tracing_mutex/
graph.rs

1use std::cell::Cell;
2use std::collections::hash_map::Entry;
3use std::collections::HashMap;
4use std::collections::HashSet;
5use std::hash::Hash;
6
7type Order = usize;
8
9/// Directed Graph with dynamic topological sorting
10///
11/// Design and implementation based "A Dynamic Topological Sort Algorithm for Directed Acyclic
12/// Graphs" by David J. Pearce and Paul H.J. Kelly which can be found on [the author's
13/// website][paper].
14///
15/// Variable- and method names have been chosen to reflect most closely resemble the names in the
16/// original paper.
17///
18/// This digraph tracks its own topological order and updates it when new edges are added to the
19/// graph. If a cycle is added that would create a cycle, that edge is rejected and the graph is not
20/// visibly changed.
21///
22/// [paper]: https://whileydave.com/publications/pk07_jea/
23#[derive(Debug)]
24pub struct DiGraph<V, E>
25where
26    V: Eq + Hash + Copy,
27{
28    nodes: HashMap<V, Node<V, E>>,
29    // Instead of reordering the orders in the graph whenever a node is deleted, we maintain a list
30    // of unused ids that can be handed out later again.
31    unused_order: Vec<Order>,
32}
33
34#[derive(Debug)]
35struct Node<V, E>
36where
37    V: Eq + Hash + Clone,
38{
39    in_edges: HashSet<V>,
40    out_edges: HashMap<V, E>,
41    // The "Ord" field is a Cell to ensure we can update it in an immutable context.
42    // `std::collections::HashMap` doesn't let you have multiple mutable references to elements, but
43    // this way we can use immutable references and still update `ord`. This saves quite a few
44    // hashmap lookups in the final reorder function.
45    ord: Cell<Order>,
46}
47
48impl<V, E> DiGraph<V, E>
49where
50    V: Eq + Hash + Copy,
51{
52    /// Add a new node to the graph.
53    ///
54    /// If the node already existed, this function does not add it and uses the existing node data.
55    /// The function returns mutable references to the in-edges, out-edges, and finally the index of
56    /// the node in the topological order.
57    ///
58    /// New nodes are appended to the end of the topological order when added.
59    fn add_node(&mut self, n: V) -> (&mut HashSet<V>, &mut HashMap<V, E>, Order) {
60        // need to compute next id before the call to entry() to avoid duplicate borrow of nodes
61        let fallback_id = self.nodes.len();
62
63        let node = self.nodes.entry(n).or_insert_with(|| {
64            let order = if let Some(id) = self.unused_order.pop() {
65                // Reuse discarded ordering entry
66                id
67            } else {
68                // Allocate new order id
69                fallback_id
70            };
71
72            Node {
73                ord: Cell::new(order),
74                in_edges: Default::default(),
75                out_edges: Default::default(),
76            }
77        });
78
79        (&mut node.in_edges, &mut node.out_edges, node.ord.get())
80    }
81
82    pub(crate) fn remove_node(&mut self, n: V) -> bool {
83        match self.nodes.remove(&n) {
84            None => false,
85            Some(Node {
86                out_edges,
87                in_edges,
88                ord,
89            }) => {
90                // Return ordering to the pool of unused ones
91                self.unused_order.push(ord.get());
92
93                out_edges.into_keys().for_each(|m| {
94                    self.nodes.get_mut(&m).unwrap().in_edges.remove(&n);
95                });
96
97                in_edges.into_iter().for_each(|m| {
98                    self.nodes.get_mut(&m).unwrap().out_edges.remove(&n);
99                });
100
101                true
102            }
103        }
104    }
105
106    /// Attempt to add an edge to the graph
107    ///
108    /// Nodes, both from and to, are created as needed when creating new edges. If the new edge
109    /// would introduce a cycle, the edge is rejected and `false` is returned.
110    ///
111    /// # Errors
112    ///
113    /// If the edge would introduce the cycle, the underlying graph is not modified and a list of
114    /// all the edge data in the would-be cycle is returned instead.
115    pub(crate) fn add_edge(&mut self, x: V, y: V, e: impl FnOnce() -> E) -> Result<(), Vec<E>>
116    where
117        E: Clone,
118    {
119        if x == y {
120            // self-edges are always considered cycles
121            return Err(Vec::new());
122        }
123
124        let (_, out_edges, ub) = self.add_node(x);
125
126        match out_edges.entry(y) {
127            Entry::Occupied(_) => {
128                // Edge already exists, nothing to be done
129                return Ok(());
130            }
131            Entry::Vacant(entry) => entry.insert(e()),
132        };
133
134        let (in_edges, _, lb) = self.add_node(y);
135
136        in_edges.insert(x);
137
138        if lb < ub {
139            // This edge might introduce a cycle, need to recompute the topological sort
140            let mut visited = [x, y].into_iter().collect();
141            let mut delta_f = Vec::new();
142            let mut delta_b = Vec::new();
143
144            if let Err(cycle) = self.dfs_f(&self.nodes[&y], ub, &mut visited, &mut delta_f) {
145                // This edge introduces a cycle, so we want to reject it and remove it from the
146                // graph again to keep the "does not contain cycles" invariant.
147
148                // We use map instead of unwrap to avoid an `unwrap()` but we know that these
149                // entries are present as we just added them above.
150                self.nodes.get_mut(&y).map(|node| node.in_edges.remove(&x));
151                self.nodes.get_mut(&x).map(|node| node.out_edges.remove(&y));
152
153                // No edge was added
154                return Err(cycle);
155            }
156
157            // No need to check as we should've found the cycle on the forward pass
158            self.dfs_b(&self.nodes[&x], lb, &mut visited, &mut delta_b);
159
160            // Original paper keeps it around but this saves us from clearing it
161            drop(visited);
162
163            self.reorder(delta_f, delta_b);
164        }
165
166        Ok(())
167    }
168
169    /// Forwards depth-first-search
170    fn dfs_f<'a>(
171        &'a self,
172        n: &'a Node<V, E>,
173        ub: Order,
174        visited: &mut HashSet<V>,
175        delta_f: &mut Vec<&'a Node<V, E>>,
176    ) -> Result<(), Vec<E>>
177    where
178        E: Clone,
179    {
180        delta_f.push(n);
181
182        for (w, e) in &n.out_edges {
183            let node = &self.nodes[w];
184            let ord = node.ord.get();
185
186            if ord == ub {
187                // Found a cycle
188                return Err(vec![e.clone()]);
189            } else if !visited.contains(w) && ord < ub {
190                // Need to check recursively
191                visited.insert(*w);
192                if let Err(mut chain) = self.dfs_f(node, ub, visited, delta_f) {
193                    chain.push(e.clone());
194                    return Err(chain);
195                }
196            }
197        }
198
199        Ok(())
200    }
201
202    /// Backwards depth-first-search
203    fn dfs_b<'a>(
204        &'a self,
205        n: &'a Node<V, E>,
206        lb: Order,
207        visited: &mut HashSet<V>,
208        delta_b: &mut Vec<&'a Node<V, E>>,
209    ) {
210        delta_b.push(n);
211
212        for w in &n.in_edges {
213            let node = &self.nodes[w];
214            if !visited.contains(w) && lb < node.ord.get() {
215                visited.insert(*w);
216
217                self.dfs_b(node, lb, visited, delta_b);
218            }
219        }
220    }
221
222    fn reorder(&self, mut delta_f: Vec<&Node<V, E>>, mut delta_b: Vec<&Node<V, E>>) {
223        self.sort(&mut delta_f);
224        self.sort(&mut delta_b);
225
226        let mut l = Vec::with_capacity(delta_f.len() + delta_b.len());
227        let mut orders = Vec::with_capacity(delta_f.len() + delta_b.len());
228
229        for v in delta_b.into_iter().chain(delta_f) {
230            orders.push(v.ord.get());
231            l.push(v);
232        }
233
234        // Original paper cleverly merges the two lists by using that both are sorted. We just sort
235        // again. This is slower but also much simpler.
236        orders.sort_unstable();
237
238        for (node, order) in l.into_iter().zip(orders) {
239            node.ord.set(order);
240        }
241    }
242
243    fn sort(&self, ids: &mut [&Node<V, E>]) {
244        // Can use unstable sort because mutex ids should not be equal
245        ids.sort_unstable_by_key(|v| &v.ord);
246    }
247}
248
249// Manual `Default` impl as derive causes unnecessarily strong bounds.
250impl<V, E> Default for DiGraph<V, E>
251where
252    V: Eq + Hash + Copy,
253{
254    fn default() -> Self {
255        Self {
256            nodes: Default::default(),
257            unused_order: Default::default(),
258        }
259    }
260}
261
262#[cfg(test)]
263mod tests {
264    use rand::seq::SliceRandom;
265    use rand::thread_rng;
266
267    use super::*;
268
269    fn nop() {}
270
271    #[test]
272    fn test_no_self_cycle() {
273        // Regression test for https://github.com/bertptrs/tracing-mutex/issues/7
274        let mut graph = DiGraph::default();
275
276        assert!(graph.add_edge(1, 1, nop).is_err());
277    }
278
279    #[test]
280    fn test_digraph() {
281        let mut graph = DiGraph::default();
282
283        // Add some safe edges
284        assert!(graph.add_edge(0, 1, nop).is_ok());
285        assert!(graph.add_edge(1, 2, nop).is_ok());
286        assert!(graph.add_edge(2, 3, nop).is_ok());
287        assert!(graph.add_edge(4, 2, nop).is_ok());
288
289        // Try to add an edge that introduces a cycle
290        assert!(graph.add_edge(3, 1, nop).is_err());
291
292        // Add an edge that should reorder 0 to be after 4
293        assert!(graph.add_edge(4, 0, nop).is_ok());
294    }
295
296    /// Fuzz the DiGraph implementation by adding a bunch of valid edges.
297    ///
298    /// This test generates all possible forward edges in a 100-node graph consisting of natural
299    /// numbers, shuffles them, then adds them to the graph. This will always be a valid directed,
300    /// acyclic graph because there is a trivial order (the natural numbers) but because the edges
301    /// are added in a random order the DiGraph will still occasionally need to reorder nodes.
302    #[test]
303    fn fuzz_digraph() {
304        // Note: this fuzzer is quadratic in the number of nodes, so this cannot be too large or it
305        // will slow down the tests too much.
306        const NUM_NODES: usize = 100;
307        let mut edges = Vec::with_capacity(NUM_NODES * NUM_NODES);
308
309        for i in 0..NUM_NODES {
310            for j in i..NUM_NODES {
311                if i != j {
312                    edges.push((i, j));
313                }
314            }
315        }
316
317        edges.shuffle(&mut thread_rng());
318
319        let mut graph = DiGraph::default();
320
321        for (x, y) in edges {
322            assert!(graph.add_edge(x, y, nop).is_ok());
323        }
324    }
325}