edges: HashSet<V>,
out_edges: HashMap<V, E>,
// The "Ord" field is a Cell to ensure we can update it in an immutable context.
// `std::collections::HashMap` doesn't let you have multiple mutable references to elements, but
// this way we can use immutable references and still update `ord`. This saves quite a few
// hashmap lookups in the final reorder function.
ord: Cell<Order>,
}
impl<V, E> DiGraph<V, E>
where
V: Eq + Hash + Copy,
{
/// Add a new node to the graph.
///
/// If the node already existed, this function does not add it and uses the existing node data.
/// The function returns mutable references to the in-edges, out-edges, and finally the index of
/// the node in the topological order.
///
/// New nodes are appended to the end of the topological order when added.
fn add_node(&mut self, n: V) -> (&mut HashSet<V>, &mut HashMap<V, E>, Order) {
// need to compute next id before the call to entry() to avoid duplicate borrow of nodes
let fallback_id = self.nodes.len();
let node = self.nodes.entry(n).or_insert_with(|| {
let order = if let Some(id) = self.unused_order.pop() {
// Reuse discarded ordering entry
id
} else {
// Allocate new order id
fallback_id
};
Node {
ord: Cell::new(order),
in_edges: Default::default(),
out_edges: Default::default(),
}
});
(&mut node.in_edges, &mut node.out_edges, node.ord.get())
}
pub(crate) fn remove_node(&mut self, n: V) -> bool {
match self.nodes.remove(&n) {
None => false,
Some(Node {
out_edges,
in_edges,
ord,
}) => {
// Return ordering to the pool of unused ones
self.unused_order.push(ord.get());
out_edges.into_keys().for_each(|m| {
self.nodes.get_mut(&m).unwrap().in_edges.remove(&n);
});
in_edges.into_iter().for_each(|m| {
self.nodes.get_mut(&m).unwrap().out_edges.remove(&n);
});
true
}
}
}
/// Attempt to add an edge to the graph
///
/// Nodes, both from and to, are created as needed when creating new edges. If the new edge
/// would introduce a cycle, the edge is rejected and `false` is returned.
///
/// # Errors
///
/// If the edge would introduce the cycle, the underlying graph is not modified and a list of
/// all the edge data in the would-be cycle is returned instead.
pub(crate) fn add_edge(&mut self, x: V, y: V, e: impl FnOnce() -> E) -> Result<(), Vec<E>>
where
E: Clone,
{
if x == y {
// self-edges are always considered cycles
return Err(Vec::new());
}
let (_, out_edges, ub) = self.add_node(x);
match out_edges.entry(y) {
Entry::Occupied(_) => {
// Edge already exists, nothing to be done
return Ok(());
}
Entry::Vacant(entry) => entry.insert(e()),
};
let (in_edges, _, lb) = self.add_node(y);
in_edges.insert(x);
if lb < ub {
// This edge might introduce a cycle, need to recompute the topological sort
let mut visited = [x, y].into_iter().collect();
let mut delta_f = Vec::new();
let mut delta_b = Vec::new();
if let Err(cycle) = self.dfs_f(&self.nodes[&y], ub, &mut visited, &mut delta_f) {
// This edge introduces a cycle, so we want to reject it and remove it from the
// graph again to keep the "does not contain cycles" invariant.
// We use map instead of unwrap to avoid an `unwrap()` but we know that these
// entries are present as we just added them above.
self.nodes.get_mut(&y).map(|node| node.in_edges.remove(&x));
self.nodes.get_mut(&x).map(|node| node.out_edges.remove(&y));
// No edge was added
return Err(cycle);
}
// No need to check as we should've found the cycle on the forward pass
self.dfs_b(&self.nodes[&x], lb, &mut visited, &mut delta_b);
// Original paper keeps it around but this saves us from clearing it
drop(visited);
self.reorder(delta_f, delta_b);
}
Ok(())
}
/// Forwards depth-first-search
fn dfs_f<'a>(
&'a self,
n: &'a Node<V, E>,
ub: Order,
visited: &mut HashSet<V>,
delta_f: &mut Vec<&'a Node<V, E>>,
) -> Result<(), Vec<E>>
where
E: Clone,
{
delta_f.push(n);
for (w, e) in &n.out_edges {
let node = &self.nodes[w];
let ord = node.ord.get();
if ord == ub {
// Found a cycle
return Err(vec![e.clone()]);
} else if !visited.contains(w) && ord < ub {
// Need to check recursively
visited.insert(*w);
if let Err(mut chain) = self.dfs_f(node, ub, visited, delta_f) {
chain.push(e.clone());
return Err(chain);
}
}
}
Ok(())
}
/// Backwards depth-first-search
fn dfs_b<'a>(
&'a self,
n: &'a Node<V, E>,
lb: Order,
visited: &mut HashSet<V>,
delta_b: &mut Vec<&'a Node<V, E>>,
) {
delta_b.push(n);
for w in &n.in_edges {
let node = &self.nodes[w];
if !visited.contains(w) && lb < node.ord.get() {
visited.insert(*w);
self.dfs_b(node, lb, visited, delta_b);
}
}
}
fn reorder(&self, mut delta_f: Vec<&Node<V, E>>, mut delta_b: Vec<&Node<V, E>>) {
self.sort(&mut delta_f);
self.sort(&mut delta_b);
let mut l = Vec::with_capacity(delta_f.len() + delta_b.len());
let mut orders = Vec::with_capacity(delta_f.len() + delta_b.len());
for v in delta_b.into_iter().chain(delta_f) {
orders.push(v.ord.get());
l.push(v);
}
// Original paper cleverly merges the two lists by using that both are sorted. We just sort
// again. This is slower but also much simpler.
orders.sort_unstable();
for (node, order) in l.into_iter().zip(orders) {
node.ord.set(order);
}
}
fn sort(&self, ids: &mut [&Node<V, E>]) {
// Can use unstable sort because mutex ids should not be equal
ids.sort_unstable_by_key(|v| &v.ord);
}
}
// Manual `Default` impl as derive causes unnecessarily strong bounds.
impl<V, E> Default for DiGraph<V, E>
where
V: Eq + Hash + Copy,
{
fn default() -> Self {
Self {
nodes: Default::default(),
unused_order: Default::default(),
}
}
}
#[cfg(test)]
mod tests {
use rand::seq::SliceRandom;
use rand::thread_rng;
use super::*;
fn nop() {}
#[test]
fn test_no_self_cycle() {
// Regression test for https://github.com/bertptrs/tracing-mutex/issues/7
let mut graph = DiGraph::default();
assert!(graph.add_edge(1, 1, nop).is_err());
}
#[test]
fn test_digraph() {
let mut graph = DiGraph::default();
// Add some safe edges
assert!(graph.add_edge(0, 1, nop).is_ok());
assert!(graph.add_edge(1, 2, nop).is_ok());
assert!(graph.add_edge(2, 3, nop).is_ok());
assert!(graph.add_edge(4, 2, nop).is_ok());
// Try to add an edge that introduces a cycle
assert!(graph.add_edge(3, 1, nop).is_err());
// Add an edge that should reorder 0 to be after 4
assert!(graph.add_edge(4, 0, nop).is_ok());
}
/// Fuzz the DiGraph implementation by adding a bunch of valid edges.
///
/// This test generates all possible forward edges in a 100-node graph consisting of natural
/// numbers, shuffles them, then adds them to the graph. This will always be a valid directed,
/// acyclic graph because there is a trivial order (the natural numbers) but because the edges
/// are added in a random order the DiGraph will still occasionally need to reorder nodes.
#[test]
fn fuzz_digraph() {
// Note: this fuzzer is quadratic in the number of nodes, so this cannot be too large or it
// will slow down the tests too much.
const NUM_NODES: usize = 100;
let mut edges = Vec::with_capacity(NUM_NODES * NUM_NODES);
for i in 0..NUM_NODES {
for j in i..NUM_NODES {
if i != j {
edges.push((i, j));
}
}
}
edges.shuffle(&mut thread_rng());
let mut graph = DiGraph::default();
for (x, y) in edges {
assert!(graph.add_edge(x, y, nop).is_ok());
}
}
}