1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Serialization.

use std::cmp;
use std::convert::Infallible as Never;
use std::fmt::{self, Debug, Formatter};
use std::ops::{Range, RangeBounds};

use arrayvec::ArrayVec;
use zerocopy::ByteSlice;

use crate::{
    canonicalize_range, take_back, take_back_mut, take_front, take_front_mut,
    AsFragmentedByteSlice, Buffer, BufferView, BufferViewMut, ContiguousBuffer, EmptyBuf,
    FragmentedBuffer, FragmentedBufferMut, FragmentedBytes, FragmentedBytesMut, GrowBuffer,
    GrowBufferMut, ParsablePacket, ParseBuffer, ParseBufferMut, ReusableBuffer, ShrinkBuffer,
};

/// Either of two buffers.
///
/// An `Either` wraps one of two different buffer types. It implements all of
/// the relevant traits by calling the corresponding methods on the wrapped
/// buffer.
#[derive(Copy, Clone, Debug)]
pub enum Either<A, B> {
    A(A),
    B(B),
}

impl<A, B> Either<A, B> {
    /// Maps the `A` variant of an `Either`.
    ///
    /// Given an `Either<A, B>` and a function from `A` to `AA`, `map_a`
    /// produces an `Either<AA, B>` by applying the function to the `A` variant
    /// or passing on the `B` variant unmodified.
    pub fn map_a<AA, F: FnOnce(A) -> AA>(self, f: F) -> Either<AA, B> {
        match self {
            Either::A(a) => Either::A(f(a)),
            Either::B(b) => Either::B(b),
        }
    }

    /// Maps the `B` variant of an `Either`.
    ///
    /// Given an `Either<A, B>` and a function from `B` to `BB`, `map_b`
    /// produces an `Either<A, BB>` by applying the function to the `B` variant
    /// or passing on the `A` variant unmodified.
    pub fn map_b<BB, F: FnOnce(B) -> BB>(self, f: F) -> Either<A, BB> {
        match self {
            Either::A(a) => Either::A(a),
            Either::B(b) => Either::B(f(b)),
        }
    }

    /// Returns the `A` variant in an `Either<A, B>`.
    ///
    /// # Panics
    ///
    /// Panics if this `Either<A, B>` does not hold the `A` variant.
    pub fn unwrap_a(self) -> A {
        match self {
            Either::A(x) => x,
            Either::B(_) => panic!("This `Either<A, B>` does not hold the `A` variant"),
        }
    }

    /// Returns the `B` variant in an `Either<A, B>`.
    ///
    /// # Panics
    ///
    /// Panics if this `Either<A, B>` does not hold the `B` variant.
    pub fn unwrap_b(self) -> B {
        match self {
            Either::A(_) => panic!("This `Either<A, B>` does not hold the `B` variant"),
            Either::B(x) => x,
        }
    }
}

impl<A> Either<A, A> {
    /// Returns the inner value held by this `Either` when both possible values
    /// `Either::A` and `Either::B` contain the same inner types.
    pub fn into_inner(self) -> A {
        match self {
            Either::A(x) => x,
            Either::B(x) => x,
        }
    }
}

impl<A> Either<A, Never> {
    /// Returns the `A` value in an `Either<A, Never>`.
    #[inline]
    pub fn into_a(self) -> A {
        match self {
            Either::A(a) => a,
            Either::B(never) => match never {},
        }
    }
}

impl<B> Either<Never, B> {
    /// Returns the `B` value in an `Either<Never, B>`.
    #[inline]
    pub fn into_b(self) -> B {
        match self {
            Either::A(never) => match never {},
            Either::B(b) => b,
        }
    }
}

macro_rules! call_method_on_either {
    ($val:expr, $method:ident, $($args:expr),*) => {
        match $val {
            Either::A(a) => a.$method($($args),*),
            Either::B(b) => b.$method($($args),*),
        }
    };
    ($val:expr, $method:ident) => {
        call_method_on_either!($val, $method,)
    };
}

// NOTE(joshlf): We override the default implementations of all methods for
// Either. Many of the default implementations make multiple calls to other
// Buffer methods, each of which performs a match statement to figure out which
// Either variant is present. We assume that doing this match once is more
// performant than doing it multiple times.

impl<A, B> FragmentedBuffer for Either<A, B>
where
    A: FragmentedBuffer,
    B: FragmentedBuffer,
{
    fn len(&self) -> usize {
        call_method_on_either!(self, len)
    }

    fn with_bytes<R, F>(&self, f: F) -> R
    where
        F: for<'a, 'b> FnOnce(FragmentedBytes<'a, 'b>) -> R,
    {
        call_method_on_either!(self, with_bytes, f)
    }
}

impl<A, B> ContiguousBuffer for Either<A, B>
where
    A: ContiguousBuffer,
    B: ContiguousBuffer,
{
}

impl<A, B> ShrinkBuffer for Either<A, B>
where
    A: ShrinkBuffer,
    B: ShrinkBuffer,
{
    fn shrink<R: RangeBounds<usize>>(&mut self, range: R) {
        call_method_on_either!(self, shrink, range)
    }
    fn shrink_front(&mut self, n: usize) {
        call_method_on_either!(self, shrink_front, n)
    }
    fn shrink_back(&mut self, n: usize) {
        call_method_on_either!(self, shrink_back, n)
    }
}

impl<A, B> ParseBuffer for Either<A, B>
where
    A: ParseBuffer,
    B: ParseBuffer,
{
    fn parse<'a, P: ParsablePacket<&'a [u8], ()>>(&'a mut self) -> Result<P, P::Error> {
        call_method_on_either!(self, parse)
    }
    fn parse_with<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        call_method_on_either!(self, parse_with, args)
    }
}

impl<A, B> FragmentedBufferMut for Either<A, B>
where
    A: FragmentedBufferMut,
    B: FragmentedBufferMut,
{
    fn with_bytes_mut<R, F>(&mut self, f: F) -> R
    where
        F: for<'a, 'b> FnOnce(FragmentedBytesMut<'a, 'b>) -> R,
    {
        call_method_on_either!(self, with_bytes_mut, f)
    }
}

impl<A, B> ParseBufferMut for Either<A, B>
where
    A: ParseBufferMut,
    B: ParseBufferMut,
{
    fn parse_mut<'a, P: ParsablePacket<&'a mut [u8], ()>>(&'a mut self) -> Result<P, P::Error> {
        call_method_on_either!(self, parse_mut)
    }
    fn parse_with_mut<'a, ParseArgs, P: ParsablePacket<&'a mut [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        call_method_on_either!(self, parse_with_mut, args)
    }
}

impl<A, B> GrowBuffer for Either<A, B>
where
    A: GrowBuffer,
    B: GrowBuffer,
{
    #[inline]
    fn with_parts<O, F>(&self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
    {
        call_method_on_either!(self, with_parts, f)
    }
    fn capacity(&self) -> usize {
        call_method_on_either!(self, capacity)
    }
    fn prefix_len(&self) -> usize {
        call_method_on_either!(self, prefix_len)
    }
    fn suffix_len(&self) -> usize {
        call_method_on_either!(self, suffix_len)
    }
    fn grow_front(&mut self, n: usize) {
        call_method_on_either!(self, grow_front, n)
    }
    fn grow_back(&mut self, n: usize) {
        call_method_on_either!(self, grow_back, n)
    }
    fn reset(&mut self) {
        call_method_on_either!(self, reset)
    }
}

impl<A, B> GrowBufferMut for Either<A, B>
where
    A: GrowBufferMut,
    B: GrowBufferMut,
{
    fn with_parts_mut<O, F>(&mut self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
    {
        call_method_on_either!(self, with_parts_mut, f)
    }

    fn serialize<BB: PacketBuilder>(&mut self, builder: BB) {
        call_method_on_either!(self, serialize, builder)
    }
}

impl<A, B> Buffer for Either<A, B>
where
    A: Buffer,
    B: Buffer,
{
    fn parse_with_view<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<(P, &'a [u8]), P::Error> {
        call_method_on_either!(self, parse_with_view, args)
    }
}

impl<A: AsRef<[u8]>, B: AsRef<[u8]>> AsRef<[u8]> for Either<A, B> {
    fn as_ref(&self) -> &[u8] {
        call_method_on_either!(self, as_ref)
    }
}

impl<A: AsMut<[u8]>, B: AsMut<[u8]>> AsMut<[u8]> for Either<A, B> {
    fn as_mut(&mut self) -> &mut [u8] {
        call_method_on_either!(self, as_mut)
    }
}

/// A byte slice wrapper providing buffer functionality.
///
/// A `Buf` wraps a byte slice (a type which implements `AsRef<[u8]>` or
/// `AsMut<[u8]>`) and implements various buffer traits by keeping track of
/// prefix, body, and suffix offsets within the byte slice.
#[derive(Clone, Debug)]
pub struct Buf<B> {
    buf: B,
    body: Range<usize>,
}

impl<B: AsRef<[u8]>> PartialEq for Buf<B> {
    fn eq(&self, other: &Self) -> bool {
        let self_slice = AsRef::<[u8]>::as_ref(self);
        let other_slice = AsRef::<[u8]>::as_ref(other);
        PartialEq::eq(self_slice, other_slice)
    }
}

impl<B: AsRef<[u8]>> Eq for Buf<B> {}

impl Buf<Vec<u8>> {
    /// Extracts the contained data trimmed to the buffer's range.
    pub fn into_inner(self) -> Vec<u8> {
        let Buf { mut buf, body } = self;
        let len = body.end - body.start;
        let _ = buf.drain(..body.start);
        buf.truncate(len);
        buf
    }
}

impl<B: AsRef<[u8]>> Buf<B> {
    /// Constructs a new `Buf`.
    ///
    /// `new` constructs a new `Buf` from a buffer and a body range. The bytes
    /// within the range will be the body, the bytes before the range will be
    /// the prefix, and the bytes after the range will be the suffix.
    ///
    /// # Panics
    ///
    /// Panics if `range` is out of bounds of `buf`, or if it is nonsensical
    /// (the end precedes the start).
    pub fn new<R: RangeBounds<usize>>(buf: B, body: R) -> Buf<B> {
        let len = buf.as_ref().len();
        Buf { buf, body: canonicalize_range(len, &body) }
    }

    /// Constructs a [`BufView`] which will be a [`BufferView`] into this `Buf`.
    pub fn buffer_view(&mut self) -> BufView<'_> {
        BufView { buf: &self.buf.as_ref()[self.body.clone()], body: &mut self.body }
    }
}

impl<B: AsRef<[u8]> + AsMut<[u8]>> Buf<B> {
    /// Constructs a [`BufViewMut`] which will be a [`BufferViewMut`] into this `Buf`.
    pub fn buffer_view_mut(&mut self) -> BufViewMut<'_> {
        BufViewMut { buf: &mut self.buf.as_mut()[self.body.clone()], body: &mut self.body }
    }
}

impl<B: AsRef<[u8]>> FragmentedBuffer for Buf<B> {
    fragmented_buffer_method_impls!();
}
impl<B: AsRef<[u8]>> ContiguousBuffer for Buf<B> {}
impl<B: AsRef<[u8]>> ShrinkBuffer for Buf<B> {
    fn shrink<R: RangeBounds<usize>>(&mut self, range: R) {
        let len = self.len();
        let mut range = canonicalize_range(len, &range);
        range.start += self.body.start;
        range.end += self.body.start;
        self.body = range;
    }

    fn shrink_front(&mut self, n: usize) {
        assert!(n <= self.len());
        self.body.start += n;
    }
    fn shrink_back(&mut self, n: usize) {
        assert!(n <= self.len());
        self.body.end -= n;
    }
}
impl<B: AsRef<[u8]>> ParseBuffer for Buf<B> {
    fn parse_with<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        P::parse(self.buffer_view(), args)
    }
}

impl<B: AsRef<[u8]> + AsMut<[u8]>> FragmentedBufferMut for Buf<B> {
    fragmented_buffer_mut_method_impls!();
}

impl<B: AsRef<[u8]> + AsMut<[u8]>> ParseBufferMut for Buf<B> {
    fn parse_with_mut<'a, ParseArgs, P: ParsablePacket<&'a mut [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        P::parse_mut(self.buffer_view_mut(), args)
    }
}

impl<B: AsRef<[u8]>> GrowBuffer for Buf<B> {
    fn with_parts<O, F>(&self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
    {
        let (prefix, buf) = self.buf.as_ref().split_at(self.body.start);
        let (body, suffix) = buf.split_at(self.body.end - self.body.start);
        let mut body = [&body[..]];
        f(prefix, body.as_fragmented_byte_slice(), suffix)
    }
    fn capacity(&self) -> usize {
        self.buf.as_ref().len()
    }
    fn prefix_len(&self) -> usize {
        self.body.start
    }
    fn suffix_len(&self) -> usize {
        self.buf.as_ref().len() - self.body.end
    }
    fn grow_front(&mut self, n: usize) {
        assert!(n <= self.body.start);
        self.body.start -= n;
    }
    fn grow_back(&mut self, n: usize) {
        assert!(n <= self.buf.as_ref().len() - self.body.end);
        self.body.end += n;
    }
}

impl<B: AsRef<[u8]> + AsMut<[u8]>> GrowBufferMut for Buf<B> {
    fn with_parts_mut<O, F>(&mut self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
    {
        let (prefix, buf) = self.buf.as_mut().split_at_mut(self.body.start);
        let (body, suffix) = buf.split_at_mut(self.body.end - self.body.start);
        let mut body = [&mut body[..]];
        f(prefix, body.as_fragmented_byte_slice(), suffix)
    }
}

impl<B: AsRef<[u8]>> AsRef<[u8]> for Buf<B> {
    fn as_ref(&self) -> &[u8] {
        &self.buf.as_ref()[self.body.clone()]
    }
}

impl<B: AsMut<[u8]>> AsMut<[u8]> for Buf<B> {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.buf.as_mut()[self.body.clone()]
    }
}

impl<B: AsRef<[u8]>> Buffer for Buf<B> {
    fn parse_with_view<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<(P, &'a [u8]), P::Error> {
        let Self { body, ref buf } = self;
        let body_before = body.clone();
        let view = BufView { buf: &buf.as_ref()[body.clone()], body };
        P::parse(view, args).map(|r| (r, &buf.as_ref()[body_before]))
    }
}

/// A [`BufferView`] into a [`Buf`].
///
/// A `BufView` is constructed by [`Buf::buffer_view`], and implements
/// `BufferView`, providing a view into the `Buf` from which it was constructed.
pub struct BufView<'a> {
    buf: &'a [u8],
    body: &'a mut Range<usize>,
}

impl<'a> BufferView<&'a [u8]> for BufView<'a> {
    fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.len() < n {
            return None;
        }
        self.body.start += n;
        Some(take_front(&mut self.buf, n))
    }

    fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.len() < n {
            return None;
        }
        self.body.end -= n;
        Some(take_back(&mut self.buf, n))
    }

    fn into_rest(self) -> &'a [u8] {
        self.buf
    }
}

impl<'a> AsRef<[u8]> for BufView<'a> {
    fn as_ref(&self) -> &[u8] {
        self.buf
    }
}

/// A [`BufferViewMut`] into a [`Buf`].
///
/// A `BufViewMut` is constructed by [`Buf::buffer_view_mut`], and implements
/// `BufferViewMut`, providing a mutable view into the `Buf` from which it was
/// constructed.
pub struct BufViewMut<'a> {
    buf: &'a mut [u8],
    body: &'a mut Range<usize>,
}

impl<'a> BufferView<&'a mut [u8]> for BufViewMut<'a> {
    fn take_front(&mut self, n: usize) -> Option<&'a mut [u8]> {
        if self.len() < n {
            return None;
        }
        self.body.start += n;
        Some(take_front_mut(&mut self.buf, n))
    }

    fn take_back(&mut self, n: usize) -> Option<&'a mut [u8]> {
        if self.len() < n {
            return None;
        }
        self.body.end -= n;
        Some(take_back_mut(&mut self.buf, n))
    }

    fn into_rest(self) -> &'a mut [u8] {
        self.buf
    }
}

impl<'a> BufferViewMut<&'a mut [u8]> for BufViewMut<'a> {}

impl<'a> AsRef<[u8]> for BufViewMut<'a> {
    fn as_ref(&self) -> &[u8] {
        self.buf
    }
}

impl<'a> AsMut<[u8]> for BufViewMut<'a> {
    fn as_mut(&mut self) -> &mut [u8] {
        self.buf
    }
}

/// The constraints required by a [`PacketBuilder`].
///
/// `PacketConstraints` represents the constraints that must be satisfied in
/// order to serialize a `PacketBuilder`.
///
/// A `PacketConstraints`, `c`, guarantees two properties:
/// - `c.max_body_len() >= c.min_body_len()`
/// - `c.header_len() + c.min_body_len() + c.footer_len()` does not overflow
///   `usize`
///
/// It is not possible (using safe code) to obtain a `PacketConstraints` which
/// violates these properties, so code may rely for its correctness on the
/// assumption that these properties hold.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct PacketConstraints {
    header_len: usize,
    footer_len: usize,
    min_body_len: usize,
    max_body_len: usize,
}

impl PacketConstraints {
    /// A no-op `PacketConstraints` which does not add any constraints - there
    /// is no header, footer, minimum body length requirement, or maximum body
    /// length requirement.
    pub const UNCONSTRAINED: Self =
        Self { header_len: 0, footer_len: 0, min_body_len: 0, max_body_len: usize::MAX };

    /// Constructs a new `PacketConstraints`.
    ///
    /// # Panics
    ///
    /// `new` panics if the arguments violate the validity properties of
    /// `PacketConstraints` - if `max_body_len < min_body_len`, or if
    /// `header_len + min_body_len + footer_len` overflows `usize`.
    #[inline]
    pub fn new(
        header_len: usize,
        footer_len: usize,
        min_body_len: usize,
        max_body_len: usize,
    ) -> PacketConstraints {
        PacketConstraints::try_new(header_len, footer_len, min_body_len, max_body_len).expect(
            "max_body_len < min_body_len or header_len + min_body_len + footer_len overflows usize",
        )
    }

    /// Tries to construct a new `PacketConstraints`.
    ///
    /// `new` returns `None` if the provided values violate the validity
    /// properties of `PacketConstraints` - if `max_body_len < min_body_len`, or
    /// if `header_len + min_body_len + footer_len` overflows `usize`.
    #[inline]
    pub fn try_new(
        header_len: usize,
        footer_len: usize,
        min_body_len: usize,
        max_body_len: usize,
    ) -> Option<PacketConstraints> {
        // Test case 3 in test_packet_constraints
        let header_min_body_footer_overflows = header_len
            .checked_add(min_body_len)
            .and_then(|sum| sum.checked_add(footer_len))
            .is_none();
        // Test case 5 in test_packet_constraints
        let max_less_than_min = max_body_len < min_body_len;
        if max_less_than_min || header_min_body_footer_overflows {
            return None;
        }
        Some(PacketConstraints { header_len, footer_len, min_body_len, max_body_len })
    }

    /// Constructs a new `PacketConstraints` with a given `max_body_len`.
    ///
    /// The `header_len`, `footer_len`, and `min_body_len` are all `0`.
    #[inline]
    pub fn with_max_body_len(max_body_len: usize) -> PacketConstraints {
        // SAFETY:
        // - `max_body_len >= min_body_len` by construction
        // - `header_len + min_body_len + footer_len` is 0 and thus does not
        //   overflow `usize`
        PacketConstraints { header_len: 0, footer_len: 0, min_body_len: 0, max_body_len }
    }

    /// The number of bytes in this packet's header.
    #[inline]
    pub fn header_len(&self) -> usize {
        self.header_len
    }

    /// The number of bytes in this packet's footer.
    #[inline]
    pub fn footer_len(&self) -> usize {
        self.footer_len
    }

    /// The minimum body length (in bytes) required by this packet in order to
    /// avoid adding padding.
    ///
    /// `min_body_len` returns the minimum number of body bytes required in
    /// order to avoid adding padding. Note that, if padding bytes are required,
    /// they may not necessarily belong immediately following the body,
    /// depending on which packet layer imposes the minimum. In particular, in a
    /// nested packet, padding goes after the body of the layer which imposes
    /// the minimum. This means that, if the layer that imposes the minimum is
    /// not the innermost one, then padding must be added not after the
    /// innermost body, but instead in between footers.
    /// [`NestedPacketBuilder::serialize_into`] is responsible for inserting
    /// padding when serializing nested packets.
    ///
    /// If there is no minimum body length, this returns 0.
    #[inline]
    pub fn min_body_len(&self) -> usize {
        self.min_body_len
    }

    /// The maximum length (in bytes) of a body allowed by this packet.
    ///
    /// If there is no maximum body length, this returns [`core::usize::MAX`].
    #[inline]
    pub fn max_body_len(&self) -> usize {
        self.max_body_len
    }

    /// Attempts to encapsulate `self` in `outer`.
    ///
    /// Upon success, `try_encapsulate` returns a `PacketConstraints` which
    /// represents the encapsulation of `self` in `outer`. Its header length,
    /// footer length, minimum body length, and maximum body length are set
    /// accordingly.
    ///
    /// This is probably not the method you want to use; consider
    /// [`Serializer::encapsulate`] instead.
    pub fn try_encapsulate(&self, outer: &Self) -> Option<PacketConstraints> {
        let inner = self;
        // Test case 1 in test_packet_constraints
        let header_len = inner.header_len.checked_add(outer.header_len)?;
        // Test case 2 in test_packet_constraints
        let footer_len = inner.footer_len.checked_add(outer.footer_len)?;
        // This is guaranteed not to overflow by the invariants on
        // PacketConstraint.
        let inner_header_footer_len = inner.header_len + inner.footer_len;
        // Note the saturating_sub here - it's OK if the inner PacketBuilder
        // more than satisfies the outer PacketBuilder's minimum body length
        // requirement.
        let min_body_len = cmp::max(
            outer.min_body_len.saturating_sub(inner_header_footer_len),
            inner.min_body_len,
        );
        // Note the checked_sub here - it's NOT OK if the inner PacketBuilder
        // exceeds the outer PacketBuilder's maximum body length requirement.
        //
        // Test case 4 in test_packet_constraints
        let max_body_len =
            cmp::min(outer.max_body_len.checked_sub(inner_header_footer_len)?, inner.max_body_len);
        // It's still possible that `min_body_len > max_body_len` or that
        // `header_len + min_body_len + footer_len` overflows `usize`; `try_new`
        // checks those constraints for us.
        PacketConstraints::try_new(header_len, footer_len, min_body_len, max_body_len)
    }
}

/// The target buffers into which [`PacketBuilder::serialize`] serializes its
/// header and footer.
pub struct SerializeTarget<'a> {
    #[allow(missing_docs)]
    pub header: &'a mut [u8],
    #[allow(missing_docs)]
    pub footer: &'a mut [u8],
}

/// A builder capable of serializing a packet's headers and footers.
///
/// A `PacketBuilder` describes a packet's headers and footers, and is capable
/// of serializing that packet into an existing buffer via the `serialize`
/// method. A `PacketBuilder` never describes a body - one must always be
/// provided in order to call `serialize`.
///
/// Thanks to a blanket implementation, every `PacketBuilder` is also a
/// [`NestedPacketBuilder`]. While a `PacketBuilder` represents exactly one
/// "layer" of a packet - a pair of a header and a footer - a
/// `NestedPacketBuilder` can represent multiple nested layers of a packet, and
/// can be composed from other `NestedPacketBuilder`s. See the trait
/// documentation for more details.
///
/// `()` may be used as an "empty" `PacketBuilder` with no header, footer,
/// minimum body length requirement, or maximum body length requirement.
pub trait PacketBuilder {
    /// Gets the constraints for this `PacketBuilder`.
    fn constraints(&self) -> PacketConstraints;

    /// Serializes this packet into an existing buffer.
    ///
    /// *This method is usually called by this crate during the serialization of
    /// a [`Serializer`], not directly by the user.*
    ///
    /// # Preconditions
    ///
    /// The caller is responsible for initializing `body` with the body to be
    /// encapsulated, and for ensuring that the body satisfies both the minimum
    /// and maximum body length requirements, possibly by adding padding or by
    /// truncating the body.
    ///
    /// # Postconditions
    ///
    /// `serialize` is responsible for serializing its header and footer into
    /// `target.header` and `target.footer` respectively.
    ///
    /// # Security
    ///
    /// `serialize` must initialize the bytes of the header and footer, even if
    /// only to zero, in order to avoid leaking the contents of packets
    /// previously stored in the same buffer.
    ///
    /// # Panics
    ///
    /// May panic if the `target.header` or `target.footer` are not large enough
    /// to fit the packet's header and footer respectively, or if the body does
    /// not satisfy the minimum or maximum body length requirements.
    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>);
}

impl<'a, B: PacketBuilder> PacketBuilder for &'a B {
    #[inline]
    fn constraints(&self) -> PacketConstraints {
        B::constraints(self)
    }
    #[inline]
    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
        B::serialize(self, target, body)
    }
}

impl<'a, B: PacketBuilder> PacketBuilder for &'a mut B {
    #[inline]
    fn constraints(&self) -> PacketConstraints {
        B::constraints(self)
    }
    #[inline]
    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
        B::serialize(self, target, body)
    }
}

impl PacketBuilder for () {
    #[inline]
    fn constraints(&self) -> PacketConstraints {
        PacketConstraints::UNCONSTRAINED
    }
    #[inline]
    fn serialize(&self, _target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {}
}

impl PacketBuilder for Never {
    fn constraints(&self) -> PacketConstraints {
        match *self {}
    }
    fn serialize(&self, _target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {}
}

/// One object encapsulated in another one.
///
/// `Nested`s are constructed using the [`NestedPacketBuilder::encapsulate`] and
/// [`Serializer::encapsulate`] methods.
///
/// When `I: NestedPacketBuilder` and `O: NestedPacketBuilder`, `Nested<I, O>`
/// implements [`NestedPacketBuilder`]. When `I: Serializer` and `O:
/// NestedPacketBuilder`, `Nested<I, O>` implements [`Serializer`].
#[derive(Copy, Clone, Debug)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct Nested<I, O> {
    inner: I,
    outer: O,
}

impl<I, O> Nested<I, O> {
    /// Consumes this `Nested` and returns the inner object, discarding the
    /// outer one.
    #[inline]
    pub fn into_inner(self) -> I {
        self.inner
    }

    /// Consumes this `Nested` and returns the outer object, discarding the
    /// inner one.
    #[inline]
    pub fn into_outer(self) -> O {
        self.outer
    }

    #[inline]
    pub fn inner(&self) -> &I {
        &self.inner
    }

    #[inline]
    pub fn outer(&self) -> &O {
        &self.outer
    }
}

/// A [`PacketBuilder`] which has no header or footer, but which imposes a
/// maximum body length constraint.
///
/// `LimitedSizePacketBuilder`s are constructed using the
/// [`Serializer::with_size_limit`] method.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct LimitedSizePacketBuilder {
    /// The maximum body length.
    pub limit: usize,
}

impl PacketBuilder for LimitedSizePacketBuilder {
    fn constraints(&self) -> PacketConstraints {
        PacketConstraints::with_max_body_len(self.limit)
    }

    fn serialize(&self, _target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {}
}

/// A builder capable of serializing packets - which do not encapsulate other
/// packets - into an existing buffer.
///
/// An `InnerPacketBuilder` describes a packet, and is capable of serializing
/// that packet into an existing buffer via the `serialize` method. Unlike the
/// [`PacketBuilder`] trait, it describes a packet which does not encapsulate
/// other packets.
///
/// # Notable implementations
///
/// `InnerPacketBuilder` is implemented for `&[u8]`, `&mut [u8]`, and `Vec<u8>`
/// by treating the contents of the slice/`Vec` as the contents of the packet to
/// be serialized.
pub trait InnerPacketBuilder {
    /// The number of bytes consumed by this packet.
    fn bytes_len(&self) -> usize;

    /// Serializes this packet into an existing buffer.
    ///
    /// `serialize` is called with a buffer of length `self.bytes_len()`, and is
    /// responsible for serializing the packet into the buffer.
    ///
    /// # Security
    ///
    /// All of the bytes of the buffer should be initialized, even if only to
    /// zero, in order to avoid leaking the contents of packets previously
    /// stored in the same buffer.
    ///
    /// # Panics
    ///
    /// May panic if `buffer.len() != self.bytes_len()`.
    fn serialize(&self, buffer: &mut [u8]);

    /// Converts this `InnerPacketBuilder` into a [`Serializer`].
    ///
    /// `into_serializer` is like [`into_serializer_with`], except that no
    /// buffer is provided for reuse in serialization.
    ///
    /// [`into_serializer_with`]: InnerPacketBuilder::into_serializer_with
    #[inline]
    fn into_serializer(self) -> InnerSerializer<Self, EmptyBuf>
    where
        Self: Sized,
    {
        self.into_serializer_with(EmptyBuf)
    }

    /// Converts this `InnerPacketBuilder` into a [`Serializer`] with a buffer
    /// that can be used for serialization.
    ///
    /// `into_serializer_with` consumes a buffer and converts `self` into a type
    /// which implements `Serialize` by treating it as the innermost body to be
    /// contained within any encapsulating [`PacketBuilder`]s. During
    /// serialization, `buffer` will be provided to the [`BufferProvider`],
    /// allowing it to reuse the buffer for serialization and avoid allocating a
    /// new one if possible.
    ///
    /// `buffer` will have its body shrunk to be zero bytes before the
    /// `InnerSerializer` is constructed.
    fn into_serializer_with<B: ShrinkBuffer>(self, mut buffer: B) -> InnerSerializer<Self, B>
    where
        Self: Sized,
    {
        buffer.shrink_back_to(0);
        InnerSerializer { inner: self, buffer }
    }
}

impl<'a, I: InnerPacketBuilder> InnerPacketBuilder for &'a I {
    #[inline]
    fn bytes_len(&self) -> usize {
        I::bytes_len(self)
    }
    #[inline]
    fn serialize(&self, buffer: &mut [u8]) {
        I::serialize(self, buffer)
    }
}
impl<'a, I: InnerPacketBuilder> InnerPacketBuilder for &'a mut I {
    #[inline]
    fn bytes_len(&self) -> usize {
        I::bytes_len(self)
    }
    #[inline]
    fn serialize(&self, buffer: &mut [u8]) {
        I::serialize(self, buffer)
    }
}
impl<'a> InnerPacketBuilder for &'a [u8] {
    #[inline]
    fn bytes_len(&self) -> usize {
        self.len()
    }
    #[inline]
    fn serialize(&self, buffer: &mut [u8]) {
        buffer.copy_from_slice(self);
    }
}
impl<'a> InnerPacketBuilder for &'a mut [u8] {
    #[inline]
    fn bytes_len(&self) -> usize {
        self.len()
    }
    #[inline]
    fn serialize(&self, buffer: &mut [u8]) {
        buffer.copy_from_slice(self);
    }
}
impl<'a> InnerPacketBuilder for Vec<u8> {
    #[inline]
    fn bytes_len(&self) -> usize {
        self.len()
    }
    #[inline]
    fn serialize(&self, buffer: &mut [u8]) {
        buffer.copy_from_slice(self.as_slice());
    }
}
impl<const N: usize> InnerPacketBuilder for ArrayVec<u8, N> {
    fn bytes_len(&self) -> usize {
        self.as_slice().bytes_len()
    }
    fn serialize(&self, buffer: &mut [u8]) {
        self.as_slice().serialize(buffer);
    }
}

/// An [`InnerPacketBuilder`] created from any [`B: ByteSlice`].
///
/// `ByteSliceInnerPacketBuilder<B>` implements `InnerPacketBuilder` so long as
/// `B: ByteSlice`.
///
/// [`B: ByteSlice`]: zerocopy::ByteSlice
pub struct ByteSliceInnerPacketBuilder<B>(pub B);

impl<B: ByteSlice> InnerPacketBuilder for ByteSliceInnerPacketBuilder<B> {
    fn bytes_len(&self) -> usize {
        self.0.deref().bytes_len()
    }
    fn serialize(&self, buffer: &mut [u8]) {
        self.0.deref().serialize(buffer)
    }
}

impl<B: ByteSlice> Debug for ByteSliceInnerPacketBuilder<B> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "ByteSliceInnerPacketBuilder({:?})", self.0.as_ref())
    }
}

/// An error in serializing a packet.
///
/// `SerializeError` is the type of errors returned from methods on the
/// [`Serializer`] trait. The `Alloc` variant indicates that a new buffer could
/// not be allocated, while the `SizeLimitExceeded` variant indicates that a
/// size limit constraint was exceeded.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SerializeError<A> {
    /// A new buffer could not be allocated.
    Alloc(A),
    /// The size limit constraint was exceeded.
    SizeLimitExceeded,
}

impl<A> SerializeError<A> {
    /// Is this `SerializeError::Alloc`?
    #[inline]
    pub fn is_alloc(&self) -> bool {
        match self {
            SerializeError::Alloc(_) => true,
            SerializeError::SizeLimitExceeded => false,
        }
    }

    /// Is this `SerializeError::SizeLimitExceeded`?
    #[inline]
    pub fn is_size_limit_exceeded(&self) -> bool {
        match self {
            SerializeError::Alloc(_) => false,
            SerializeError::SizeLimitExceeded => true,
        }
    }
}

impl<A> From<A> for SerializeError<A> {
    fn from(a: A) -> SerializeError<A> {
        SerializeError::Alloc(a)
    }
}

/// The error returned when a buffer is too short to hold a serialized packet,
/// and the [`BufferProvider`] is incapable of allocating a new one.
///
/// `BufferTooShortError` is returned by the [`Serializer`] methods
/// [`serialize_no_alloc`] and [`serialize_no_alloc_outer`].
///
/// [`serialize_no_alloc`]: Serializer::serialize_no_alloc
/// [`serialize_no_alloc_outer`]: Serializer::serialize_no_alloc_outer
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct BufferTooShortError;

/// An object capable of providing buffers which satisfy certain constraints.
///
/// A `BufferProvider<Input, Output>` is an object which is capable of consuming
/// a buffer of type `Input` and, either by reusing it or by allocating a new
/// one and copying the input buffer's body into it, producing a buffer of type
/// `Output` which meets certain prefix and suffix length constraints.
///
/// A `BufferProvider` must always be provided when serializing a
/// [`Serializer`].
///
/// Implementors may find the helper function [`try_reuse_buffer`] useful.
///
/// For clients who don't need the full expressive power of this trait, the
/// simpler [`BufferAlloc`] trait is provided. It only defines how to allocate
/// new buffers, and two blanket impls of `BufferProvider` are provided for all
/// `BufferAlloc` types.
pub trait BufferProvider<Input, Output> {
    /// The type of errors returned from [`reuse_or_realloc`].
    ///
    /// [`reuse_or_realloc`]: BufferProvider::reuse_or_realloc
    type Error;

    /// Attempts to produce an output buffer with the given constraints by
    /// allocating a new one.
    ///
    /// `alloc_no_reuse` produces a new buffer with the following invariants:
    /// - The output buffer must have at least `prefix` bytes of prefix
    /// - The output buffer must have at least `suffix` bytes of suffix
    /// - The output buffer must have a body of length `body` bytes.
    ///
    /// If these requirements cannot be met, then an error is returned.
    fn alloc_no_reuse(
        self,
        prefix: usize,
        body: usize,
        suffix: usize,
    ) -> Result<Output, Self::Error>;

    /// Consumes an input buffer and attempts to produce an output buffer with
    /// the given constraints, either by reusing the input buffer or by
    /// allocating a new one and copying the body into it.
    ///
    /// `reuse_or_realloc` consumes a buffer by value, and produces a new buffer
    /// with the following invariants:
    /// - The output buffer must have at least `prefix` bytes of prefix
    /// - The output buffer must have at least `suffix` bytes of suffix
    /// - The output buffer must have the same body as the input buffer
    ///
    /// If these requirements cannot be met, then an error is returned along
    /// with the input buffer, which is unmodified.
    fn reuse_or_realloc(
        self,
        buffer: Input,
        prefix: usize,
        suffix: usize,
    ) -> Result<Output, (Self::Error, Input)>;
}

/// An object capable of allocating new buffers.
///
/// A `BufferAlloc<Output>` is an object which is capable of allocating new
/// buffers of type `Output`.
///
/// [Two blanket implementations] of [`BufferProvider`] are given for any type
/// which implements `BufferAlloc<O>`. One blanket implementation works for any
/// input buffer type, `I`, and produces buffers of type `Either<I, O>` as
/// output. One blanket implementation works only when the input and output
/// buffer types are the same, and produces buffers of that type. See the
/// documentation on those impls for more details.
///
/// The following implementations of `BufferAlloc` are provided:
/// - Any `FnOnce(usize) -> Result<O, E>` implements `BufferAlloc<O, Error = E>`
/// - `()` implements `BufferAlloc<Never, Error = ()>` (an allocator which
///   always fails)
/// - [`new_buf_vec`] implements `BufferAlloc<Buf<Vec<u8>>, Error = Never>` (an
///   allocator which infallibly heap-allocates `Vec`s)
///
/// [Two blanket implementations]: trait.BufferProvider.html#implementors
pub trait BufferAlloc<Output> {
    /// The type of errors returned from [`alloc`].
    ///
    /// [`alloc`]: BufferAlloc::alloc
    type Error;

    /// Attempts to allocate a new buffer of size `len`.
    fn alloc(self, len: usize) -> Result<Output, Self::Error>;
}

impl<O, E, F: FnOnce(usize) -> Result<O, E>> BufferAlloc<O> for F {
    type Error = E;

    #[inline]
    fn alloc(self, len: usize) -> Result<O, E> {
        self(len)
    }
}

impl BufferAlloc<Never> for () {
    type Error = ();

    #[inline]
    fn alloc(self, _len: usize) -> Result<Never, ()> {
        Err(())
    }
}

/// Allocates a new `Buf<Vec<u8>>`.
///
/// `new_buf_vec(len)` is shorthand for `Ok(Buf::new(vec![0; len], ..))`. It
/// implements [`BufferAlloc<Buf<Vec<u8>>, Error = Never>`], and, thanks to a
/// blanket impl, [`BufferProvider<I, Either<I, Buf<Vec<u8>>>, Error = Never>`]
/// for all `I: BufferMut`, and `BufferProvider<Buf<Vec<u8>>, Buf<Vec<u8>>,
/// Error = Never>`.
///
/// [`BufferAlloc<Buf<Vec<u8>>, Error = Never>`]: BufferAlloc
/// [`BufferProvider<I, Either<I, Buf<Vec<u8>>>, Error = Never>`]: BufferProvider
pub fn new_buf_vec(len: usize) -> Result<Buf<Vec<u8>>, Never> {
    Ok(Buf::new(vec![0; len], ..))
}

/// Attempts to reuse a buffer for the purposes of implementing
/// [`BufferProvider::reuse_or_realloc`].
///
/// `try_reuse_buffer` attempts to reuse an existing buffer to satisfy the given
/// prefix and suffix constraints. If it succeeds, it returns `Ok` containing a
/// buffer with the same body as the input, and with at least `prefix` prefix
/// bytes and at least `suffix` suffix bytes. Otherwise, it returns `Err`
/// containing the original, unmodified input buffer.
///
/// Concretely, `try_reuse_buffer` has the following behavior:
/// - If the prefix and suffix constraints are already met, it returns `Ok` with
///   the input unmodified
/// - If the prefix and suffix constraints are not yet met, then...
///   - If there is enough capacity to meet the constraints and the body is not
///     larger than `max_copy_bytes`, the body will be moved within the buffer
///     in order to meet the constraints, and it will be returned
///   - Otherwise, if there is not enough capacity or the body is larger than
///     `max_copy_bytes`, it returns `Err` with the input unmodified
///
/// `max_copy_bytes` is meant to be an estimate of how many bytes can be copied
/// before allocating a new buffer will be cheaper than copying.
#[inline]
pub fn try_reuse_buffer<B: GrowBufferMut + ShrinkBuffer>(
    mut buffer: B,
    prefix: usize,
    suffix: usize,
    max_copy_bytes: usize,
) -> Result<B, B> {
    let need_prefix = prefix;
    let need_suffix = suffix;
    let have_prefix = buffer.prefix_len();
    let have_body = buffer.len();
    let have_suffix = buffer.suffix_len();
    let need_capacity = need_prefix + have_body + need_suffix;

    if have_prefix >= need_prefix && have_suffix >= need_suffix {
        // We already satisfy the prefix and suffix requirements.
        Ok(buffer)
    } else if buffer.capacity() >= need_capacity && have_body <= max_copy_bytes {
        // The buffer is large enough, but the body is currently too far
        // forward or too far backwards to satisfy the prefix or suffix
        // requirements, so we need to move the body within the buffer.
        buffer.reset();

        // Copy the original body range to a point starting immediatley
        // after `prefix`. This satisfies the `prefix` constraint by
        // definition, and satisfies the `suffix` constraint since we know
        // that the total buffer capacity is sufficient to hold the total
        // length of the prefix, body, and suffix.
        buffer.copy_within(have_prefix..(have_prefix + have_body), need_prefix);
        buffer.shrink(need_prefix..(need_prefix + have_body));
        debug_assert_eq!(buffer.prefix_len(), need_prefix);
        debug_assert!(buffer.suffix_len() >= need_suffix);
        debug_assert_eq!(buffer.len(), have_body);
        Ok(buffer)
    } else {
        Err(buffer)
    }
}

/// Provides an implementation of [`BufferProvider`] from a [`BufferAlloc`] `A`
/// that attempts to reuse the input buffer and falls back to the allocator if
/// the input buffer can't be reused.
pub struct MaybeReuseBufferProvider<A>(pub A);

impl<I: ReusableBuffer, O: ReusableBuffer, A: BufferAlloc<O>> BufferProvider<I, Either<I, O>>
    for MaybeReuseBufferProvider<A>
{
    type Error = A::Error;

    fn alloc_no_reuse(
        self,
        prefix: usize,
        body: usize,
        suffix: usize,
    ) -> Result<Either<I, O>, Self::Error> {
        let Self(alloc) = self;
        let need_capacity = prefix + body + suffix;
        BufferAlloc::alloc(alloc, need_capacity).map(|mut buf| {
            buf.shrink(prefix..(prefix + body));
            Either::B(buf)
        })
    }

    /// If `buffer` has enough capacity to store `need_prefix + need_suffix +
    /// buffer.len()` bytes, then reuse `buffer`. Otherwise, allocate a new
    /// buffer using `A`'s [`BufferAlloc`] implementation.
    ///
    /// If there is enough capacity, but the body is too far forwards or
    /// backwards in the buffer to satisfy the prefix and suffix constraints,
    /// the body will be moved within the buffer in order to satisfy the
    /// constraints. This operation is linear in the length of the body.
    #[inline]
    fn reuse_or_realloc(
        self,
        buffer: I,
        need_prefix: usize,
        need_suffix: usize,
    ) -> Result<Either<I, O>, (A::Error, I)> {
        // TODO(joshlf): Maybe it's worth coming up with a heuristic for when
        // moving the body is likely to be more expensive than allocating
        // (rather than just using `usize::MAX`)? This will be tough since we
        // don't know anything about the performance of `A::alloc`.
        match try_reuse_buffer(buffer, need_prefix, need_suffix, usize::MAX) {
            Ok(buffer) => Ok(Either::A(buffer)),
            Err(buffer) => {
                let have_body = buffer.len();
                let mut buf = match BufferProvider::<I, Either<I, O>>::alloc_no_reuse(
                    self,
                    need_prefix,
                    have_body,
                    need_suffix,
                ) {
                    Ok(buf) => buf,
                    Err(err) => return Err((err, buffer)),
                };

                buf.copy_from(&buffer);
                debug_assert_eq!(buf.prefix_len(), need_prefix);
                debug_assert!(buf.suffix_len() >= need_suffix);
                debug_assert_eq!(buf.len(), have_body);
                Ok(buf)
            }
        }
    }
}

impl<B: ReusableBuffer, A: BufferAlloc<B>> BufferProvider<B, B> for MaybeReuseBufferProvider<A> {
    type Error = A::Error;

    fn alloc_no_reuse(self, prefix: usize, body: usize, suffix: usize) -> Result<B, Self::Error> {
        BufferProvider::<B, Either<B, B>>::alloc_no_reuse(self, prefix, body, suffix)
            .map(Either::into_inner)
    }

    /// If `buffer` has enough capacity to store `need_prefix + need_suffix +
    /// buffer.len()` bytes, then reuse `buffer`. Otherwise, allocate a new
    /// buffer using `A`'s [`BufferAlloc`] implementation.
    ///
    /// If there is enough capacity, but the body is too far forwards or
    /// backwards in the buffer to satisfy the prefix and suffix constraints,
    /// the body will be moved within the buffer in order to satisfy the
    /// constraints. This operation is linear in the length of the body.
    #[inline]
    fn reuse_or_realloc(self, buffer: B, prefix: usize, suffix: usize) -> Result<B, (A::Error, B)> {
        BufferProvider::<B, Either<B, B>>::reuse_or_realloc(self, buffer, prefix, suffix)
            .map(Either::into_inner)
    }
}

/// Provides an implementation of [`BufferProvider`] from a [`BufferAlloc`] `A`
/// that never attempts to reuse the input buffer, and always create a new
/// buffer from the allocator `A`.
pub struct NoReuseBufferProvider<A>(pub A);

impl<I: FragmentedBuffer, O: ReusableBuffer, A: BufferAlloc<O>> BufferProvider<I, O>
    for NoReuseBufferProvider<A>
{
    type Error = A::Error;

    fn alloc_no_reuse(self, prefix: usize, body: usize, suffix: usize) -> Result<O, A::Error> {
        let Self(alloc) = self;
        alloc.alloc(prefix + body + suffix).map(|mut b| {
            b.shrink(prefix..prefix + body);
            b
        })
    }

    fn reuse_or_realloc(self, buffer: I, prefix: usize, suffix: usize) -> Result<O, (A::Error, I)> {
        BufferProvider::<I, O>::alloc_no_reuse(self, prefix, buffer.len(), suffix)
            .map(|mut b| {
                b.copy_from(&buffer);
                b
            })
            .map_err(|e| (e, buffer))
    }
}

pub trait Serializer: Sized {
    /// The type of buffers returned from serialization methods on this trait.
    type Buffer;

    /// Serializes this `Serializer`, producing a buffer.
    ///
    /// `serialize` accepts a [`PacketBuilder`] and a [`BufferProvider`], and
    /// produces a buffer which contains the contents of this `Serializer`
    /// encapsulated in the header and footer described by the `PacketBuilder`.
    ///
    /// As `Serializer`s can be nested using the [`Nested`] type (constructed
    /// using the [`encapsulate`] method), the `serialize` method is recursive -
    /// calling it on a `Nested` will recurse into the inner `Serializer`, which
    /// might itself be a `Nested`, and so on. When the innermost `Serializer`
    /// is reached, the contained buffer is passed to the `provider`, allowing
    /// it to decide how to produce a buffer which is large enough to fit the
    /// entire packet - either by reusing the existing buffer, or by discarding
    /// it and allocating a new one.
    ///
    /// [`encapsulate`]: Serializer::encapsulate
    fn serialize<B: GrowBufferMut, P: BufferProvider<Self::Buffer, B>>(
        self,
        outer: PacketConstraints,
        provider: P,
    ) -> Result<B, (SerializeError<P::Error>, Self)>;

    /// Serializes this `Serializer`, allocating a [`Buf<Vec<u8>>`] if the
    /// contained buffer isn't large enough.
    ///
    /// `serialize_vec` is like [`serialize`], except that, if the contained
    /// buffer isn't large enough to contain the packet, a new `Vec<u8>` is
    /// allocated and wrapped in a [`Buf`]. If the buffer is large enough, but
    /// the body is too far forwards or backwards to fit the encapsulating
    /// headers or footers, the body will be moved within the buffer (this
    /// operation's cost is linear in the size of the body).
    ///
    /// `serialize_vec` is equivalent to calling `serialize` with
    /// [`new_buf_vec`] as the [`BufferProvider`].
    ///
    /// [`Buf<Vec<u8>>`]: Buf
    /// [`serialize`]: Serializer::serialize
    #[inline]
    #[allow(clippy::type_complexity)]
    fn serialize_vec(
        self,
        outer: PacketConstraints,
    ) -> Result<Either<Self::Buffer, Buf<Vec<u8>>>, (SerializeError<Never>, Self)>
    where
        Self::Buffer: ReusableBuffer,
    {
        self.serialize(outer, MaybeReuseBufferProvider(new_buf_vec))
    }

    /// Serializes this `Serializer`, failing if the existing buffer is not
    /// large enough.
    ///
    /// `serialize_no_alloc` is like [`serialize`], except that it will fail if
    /// the existing buffer isn't large enough. If the buffer is large enough,
    /// but the body is too far forwards or backwards to fit the encapsulating
    /// headers or footers, the body will be moved within the buffer (this
    /// operation's cost is linear in the size of the body).
    ///
    /// `serialize_no_alloc` is equivalent to calling `serialize` with a
    /// `BufferProvider` which cannot allocate a new buffer (such as `()`).
    ///
    /// [`serialize`]: Serializer::serialize
    #[inline]
    fn serialize_no_alloc(
        self,
        outer: PacketConstraints,
    ) -> Result<Self::Buffer, (SerializeError<BufferTooShortError>, Self)>
    where
        Self::Buffer: ReusableBuffer,
    {
        self.serialize(outer, MaybeReuseBufferProvider(())).map(Either::into_a).map_err(
            |(err, slf)| {
                (
                    match err {
                        SerializeError::Alloc(()) => BufferTooShortError.into(),
                        SerializeError::SizeLimitExceeded => SerializeError::SizeLimitExceeded,
                    },
                    slf,
                )
            },
        )
    }

    /// Serializes this `Serializer` as the outermost packet.
    ///
    /// `serialize_outer` is like [`serialize`], except that it is called when
    /// this `Serializer` describes the outermost packet, not encapsulated in
    /// any other packets. It is equivalent to calling `serialize` with an empty
    /// [`PacketBuilder`] (such as `()`).
    ///
    /// [`serialize`]: Serializer::serialize
    #[inline]
    fn serialize_outer<B: GrowBufferMut, P: BufferProvider<Self::Buffer, B>>(
        self,
        provider: P,
    ) -> Result<B, (SerializeError<P::Error>, Self)> {
        self.serialize(PacketConstraints::UNCONSTRAINED, provider)
    }

    /// Serializes this `Serializer` as the outermost packet, allocating a
    /// [`Buf<Vec<u8>>`] if the contained buffer isn't large enough.
    ///
    /// `serialize_vec_outer` is like [`serialize_vec`], except that it is
    /// called when this `Serializer` describes the outermost packet, not
    /// encapsulated in any other packets. It is equivalent to calling
    /// `serialize_vec` with an empty [`PacketBuilder`] (such as `()`).
    ///
    /// [`Buf<Vec<u8>>`]: Buf
    /// [`serialize_vec`]: Serializer::serialize_vec
    #[inline]
    #[allow(clippy::type_complexity)]
    fn serialize_vec_outer(
        self,
    ) -> Result<Either<Self::Buffer, Buf<Vec<u8>>>, (SerializeError<Never>, Self)>
    where
        Self::Buffer: ReusableBuffer,
    {
        self.serialize_vec(PacketConstraints::UNCONSTRAINED)
    }

    /// Serializes this `Serializer` as the outermost packet, failing if the
    /// existing buffer is not large enough.
    ///
    /// `serialize_no_alloc_outer` is like [`serialize_no_alloc`], except that
    /// it is called when this `Serializer` describes the outermost packet, not
    /// encapsulated in any other packets. It is equivalent to calling
    /// `serialize_no_alloc` with an empty [`PacketBuilder`] (such as `()`).
    ///
    /// [`serialize_no_alloc`]: Serializer::serialize_no_alloc
    #[inline]
    fn serialize_no_alloc_outer(
        self,
    ) -> Result<Self::Buffer, (SerializeError<BufferTooShortError>, Self)>
    where
        Self::Buffer: ReusableBuffer,
    {
        self.serialize_no_alloc(PacketConstraints::UNCONSTRAINED)
    }

    /// Encapsulates this `Serializer` in another packet, producing a new
    /// `Serializer`.
    ///
    /// `encapsulate` consumes this `Serializer` and a [`PacketBuilder`], and
    /// produces a new `Serializer` which describes encapsulating this one in
    /// the packet described by `outer`.
    #[inline]
    fn encapsulate<B>(self, outer: B) -> Nested<Self, B> {
        Nested { inner: self, outer }
    }

    /// Creates a new `Serializer` which will enforce a size limit.
    ///
    /// `with_size_limit` consumes this `Serializer` and limit, and produces a
    /// new `Serializer` which will enforce the given limit on all serialization
    /// requests. Note that the given limit will be enforced at this layer -
    /// serialization requests will be rejected if the body produced by the
    /// request at this layer would exceed the limit. It has no effect on
    /// headers or footers added by encapsulating layers outside of this one.
    #[inline]
    fn with_size_limit(self, limit: usize) -> Nested<Self, LimitedSizePacketBuilder> {
        self.encapsulate(LimitedSizePacketBuilder { limit })
    }
}

/// A [`Serializer`] constructed from an [`InnerPacketBuilder`].
///
/// An `InnerSerializer` wraps an `InnerPacketBuilder` and a buffer, and
/// implements the `Serializer` trait. When a serialization is requested, it
/// either reuses the stored buffer or allocates a new one large enough to hold
/// itself and all outer `PacketBuilder`s.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct InnerSerializer<I, B> {
    inner: I,
    // The buffer's length must be zero since we encapsulate the buffer in a
    // PacketBuilder. If the length were non-zero, that would have the effect of
    // retaining the contents of the buffer when serializing, and putting them
    // immediately after the bytes of `inner`.
    buffer: B,
}

impl<I: InnerPacketBuilder, B: GrowBuffer + ShrinkBuffer> Serializer for InnerSerializer<I, B> {
    type Buffer = B;

    #[inline]
    #[allow(clippy::type_complexity)]
    fn serialize<BB: GrowBufferMut, P: BufferProvider<B, BB>>(
        self,
        outer: PacketConstraints,
        provider: P,
    ) -> Result<BB, (SerializeError<P::Error>, InnerSerializer<I, B>)> {
        // A wrapper for InnerPacketBuilders which implements PacketBuilder by
        // treating the entire InnerPacketBuilder as the header of the
        // PacketBuilder. This allows us to compose our InnerPacketBuilder with
        // the outer PacketBuilders into a single, large PacketBuilder, and then
        // serialize it using self.buffer.
        struct InnerPacketBuilderWrapper<I>(I);

        impl<I: InnerPacketBuilder> PacketBuilder for InnerPacketBuilderWrapper<I> {
            fn constraints(&self) -> PacketConstraints {
                PacketConstraints::new(self.0.bytes_len(), 0, 0, usize::MAX)
            }

            fn serialize(
                &self,
                target: &mut SerializeTarget<'_>,
                _body: FragmentedBytesMut<'_, '_>,
            ) {
                // Note that the body might be non-empty if an outer
                // PacketBuilder added a minimum body length constraint that
                // required padding.
                debug_assert_eq!(target.header.len(), self.0.bytes_len());
                debug_assert_eq!(target.footer.len(), 0);

                InnerPacketBuilder::serialize(&self.0, target.header);
            }
        }

        let pb = InnerPacketBuilderWrapper(self.inner);
        debug_assert_eq!(self.buffer.len(), 0);
        self.buffer.encapsulate(pb).serialize(outer, provider).map_err(
            |(err, Nested { inner: buffer, outer: pb })| {
                (err, InnerSerializer { inner: pb.0, buffer })
            },
        )
    }
}

impl<B: GrowBuffer + ShrinkBuffer> Serializer for B {
    type Buffer = B;

    #[inline]
    fn serialize<BB: GrowBufferMut, P: BufferProvider<Self::Buffer, BB>>(
        self,
        outer: PacketConstraints,
        provider: P,
    ) -> Result<BB, (SerializeError<P::Error>, Self)> {
        TruncatingSerializer::new(self, TruncateDirection::NoTruncating)
            .serialize(outer, provider)
            .map_err(|(err, ser)| (err, ser.buffer))
    }
}

/// Either of two serializers.
///
/// An `EitherSerializer` wraps one of two different serializer types.
pub enum EitherSerializer<A, B> {
    A(A),
    B(B),
}

impl<A: Serializer, B: Serializer<Buffer = A::Buffer>> Serializer for EitherSerializer<A, B> {
    type Buffer = A::Buffer;

    fn serialize<TB: GrowBufferMut, P: BufferProvider<Self::Buffer, TB>>(
        self,
        outer: PacketConstraints,
        provider: P,
    ) -> Result<TB, (SerializeError<P::Error>, Self)> {
        match self {
            EitherSerializer::A(s) => {
                s.serialize(outer, provider).map_err(|(err, s)| (err, EitherSerializer::A(s)))
            }
            EitherSerializer::B(s) => {
                s.serialize(outer, provider).map_err(|(err, s)| (err, EitherSerializer::B(s)))
            }
        }
    }
}

/// The direction a buffer's body should be truncated from to force
/// it to fit within a size limit.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum TruncateDirection {
    /// If a buffer cannot fit within a limit, discard bytes from the
    /// front of the body.
    DiscardFront,
    /// If a buffer cannot fit within a limit, discard bytes from the
    /// end of the body.
    DiscardBack,
    /// Do not attempt to truncate a buffer to make it fit within a limit.
    NoTruncating,
}

/// A [`Serializer`] that truncates its body if it would exceed a size limit.
///
/// `TruncatingSerializer` wraps a buffer, and implements `Serializer`. Unlike
/// the blanket impl of `Serializer` for `B: GrowBuffer + ShrinkBuffer`, if the
/// buffer's body exceeds the size limit constraint passed to
/// `Serializer::serialize`, the body is truncated to fit.
///
/// Note that this does not guarantee that size limit exceeded errors will not
/// occur. The size limit may be small enough that the encapsulating headers
/// alone exceed the size limit.  There may also be a minimum body length
/// constraint which is larger than the size limit.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct TruncatingSerializer<B> {
    buffer: B,
    direction: TruncateDirection,
}

impl<B> TruncatingSerializer<B> {
    /// Constructs a new `TruncatingSerializer`.
    pub fn new(buffer: B, direction: TruncateDirection) -> TruncatingSerializer<B> {
        TruncatingSerializer { buffer, direction }
    }
}

impl<B: GrowBuffer + ShrinkBuffer> Serializer for TruncatingSerializer<B> {
    type Buffer = B;

    fn serialize<BB: GrowBufferMut, P: BufferProvider<B, BB>>(
        mut self,
        outer: PacketConstraints,
        provider: P,
    ) -> Result<BB, (SerializeError<P::Error>, Self)> {
        let original_len = self.buffer.len();
        let excess_bytes = if original_len > outer.max_body_len {
            Some(original_len - outer.max_body_len)
        } else {
            None
        };
        if let Some(excess_bytes) = excess_bytes {
            match self.direction {
                TruncateDirection::DiscardFront => self.buffer.shrink_front(excess_bytes),
                TruncateDirection::DiscardBack => self.buffer.shrink_back(excess_bytes),
                TruncateDirection::NoTruncating => {
                    return Err((SerializeError::SizeLimitExceeded, self))
                }
            }
        }

        let padding = outer.min_body_len().saturating_sub(self.buffer.len());

        // At this point, the body and padding MUST fit within the limit. Note
        // that PacketConstraints guarantees that min_body_len <= max_body_len,
        // so the padding can't cause this assertion to fail.
        debug_assert!(self.buffer.len() + padding <= outer.max_body_len());
        match provider.reuse_or_realloc(
            self.buffer,
            outer.header_len(),
            padding + outer.footer_len(),
        ) {
            Ok(buffer) => Ok(buffer),
            Err((err, mut buffer)) => {
                // Undo the effects of shrinking the buffer so that the buffer
                // we return is unmodified from its original (which is required
                // by the contract of this method).
                if let Some(excess_bytes) = excess_bytes {
                    match self.direction {
                        TruncateDirection::DiscardFront => buffer.grow_front(excess_bytes),
                        TruncateDirection::DiscardBack => buffer.grow_back(excess_bytes),
                        TruncateDirection::NoTruncating => unreachable!(),
                    }
                }

                Err((
                    SerializeError::Alloc(err),
                    TruncatingSerializer { buffer, direction: self.direction },
                ))
            }
        }
    }
}

impl<I: Serializer, O: PacketBuilder> Serializer for Nested<I, O> {
    type Buffer = I::Buffer;

    #[inline]
    fn serialize<B: GrowBufferMut, P: BufferProvider<I::Buffer, B>>(
        self,
        outer: PacketConstraints,
        provider: P,
    ) -> Result<B, (SerializeError<P::Error>, Self)> {
        let Some(outer) = self.outer.constraints().try_encapsulate(&outer) else {
            return Err((SerializeError::SizeLimitExceeded, self));
        };

        match self.inner.serialize(outer, provider) {
            Ok(mut buf) => {
                buf.serialize(&self.outer);
                Ok(buf)
            }
            Err((err, inner)) => Err((err, inner.encapsulate(self.outer))),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::BufferMut;
    use std::fmt::Debug;
    use test_case::test_case;

    // DummyPacketBuilder:
    // - Implements PacketBuilder with the stored constraints; it fills the
    //   header with 0xFF and the footer with 0xFE
    // - Implements InnerPacketBuilder by consuming a `header_len`-bytes body,
    //   and filling it with 0xFF
    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    struct DummyPacketBuilder {
        header_len: usize,
        footer_len: usize,
        min_body_len: usize,
        max_body_len: usize,
    }

    impl DummyPacketBuilder {
        fn new(
            header_len: usize,
            footer_len: usize,
            min_body_len: usize,
            max_body_len: usize,
        ) -> DummyPacketBuilder {
            DummyPacketBuilder { header_len, footer_len, min_body_len, max_body_len }
        }
    }

    fn fill(bytes: &mut [u8], byte: u8) {
        for b in bytes {
            *b = byte;
        }
    }

    impl PacketBuilder for DummyPacketBuilder {
        fn constraints(&self) -> PacketConstraints {
            PacketConstraints::new(
                self.header_len,
                self.footer_len,
                self.min_body_len,
                self.max_body_len,
            )
        }

        fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
            assert_eq!(target.header.len(), self.header_len);
            assert_eq!(target.footer.len(), self.footer_len);
            assert!(body.len() >= self.min_body_len);
            assert!(body.len() <= self.max_body_len);
            fill(target.header, 0xFF);
            fill(target.footer, 0xFE);
        }
    }

    impl InnerPacketBuilder for DummyPacketBuilder {
        fn bytes_len(&self) -> usize {
            self.header_len
        }

        fn serialize(&self, buffer: &mut [u8]) {
            assert_eq!(buffer.len(), self.header_len);
            fill(buffer, 0xFF);
        }
    }

    impl SerializeError<Never> {
        fn into<E>(self) -> SerializeError<E> {
            match self {
                SerializeError::Alloc(never) => match never {},
                SerializeError::SizeLimitExceeded => SerializeError::SizeLimitExceeded,
            }
        }
    }

    // A Serializer that verifies certain invariants while operating. In
    // particular:
    // - If serialization fails, the original Serializer is returned unmodified.
    // - If `outer.try_constraints()` returns `None`, serialization fails.
    // - If the size limit is exceeded and truncation is disabled, serialization
    //   fails.
    // - If serialization succeeds, the body has the correct length, including
    //   taking into account `outer`'s minimum body length requirement
    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    struct VerifyingSerializer<S> {
        ser: S,
        // Is the inner Serializer truncating (a TruncatingSerializer with
        // TruncateDirection::DiscardFront or DiscardBack)?
        truncating: bool,
    }

    impl<S: Serializer + Debug + Clone + Eq> Serializer for VerifyingSerializer<S>
    where
        S::Buffer: ReusableBuffer,
    {
        type Buffer = S::Buffer;

        fn serialize<B: GrowBufferMut, P: BufferProvider<Self::Buffer, B>>(
            self,
            outer: PacketConstraints,
            provider: P,
        ) -> Result<B, (SerializeError<P::Error>, Self)> {
            let orig = self.ser.clone();

            // How long is the packet if we serialize it without the outer
            // PacketBuilder?
            let inner_len = self.clone().ser.serialize_vec_outer().map(|buf| buf.len()).map_err(
                |(err, ser)| {
                    // If serialization fails, the original Serializer should be
                    // unmodified.
                    assert_eq!(ser, orig);
                    (err.into(), ser.into_verifying(self.truncating))
                },
            )?;
            let should_exceed_size_limit = outer.max_body_len() < inner_len && !self.truncating;

            let res = self.ser.serialize(outer, provider);
            match res {
                Ok(buf) => {
                    assert!(buf.prefix_len() >= outer.header_len());
                    assert!(buf.suffix_len() >= outer.footer_len());
                    assert!(buf.len() <= outer.max_body_len());

                    // It is `self.ser.serialize()`'s responsibility to ensure that there
                    // is enough suffix room to fit any post-body padding and the footer,
                    // but it is the caller's responsibility to actually add that padding
                    // (ie, move it from the suffix to the body).
                    let padding = outer.min_body_len().saturating_sub(buf.len());
                    assert!(padding + outer.footer_len() <= buf.suffix_len());

                    assert!(!should_exceed_size_limit);
                    Ok(buf)
                }
                Err((err, ser)) => {
                    // If we shouldn't fail as a result of a size limit exceeded
                    // error, we might still fail as a result of allocation.
                    assert!(should_exceed_size_limit || err.is_alloc());
                    // If serialization fails, the original Serializer should be
                    // unmodified.
                    assert_eq!(ser, orig);
                    Err((err, ser.into_verifying(self.truncating)))
                }
            }
        }
    }

    trait SerializerExt: Serializer {
        fn into_verifying(self, truncating: bool) -> VerifyingSerializer<Self>
        where
            Self::Buffer: ReusableBuffer,
        {
            VerifyingSerializer { ser: self, truncating }
        }

        fn encapsulate_verifying<B: PacketBuilder>(
            self,
            outer: B,
            truncating: bool,
        ) -> VerifyingSerializer<Nested<Self, B>>
        where
            Self::Buffer: ReusableBuffer,
        {
            self.encapsulate(outer).into_verifying(truncating)
        }

        fn with_size_limit_verifying(
            self,
            limit: usize,
            truncating: bool,
        ) -> VerifyingSerializer<Nested<Self, LimitedSizePacketBuilder>>
        where
            Self::Buffer: ReusableBuffer,
        {
            self.with_size_limit(limit).into_verifying(truncating)
        }
    }

    impl<S: Serializer> SerializerExt for S {}

    #[test]
    fn test_either_into_inner() {
        fn ret_either(a: u32, b: u32, c: bool) -> Either<u32, u32> {
            if c {
                Either::A(a)
            } else {
                Either::B(b)
            }
        }

        assert_eq!(ret_either(1, 2, true).into_inner(), 1);
        assert_eq!(ret_either(1, 2, false).into_inner(), 2);
    }

    #[test]
    fn test_either_unwrap_success() {
        assert_eq!(Either::<u16, u32>::A(5).unwrap_a(), 5);
        assert_eq!(Either::<u16, u32>::B(10).unwrap_b(), 10);
    }

    #[test]
    #[should_panic]
    fn test_either_unwrap_a_panic() {
        let _: u16 = Either::<u16, u32>::B(10).unwrap_a();
    }

    #[test]
    #[should_panic]
    fn test_either_unwrap_b_panic() {
        let _: u32 = Either::<u16, u32>::A(5).unwrap_b();
    }

    #[test_case(Buf::new((0..100).collect(), ..); "entire buf")]
    #[test_case(Buf::new((0..100).collect(), 0..0); "empty range")]
    #[test_case(Buf::new((0..100).collect(), ..50); "prefix")]
    #[test_case(Buf::new((0..100).collect(), 50..); "suffix")]
    #[test_case(Buf::new((0..100).collect(), 25..75); "middle")]
    fn test_buf_into_inner(buf: Buf<Vec<u8>>) {
        assert_eq!(buf.clone().as_ref(), buf.into_inner());
    }

    #[test]
    fn test_packet_constraints() {
        use PacketConstraints as PC;

        // Test try_new

        // Sanity check.
        assert!(PC::try_new(0, 0, 0, 0).is_some());
        // header_len + min_body_len + footer_len doesn't overflow usize
        assert!(PC::try_new(usize::MAX / 2, usize::MAX / 2, 0, 0).is_some());
        // header_len + min_body_len + footer_len overflows usize
        assert_eq!(PC::try_new(usize::MAX, 1, 0, 0), None);
        // min_body_len > max_body_len
        assert_eq!(PC::try_new(0, 0, 1, 0), None);

        // Test PacketConstraints::try_encapsulate

        // Sanity check.
        let pc = PC::new(10, 10, 0, usize::MAX);
        assert_eq!(pc.try_encapsulate(&pc).unwrap(), PC::new(20, 20, 0, usize::MAX - 20));

        let pc = PC::new(10, 10, 0, usize::MAX);
        assert_eq!(pc.try_encapsulate(&pc).unwrap(), PC::new(20, 20, 0, usize::MAX - 20));

        // Starting here, each failure test case corresponds to one check in
        // either PacketConstraints::try_encapsulate or PacketConstraints::new
        // (which is called from PacketConstraints::try_encapsulate). Each test
        // case is labeled "Test case N", and a corresponding comment in either
        // of those two functions identifies which line is being tested.

        // The outer PC's minimum body length requirement of 10 is more than
        // satisfied by the inner PC's combined 20 bytes of header and footer.
        // The resulting PC has its minimum body length requirement saturated to
        // 0.
        let inner = PC::new(10, 10, 0, usize::MAX);
        let outer = PC::new(0, 0, 10, usize::MAX);
        assert_eq!(inner.try_encapsulate(&outer).unwrap(), PC::new(10, 10, 0, usize::MAX - 20));

        // Test case 1
        //
        // The sum of the inner and outer header lengths overflows `usize`.
        let inner = PC::new(usize::MAX, 0, 0, usize::MAX);
        let outer = PC::new(1, 0, 0, usize::MAX);
        assert_eq!(inner.try_encapsulate(&outer), None);

        // Test case 2
        //
        // The sum of the inner and outer footer lengths overflows `usize`.
        let inner = PC::new(0, usize::MAX, 0, usize::MAX);
        let outer = PC::new(0, 1, 0, usize::MAX);
        assert_eq!(inner.try_encapsulate(&outer), None);

        // Test case 3
        //
        // The sum of the resulting header, footer, and minimum body lengths
        // overflows `usize`. We use usize::MAX / 5 + 1 as the constant so that
        // none of the intermediate additions overflow, so we make sure to test
        // that an overflow in the final addition will be caught.
        let one_fifth_max = (usize::MAX / 5) + 1;
        let inner = PC::new(one_fifth_max, one_fifth_max, one_fifth_max, usize::MAX);
        let outer = PC::new(one_fifth_max, one_fifth_max, 0, usize::MAX);
        assert_eq!(inner.try_encapsulate(&outer), None);

        // Test case 4
        //
        // The header and footer of the inner PC exceed the maximum body length
        // requirement of the outer PC.
        let inner = PC::new(10, 10, 0, usize::MAX);
        let outer = PC::new(0, 0, 0, 10);
        assert_eq!(inner.try_encapsulate(&outer), None);

        // Test case 5
        //
        // The resulting minimum body length (thanks to the inner
        // PacketBuilder's minimum body length) is larger than the resulting
        // maximum body length.
        let inner = PC::new(0, 0, 10, usize::MAX);
        let outer = PC::new(0, 0, 0, 5);
        assert_eq!(inner.try_encapsulate(&outer), None);
    }

    #[test]
    fn test_inner_serializer() {
        const INNER: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

        fn concat<'a, I: IntoIterator<Item = &'a &'a [u8]>>(slices: I) -> Vec<u8> {
            let mut v = Vec::new();
            for slc in slices.into_iter() {
                v.extend_from_slice(slc);
            }
            v
        }

        // Sanity check.
        let buf = INNER.into_serializer().serialize_vec_outer().unwrap();
        assert_eq!(buf.as_ref(), INNER);

        // A larger minimum body length requirement will cause padding to be
        // added.
        let buf = INNER
            .into_serializer()
            .into_verifying(false)
            .encapsulate(DummyPacketBuilder::new(0, 0, 20, usize::MAX))
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buf.as_ref(), concat(&[INNER, vec![0; 10].as_ref()]).as_slice());

        // Headers and footers are added as appropriate (note that
        // DummyPacketBuilder fills its header with 0xFF and its footer with
        // 0xFE).
        let buf = INNER
            .into_serializer()
            .into_verifying(false)
            .encapsulate(DummyPacketBuilder::new(10, 10, 0, usize::MAX))
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(
            buf.as_ref(),
            concat(&[vec![0xFF; 10].as_ref(), INNER, vec![0xFE; 10].as_ref()]).as_slice()
        );

        // An exceeded maximum body size is rejected.
        assert_eq!(
            INNER
                .into_serializer()
                .into_verifying(false)
                .encapsulate(DummyPacketBuilder::new(0, 0, 0, 9))
                .serialize_vec_outer()
                .unwrap_err()
                .0,
            SerializeError::SizeLimitExceeded
        );

        // `into_serializer_with` truncates the buffer's body to zero before
        // returning, so those body bytes are not included in the serialized
        // output.
        assert_eq!(
            INNER
                .into_serializer_with(Buf::new(vec![0xFF], ..))
                .into_verifying(false)
                .serialize_vec_outer()
                .unwrap()
                .as_ref(),
            INNER
        );
    }

    #[test]
    fn test_buffer_serializer_and_inner_serializer() {
        fn verify_buffer_serializer<B: BufferMut + Debug>(
            buffer: B,
            header_len: usize,
            footer_len: usize,
            min_body_len: usize,
        ) {
            let old_body = buffer.to_flattened_vec();

            let buffer = buffer
                .encapsulate(DummyPacketBuilder::new(
                    header_len,
                    footer_len,
                    min_body_len,
                    usize::MAX,
                ))
                .serialize_vec_outer()
                .unwrap();
            verify(buffer, &old_body, header_len, footer_len, min_body_len);
        }

        fn verify_inner_packet_builder_serializer(
            body: &[u8],
            header_len: usize,
            footer_len: usize,
            min_body_len: usize,
        ) {
            let buffer = body
                .into_serializer()
                .encapsulate(DummyPacketBuilder::new(
                    header_len,
                    footer_len,
                    min_body_len,
                    usize::MAX,
                ))
                .serialize_vec_outer()
                .unwrap();
            verify(buffer, body, header_len, footer_len, min_body_len);
        }

        fn verify<B: Buffer>(
            buffer: B,
            body: &[u8],
            header_len: usize,
            footer_len: usize,
            min_body_len: usize,
        ) {
            let flat = buffer.to_flattened_vec();
            let header_bytes = &flat[..header_len];
            let body_bytes = &flat[header_len..header_len + body.len()];
            let padding_len = min_body_len.saturating_sub(body.len());
            let padding_bytes =
                &flat[header_len + body.len()..header_len + body.len() + padding_len];
            let total_body_len = body.len() + padding_len;
            let footer_bytes = &flat[header_len + total_body_len..];
            assert_eq!(
                buffer.len() - total_body_len,
                header_len + footer_len,
                "buffer.len()({}) - total_body_len({}) != header_len({}) + footer_len({})",
                buffer.len(),
                header_len,
                footer_len,
                min_body_len,
            );

            // DummyPacketBuilder fills its header with 0xFF
            assert!(
                header_bytes.iter().all(|b| *b == 0xFF),
                "header_bytes {:?} are not filled with 0xFF's",
                header_bytes,
            );
            assert_eq!(body_bytes, body);
            // Padding bytes must be initialized to zero
            assert!(
                padding_bytes.iter().all(|b| *b == 0),
                "padding_bytes {:?} are not filled with 0s",
                padding_bytes,
            );
            // DummyPacketBuilder fills its footer with 0xFE
            assert!(
                footer_bytes.iter().all(|b| *b == 0xFE),
                "footer_bytes {:?} are not filled with 0xFE's",
                footer_bytes,
            );
        }

        // Test for every valid combination of buf_len, range_start, range_end,
        // prefix, suffix, and min_body within [0, 8).
        for buf_len in 0..8 {
            for range_start in 0..buf_len {
                for range_end in range_start..buf_len {
                    for prefix in 0..8 {
                        for suffix in 0..8 {
                            for min_body in 0..8 {
                                let mut vec = vec![0; buf_len];
                                // Initialize the vector with values 0, 1, 2,
                                // ... so that we can check to make sure that
                                // the range bytes have been properly copied if
                                // the buffer is reallocated.
                                #[allow(clippy::needless_range_loop)]
                                for i in 0..vec.len() {
                                    vec[i] = i as u8;
                                }
                                verify_buffer_serializer(
                                    Buf::new(vec.as_mut_slice(), range_start..range_end),
                                    prefix,
                                    suffix,
                                    min_body,
                                );
                                if range_start == 0 {
                                    // Unlike verify_buffer_serializer, this
                                    // test doesn't make use of the prefix or
                                    // suffix. In order to avoid running the
                                    // exact same test multiple times, we only
                                    // run this when `range_start == 0`, which
                                    // has the effect of reducing the number of
                                    // times that this test is run by roughly a
                                    // factor of 8.
                                    verify_inner_packet_builder_serializer(
                                        &vec.as_slice()[range_start..range_end],
                                        prefix,
                                        suffix,
                                        min_body,
                                    );
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    #[test]
    fn test_min_body_len() {
        // Test that padding is added after the body of the packet whose minimum
        // body length constraint requires it. A previous version of this code
        // had a bug where padding was always added after the innermost body.

        let body = &[1, 2];

        // 4 bytes of header and footer for a total of 6 bytes (including the
        // body).
        let inner = DummyPacketBuilder::new(2, 2, 0, usize::MAX);
        // Minimum body length of 8 will require 2 bytes of padding.
        let outer = DummyPacketBuilder::new(2, 2, 8, usize::MAX);
        let buf = body
            .into_serializer()
            .into_verifying(false)
            .encapsulate_verifying(inner, false)
            .encapsulate_verifying(outer, false)
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buf.prefix_len(), 0);
        assert_eq!(buf.suffix_len(), 0);
        assert_eq!(
            buf.as_ref(),
            &[
                0xFF, 0xFF, // Outer header
                0xFF, 0xFF, // Inner header
                1, 2, // Inner body
                0xFE, 0xFE, // Inner footer
                0, 0, // Padding to satisfy outer minimum body length requirement
                0xFE, 0xFE // Outer footer
            ]
        );
    }

    #[test]
    fn test_size_limit() {
        // ser is a Serializer that will consume 1 byte of buffer space
        fn test<S: Serializer + Clone + Debug + Eq>(ser: S)
        where
            S::Buffer: ReusableBuffer,
        {
            // Each of these tests encapsulates ser in a DummyPacketBuilder
            // which consumes 1 byte for the header and one byte for the footer.
            // Thus, the inner serializer will consume 1 byte, while the
            // DummyPacketBuilder will consume 2 bytes, for a total of 3 bytes.

            let pb = DummyPacketBuilder::new(1, 1, 0, usize::MAX);

            // Test that a size limit of 3 is OK. Note that this is an important
            // test since it tests the case when the size limit is exactly
            // sufficient. A previous version of this code had a bug where a
            // packet which fit the size limit exactly would be rejected.
            assert!(ser
                .clone()
                .encapsulate_verifying(pb, false)
                .with_size_limit_verifying(3, false)
                .serialize_vec_outer()
                .is_ok());
            // Test that a more-than-large-enough size limit of 4 is OK.
            assert!(ser
                .clone()
                .encapsulate_verifying(pb, false)
                .with_size_limit_verifying(4, false)
                .serialize_vec_outer()
                .is_ok());
            // Test that the inner size limit of 1 only applies to the inner
            // serializer, and so is still OK even though the outer serializer
            // consumes 3 bytes total.
            assert!(ser
                .clone()
                .with_size_limit_verifying(1, false)
                .encapsulate_verifying(pb, false)
                .with_size_limit_verifying(3, false)
                .serialize_vec_outer()
                .is_ok());
            // Test that the inner size limit of 0 is exceeded by the inner
            // serializer's 1 byte length.
            assert!(ser
                .clone()
                .with_size_limit_verifying(0, false)
                .encapsulate_verifying(pb, false)
                .serialize_vec_outer()
                .is_err());
            // Test that a size limit which would be exceeded by the
            // encapsulating layer is rejected by Nested's implementation. If
            // this doesn't work properly, then the size limit should underflow,
            // resulting in a panic (see the Nested implementation of
            // Serialize).
            assert!(ser
                .clone()
                .encapsulate_verifying(pb, false)
                .with_size_limit_verifying(1, false)
                .serialize_vec_outer()
                .is_err());
        }

        // We use this as an InnerPacketBuilder which consumes 1 byte of body.
        test(DummyPacketBuilder::new(1, 0, 0, usize::MAX).into_serializer().into_verifying(false));
        test(Buf::new(vec![0], ..).into_verifying(false));
    }

    #[test]
    fn test_truncating_serializer() {
        //
        // Test truncate front.
        //

        let body = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        let ser =
            TruncatingSerializer::new(Buf::new(body.clone(), ..), TruncateDirection::DiscardFront)
                .into_verifying(true);
        let buf = ser.clone().with_size_limit_verifying(4, true).serialize_vec_outer().unwrap();
        let buf: &[u8] = buf.as_ref();
        assert_eq!(buf, &[6, 7, 8, 9][..]);

        //
        // Test truncate back.
        //

        let ser =
            TruncatingSerializer::new(Buf::new(body.clone(), ..), TruncateDirection::DiscardBack)
                .into_verifying(true);
        let buf = ser.with_size_limit_verifying(7, true).serialize_vec_outer().unwrap();
        let buf: &[u8] = buf.as_ref();
        assert_eq!(buf, &[0, 1, 2, 3, 4, 5, 6][..]);

        //
        // Test no truncating (default/original case).
        //

        let ser =
            TruncatingSerializer::new(Buf::new(body.clone(), ..), TruncateDirection::NoTruncating)
                .into_verifying(false);
        assert!(ser.clone().with_size_limit_verifying(5, true).serialize_vec_outer().is_err());
        assert!(ser.with_size_limit_verifying(5, true).serialize_vec_outer().is_err());

        //
        // Test that, when serialization fails, any truncation is undone.
        //

        // `ser` has a body of `[1, 2]` and no prefix or suffix
        fn test_serialization_failure<S: Serializer + Clone + Eq + Debug>(
            ser: S,
            err: SerializeError<BufferTooShortError>,
        ) where
            S::Buffer: ReusableBuffer + Debug,
        {
            // Serialize with a PacketBuilder with a size limit of 1 so that the
            // body (of length 2) is too large. If `ser` is configured not to
            // truncate, it should result in a size limit error. If it is
            // configured to truncate, the 2 + 2 = 4 combined bytes of header
            // and footer will cause allocating a new buffer to fail, and it
            // should result in an allocation failure. Even if the body was
            // truncated, it should be returned to its original un-truncated
            // state before being returned from `serialize`.
            let (e, new_ser) = ser
                .clone()
                .encapsulate(DummyPacketBuilder::new(2, 2, 0, 1))
                .serialize_no_alloc_outer()
                .unwrap_err();
            assert_eq!(err, e);
            assert_eq!(new_ser.into_inner(), ser);
        }

        let body = Buf::new(vec![1, 2], ..);
        test_serialization_failure(
            TruncatingSerializer::new(body.clone(), TruncateDirection::DiscardFront)
                .into_verifying(true),
            SerializeError::Alloc(BufferTooShortError),
        );
        test_serialization_failure(
            TruncatingSerializer::new(body.clone(), TruncateDirection::DiscardFront)
                .into_verifying(true),
            SerializeError::Alloc(BufferTooShortError),
        );
        test_serialization_failure(
            TruncatingSerializer::new(body.clone(), TruncateDirection::NoTruncating)
                .into_verifying(false),
            SerializeError::SizeLimitExceeded,
        );
    }

    #[test]
    fn test_try_reuse_buffer() {
        fn test_expect_success(
            body_range: Range<usize>,
            prefix: usize,
            suffix: usize,
            max_copy_bytes: usize,
        ) {
            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
            let buffer = Buf::new(&mut bytes[..], body_range);
            let body = buffer.as_ref().to_vec();
            let buffer = try_reuse_buffer(buffer, prefix, suffix, max_copy_bytes).unwrap();
            assert_eq!(buffer.as_ref(), body.as_slice());
            assert!(buffer.prefix_len() >= prefix);
            assert!(buffer.suffix_len() >= suffix);
        }

        fn test_expect_failure(
            body_range: Range<usize>,
            prefix: usize,
            suffix: usize,
            max_copy_bytes: usize,
        ) {
            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
            let buffer = Buf::new(&mut bytes[..], body_range.clone());
            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
            let orig = Buf::new(&mut bytes[..], body_range.clone());
            let buffer = try_reuse_buffer(buffer, prefix, suffix, max_copy_bytes).unwrap_err();
            assert_eq!(buffer, orig);
        }

        // No prefix or suffix trivially succeeds.
        test_expect_success(0..10, 0, 0, 0);
        // If we have enough prefix/suffix, it succeeds.
        test_expect_success(1..9, 1, 1, 0);
        // If we don't have enough prefix/suffix, but we have enough capacity to
        // move the buffer within the body, it succeeds...
        test_expect_success(0..9, 1, 0, 9);
        test_expect_success(1..10, 0, 1, 9);
        // ...but if we don't provide a large enough max_copy_bytes, it will fail.
        test_expect_failure(0..9, 1, 0, 8);
        test_expect_failure(1..10, 0, 1, 8);
    }

    #[test]
    fn test_maybe_reuse_buffer_provider() {
        fn test_expect(body_range: Range<usize>, prefix: usize, suffix: usize, expect_a: bool) {
            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
            let buffer = Buf::new(&mut bytes[..], body_range);
            let body = buffer.as_ref().to_vec();
            let buffer = BufferProvider::reuse_or_realloc(
                MaybeReuseBufferProvider(new_buf_vec),
                buffer,
                prefix,
                suffix,
            )
            .unwrap();
            match &buffer {
                Either::A(_) if expect_a => {}
                Either::B(_) if !expect_a => {}
                Either::A(_) => panic!("expected Eitehr::B variant"),
                Either::B(_) => panic!("expected Eitehr::A variant"),
            }
            let bytes: &[u8] = buffer.as_ref();
            assert_eq!(bytes, body.as_slice());
            assert!(buffer.prefix_len() >= prefix);
            assert!(buffer.suffix_len() >= suffix);
        }

        // Expect that we'll be able to reuse the existing buffer.
        fn test_expect_reuse(body_range: Range<usize>, prefix: usize, suffix: usize) {
            test_expect(body_range, prefix, suffix, true);
        }

        // Expect that we'll need to allocate a new buffer.
        fn test_expect_realloc(body_range: Range<usize>, prefix: usize, suffix: usize) {
            test_expect(body_range, prefix, suffix, false);
        }

        // No prefix or suffix trivially succeeds.
        test_expect_reuse(0..10, 0, 0);
        // If we have enough prefix/suffix, it succeeds.
        test_expect_reuse(1..9, 1, 1);
        // If we don't have enough prefix/suffix, but we have enough capacity to
        // move the buffer within the body, it succeeds.
        test_expect_reuse(0..9, 1, 0);
        test_expect_reuse(1..10, 0, 1);
        // If we don't have enough capacity, it fails and must realloc.
        test_expect_realloc(0..9, 1, 1);
        test_expect_realloc(1..10, 1, 1);
    }

    #[test]
    fn test_no_reuse_buffer_provider() {
        #[track_caller]
        fn test_expect(body_range: Range<usize>, prefix: usize, suffix: usize) {
            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
            // The buffer that will not be reused.
            let internal_buffer: Buf<&mut [u8]> = Buf::new(&mut bytes[..], body_range);
            let body = internal_buffer.as_ref().to_vec();
            // The newly allocated buffer, note the type is different from
            // internal_buffer.
            let buffer: Buf<Vec<u8>> = BufferProvider::reuse_or_realloc(
                NoReuseBufferProvider(new_buf_vec),
                internal_buffer,
                prefix,
                suffix,
            )
            .unwrap();
            let bytes: &[u8] = buffer.as_ref();
            assert_eq!(bytes, body.as_slice());
            assert_eq!(buffer.prefix_len(), prefix);
            assert_eq!(buffer.suffix_len(), suffix);
        }
        // No prefix or suffix trivially succeeds, reuse opportunity is ignored.
        test_expect(0..10, 0, 0);
        // If we have enough prefix/suffix, reuse opportunity is ignored.
        test_expect(1..9, 1, 1);
        // Prefix and suffix and properly allocated and the body is copied.
        test_expect(0..9, 10, 10);
        test_expect(1..10, 15, 15);
    }

    /// Simple Vec-backed buffer to test fragmented buffers implementation.
    ///
    /// `ScatterGatherBuf` keeps:
    /// - an inner buffer `inner`, which is always part of its body.
    /// - extra backing memory in `data`.
    ///
    /// `data` has two "root" regions, marked by the midpoint `mid`. Everything
    /// left of `mid` is this buffer's prefix, and after `mid` is this buffer's
    /// suffix.
    ///
    /// The `range` field keeps the range in `data` that contains *filled*
    /// prefix and suffix information. `range.start` is always less than or
    /// equal to `mid` and `range.end` is always greater than or equal to `mid`,
    /// such that growing the front of the buffer means decrementing
    /// `range.start` and growing the back of the buffer means incrementing
    /// `range.end`.
    ///
    ///  At any time this buffer's parts are:
    /// - Free prefix data in range `0..range.start`.
    /// - Used prefix data (now part of body) in range `range.start..mid`.
    /// - Inner buffer body in `inner`.
    /// - Used suffix data (now part of body) in range `mid..range.end`.
    /// - Free suffix data in range `range.end..`
    struct ScatterGatherBuf<B> {
        data: Vec<u8>,
        mid: usize,
        range: Range<usize>,
        inner: B,
    }

    impl<B: BufferMut> FragmentedBuffer for ScatterGatherBuf<B> {
        fn len(&self) -> usize {
            self.inner.len() + (self.range.end - self.range.start)
        }

        fn with_bytes<R, F>(&self, f: F) -> R
        where
            F: for<'a, 'b> FnOnce(FragmentedBytes<'a, 'b>) -> R,
        {
            let (_, rest) = self.data.split_at(self.range.start);
            let (prefix_b, rest) = rest.split_at(self.mid - self.range.start);
            let (suffix_b, _) = rest.split_at(self.range.end - self.mid);
            let mut bytes = [prefix_b, self.inner.as_ref(), suffix_b];
            f(FragmentedBytes::new(&mut bytes[..]))
        }
    }

    impl<B: BufferMut> FragmentedBufferMut for ScatterGatherBuf<B> {
        fn with_bytes_mut<R, F>(&mut self, f: F) -> R
        where
            F: for<'a, 'b> FnOnce(FragmentedBytesMut<'a, 'b>) -> R,
        {
            let (_, rest) = self.data.split_at_mut(self.range.start);
            let (prefix_b, rest) = rest.split_at_mut(self.mid - self.range.start);
            let (suffix_b, _) = rest.split_at_mut(self.range.end - self.mid);
            let mut bytes = [prefix_b, self.inner.as_mut(), suffix_b];
            f(FragmentedBytesMut::new(&mut bytes[..]))
        }
    }

    impl<B: BufferMut> GrowBuffer for ScatterGatherBuf<B> {
        fn with_parts<O, F>(&self, f: F) -> O
        where
            F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
        {
            let (prefix, rest) = self.data.split_at(self.range.start);
            let (prefix_b, rest) = rest.split_at(self.mid - self.range.start);
            let (suffix_b, suffix) = rest.split_at(self.range.end - self.mid);
            let mut bytes = [prefix_b, self.inner.as_ref(), suffix_b];
            f(prefix, bytes.as_fragmented_byte_slice(), suffix)
        }
        fn prefix_len(&self) -> usize {
            self.range.start
        }

        fn suffix_len(&self) -> usize {
            self.data.len() - self.range.end
        }

        fn grow_front(&mut self, n: usize) {
            self.range.start -= n;
        }

        fn grow_back(&mut self, n: usize) {
            self.range.end += n;
            assert!(self.range.end <= self.data.len());
        }
    }

    impl<B: BufferMut> GrowBufferMut for ScatterGatherBuf<B> {
        fn with_parts_mut<O, F>(&mut self, f: F) -> O
        where
            F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
        {
            let (prefix, rest) = self.data.split_at_mut(self.range.start);
            let (prefix_b, rest) = rest.split_at_mut(self.mid - self.range.start);
            let (suffix_b, suffix) = rest.split_at_mut(self.range.end - self.mid);
            let mut bytes = [prefix_b, self.inner.as_mut(), suffix_b];
            f(prefix, bytes.as_fragmented_byte_slice(), suffix)
        }
    }

    struct ScatterGatherProvider;

    impl<B: BufferMut> BufferProvider<B, ScatterGatherBuf<B>> for ScatterGatherProvider {
        type Error = Never;

        fn alloc_no_reuse(
            self,
            _prefix: usize,
            _body: usize,
            _suffix: usize,
        ) -> Result<ScatterGatherBuf<B>, Self::Error> {
            unimplemented!("not used in tests")
        }

        fn reuse_or_realloc(
            self,
            buffer: B,
            prefix: usize,
            suffix: usize,
        ) -> Result<ScatterGatherBuf<B>, (Self::Error, B)> {
            let inner = buffer;
            let data = vec![0; prefix + suffix];
            let range = Range { start: prefix, end: prefix };
            let mid = prefix;
            Ok(ScatterGatherBuf { inner, data, range, mid })
        }
    }

    #[test]
    fn test_scatter_gather_serialize() {
        // Assert that a buffer composed of different allocations can be used as
        // a serialization target, while reusing an internal body buffer.
        let buf = Buf::new(vec![10, 20, 30, 40, 50], ..);
        let pb = DummyPacketBuilder::new(3, 2, 0, usize::MAX);
        let ser = buf.encapsulate(pb);
        let result = ser.serialize_outer(ScatterGatherProvider {}).unwrap();
        let flattened = result.to_flattened_vec();
        assert_eq!(&flattened[..], &[0xFF, 0xFF, 0xFF, 10, 20, 30, 40, 50, 0xFE, 0xFE]);
    }
}