1use crate::task::AtomicWaker;
2use alloc::sync::Arc;
3use core::cell::UnsafeCell;
4use core::ptr;
5use core::sync::atomic::AtomicPtr;
6use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};
78use super::abort::abort;
9use super::task::Task;
1011pub(super) enum Dequeue<Fut> {
12 Data(*const Task<Fut>),
13 Empty,
14 Inconsistent,
15}
1617pub(super) struct ReadyToRunQueue<Fut> {
18// The waker of the task using `FuturesUnordered`.
19pub(super) waker: AtomicWaker,
2021// Head/tail of the readiness queue
22pub(super) head: AtomicPtr<Task<Fut>>,
23pub(super) tail: UnsafeCell<*const Task<Fut>>,
24pub(super) stub: Arc<Task<Fut>>,
25}
2627/// An MPSC queue into which the tasks containing the futures are inserted
28/// whenever the future inside is scheduled for polling.
29impl<Fut> ReadyToRunQueue<Fut> {
30/// The enqueue function from the 1024cores intrusive MPSC queue algorithm.
31pub(super) fn enqueue(&self, task: *const Task<Fut>) {
32unsafe {
33debug_assert!((*task).queued.load(Relaxed));
3435// This action does not require any coordination
36(*task).next_ready_to_run.store(ptr::null_mut(), Relaxed);
3738// Note that these atomic orderings come from 1024cores
39let task = task as *mut _;
40let prev = self.head.swap(task, AcqRel);
41 (*prev).next_ready_to_run.store(task, Release);
42 }
43 }
4445/// The dequeue function from the 1024cores intrusive MPSC queue algorithm
46 ///
47 /// Note that this is unsafe as it required mutual exclusion (only one
48 /// thread can call this) to be guaranteed elsewhere.
49pub(super) unsafe fn dequeue(&self) -> Dequeue<Fut> {
50let mut tail = *self.tail.get();
51let mut next = (*tail).next_ready_to_run.load(Acquire);
5253if tail == self.stub() {
54if next.is_null() {
55return Dequeue::Empty;
56 }
5758*self.tail.get() = next;
59 tail = next;
60 next = (*next).next_ready_to_run.load(Acquire);
61 }
6263if !next.is_null() {
64*self.tail.get() = next;
65debug_assert!(tail != self.stub());
66return Dequeue::Data(tail);
67 }
6869if self.head.load(Acquire) as *const _ != tail {
70return Dequeue::Inconsistent;
71 }
7273self.enqueue(self.stub());
7475 next = (*tail).next_ready_to_run.load(Acquire);
7677if !next.is_null() {
78*self.tail.get() = next;
79return Dequeue::Data(tail);
80 }
8182 Dequeue::Inconsistent
83 }
8485pub(super) fn stub(&self) -> *const Task<Fut> {
86 Arc::as_ptr(&self.stub)
87 }
88}
8990impl<Fut> Drop for ReadyToRunQueue<Fut> {
91fn drop(&mut self) {
92// Once we're in the destructor for `Inner<Fut>` we need to clear out
93 // the ready to run queue of tasks if there's anything left in there.
94 //
95 // Note that each task has a strong reference count associated with it
96 // which is owned by the ready to run queue. All tasks should have had
97 // their futures dropped already by the `FuturesUnordered` destructor
98 // above, so we're just pulling out tasks and dropping their refcounts.
99unsafe {
100loop {
101match self.dequeue() {
102 Dequeue::Empty => break,
103 Dequeue::Inconsistent => abort("inconsistent in drop"),
104 Dequeue::Data(ptr) => drop(Arc::from_raw(ptr)),
105 }
106 }
107 }
108 }
109}