netstack3_ip/reassembly.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Module for IP fragmented packet reassembly support.
//!
//! `reassembly` is a utility to support reassembly of fragmented IP packets.
//! Fragmented packets are associated by a combination of the packets' source
//! address, destination address and identification value. When a potentially
//! fragmented packet is received, this utility will check to see if the packet
//! is in fact fragmented or not. If it isn't fragmented, it will be returned as
//! is without any modification. If it is fragmented, this utility will capture
//! its body and store it in a cache while waiting for all the fragments for a
//! packet to arrive. The header information from a fragment with offset set to
//! 0 will also be kept to add to the final, reassembled packet. Once this
//! utility has received all the fragments for a combination of source address,
//! destination address and identification value, the implementer will need to
//! allocate a buffer of sufficient size to reassemble the final packet into and
//! pass it to this utility. This utility will then attempt to reassemble and
//! parse the packet, which will be returned to the caller. The caller should
//! then handle the returned packet as a normal IP packet. Note, there is a
//! timer from receipt of the first fragment to reassembly of the final packet.
//! See [`REASSEMBLY_TIMEOUT_SECONDS`].
//!
//! Note, this utility does not support reassembly of jumbogram packets.
//! According to the IPv6 Jumbogram RFC (RFC 2675), the jumbogram payload option
//! is relevant only for nodes that may be attached to links with a link MTU
//! greater than 65575 bytes. Note, the maximum size of a non-jumbogram IPv6
//! packet is also 65575 (as the payload length field for IP packets is 16 bits
//! + 40 byte IPv6 header). If a link supports an MTU greater than the maximum
//! size of a non-jumbogram packet, the packet should not be fragmented.
use alloc::collections::hash_map::{Entry, HashMap};
use alloc::collections::{BTreeSet, BinaryHeap};
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::time::Duration;
use assert_matches::assert_matches;
use log::debug;
use net_types::ip::{GenericOverIp, Ip, IpAddr, IpAddress, IpVersionMarker};
use netstack3_base::{
CoreTimerContext, HandleableTimer, InstantBindingsTypes, IpExt, LocalTimerHeap,
TimerBindingsTypes, TimerContext,
};
use packet::BufferViewMut;
use packet_formats::ip::IpPacket;
use packet_formats::ipv4::{Ipv4Header, Ipv4Packet};
use packet_formats::ipv6::ext_hdrs::Ipv6ExtensionHeaderData;
use packet_formats::ipv6::Ipv6Packet;
use zerocopy::{SplitByteSlice, SplitByteSliceMut};
/// The maximum amount of time from receipt of the first fragment to reassembly
/// of a packet. Note, "first fragment" does not mean a fragment with offset 0;
/// it means the first fragment packet we receive with a new combination of
/// source address, destination address and fragment identification value.
const REASSEMBLY_TIMEOUT: Duration = Duration::from_secs(60);
/// Number of bytes per fragment block for IPv4 and IPv6.
///
/// IPv4 outlines the fragment block size in RFC 791 section 3.1, under the
/// fragment offset field's description: "The fragment offset is measured in
/// units of 8 octets (64 bits)".
///
/// IPv6 outlines the fragment block size in RFC 8200 section 4.5, under the
/// fragment offset field's description: "The offset, in 8-octet units, of the
/// data following this header".
const FRAGMENT_BLOCK_SIZE: u8 = 8;
/// Maximum number of fragment blocks an IPv4 or IPv6 packet can have.
///
/// We use this value because both IPv4 fixed header's fragment offset field and
/// IPv6 fragment extension header's fragment offset field are 13 bits wide.
const MAX_FRAGMENT_BLOCKS: u16 = 8191;
/// Maximum number of bytes of all currently cached fragments per IP protocol.
///
/// If the current cache size is less than this number, a new fragment can be
/// cached (even if this will result in the total cache size exceeding this
/// threshold). If the current cache size >= this number, the incoming fragment
/// will be dropped.
const MAX_FRAGMENT_CACHE_SIZE: usize = 4 * 1024 * 1024;
/// The state context for the fragment cache.
pub trait FragmentContext<I: Ip, BT: FragmentBindingsTypes> {
/// Returns a mutable reference to the fragment cache.
fn with_state_mut<O, F: FnOnce(&mut IpPacketFragmentCache<I, BT>) -> O>(&mut self, cb: F) -> O;
}
/// The bindings types for IP packet fragment reassembly.
pub trait FragmentBindingsTypes: TimerBindingsTypes + InstantBindingsTypes {}
impl<BT> FragmentBindingsTypes for BT where BT: TimerBindingsTypes + InstantBindingsTypes {}
/// The bindings execution context for IP packet fragment reassembly.
pub trait FragmentBindingsContext: TimerContext + FragmentBindingsTypes {}
impl<BC> FragmentBindingsContext for BC where BC: TimerContext + FragmentBindingsTypes {}
/// The timer ID for the fragment cache.
#[derive(Hash, Eq, PartialEq, Default, Clone, Debug, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct FragmentTimerId<I: Ip>(IpVersionMarker<I>);
/// An implementation of a fragment cache.
pub trait FragmentHandler<I: IpExt, BC> {
/// Attempts to process a packet fragment.
///
/// # Panics
///
/// Panics if the packet has no fragment data.
fn process_fragment<B: SplitByteSlice>(
&mut self,
bindings_ctx: &mut BC,
packet: I::Packet<B>,
) -> FragmentProcessingState<I, B>
where
I::Packet<B>: FragmentablePacket;
/// Attempts to reassemble a packet.
///
/// Attempts to reassemble a packet associated with a given
/// `FragmentCacheKey`, `key`, and cancels the timer to reset reassembly
/// data. The caller is expected to allocate a buffer of sufficient size
/// (available from `process_fragment` when it returns a
/// `FragmentProcessingState::Ready` value) and provide it to
/// `reassemble_packet` as `buffer` where the packet will be reassembled
/// into.
///
/// # Panics
///
/// Panics if the provided `buffer` does not have enough capacity for the
/// reassembled packet. Also panics if a different `ctx` is passed to
/// `reassemble_packet` from the one passed to `process_fragment` when
/// processing a packet with a given `key` as `reassemble_packet` will fail
/// to cancel the reassembly timer.
fn reassemble_packet<B: SplitByteSliceMut, BV: BufferViewMut<B>>(
&mut self,
bindings_ctx: &mut BC,
key: &FragmentCacheKey<I::Addr>,
buffer: BV,
) -> Result<(), FragmentReassemblyError>;
}
impl<I: IpExt, BC: FragmentBindingsContext, CC: FragmentContext<I, BC>> FragmentHandler<I, BC>
for CC
{
fn process_fragment<B: SplitByteSlice>(
&mut self,
bindings_ctx: &mut BC,
packet: I::Packet<B>,
) -> FragmentProcessingState<I, B>
where
I::Packet<B>: FragmentablePacket,
{
self.with_state_mut(|cache| {
let (res, timer_action) = cache.process_fragment(packet);
if let Some(timer_action) = timer_action {
match timer_action {
CacheTimerAction::CreateNewTimer(key) => {
assert_eq!(
cache.timers.schedule_after(bindings_ctx, key, (), REASSEMBLY_TIMEOUT),
None
)
}
CacheTimerAction::CancelExistingTimer(key) => {
assert_ne!(cache.timers.cancel(bindings_ctx, &key), None)
}
}
}
res
})
}
fn reassemble_packet<B: SplitByteSliceMut, BV: BufferViewMut<B>>(
&mut self,
bindings_ctx: &mut BC,
key: &FragmentCacheKey<I::Addr>,
buffer: BV,
) -> Result<(), FragmentReassemblyError> {
self.with_state_mut(|cache| {
let res = cache.reassemble_packet(key, buffer);
match res {
Ok(_) | Err(FragmentReassemblyError::PacketParsingError) => {
// Cancel the reassembly timer as we attempt reassembly which
// means we had all the fragments for the final packet, even
// if parsing the reassembled packet failed.
assert_matches!(cache.timers.cancel(bindings_ctx, key), Some(_));
}
Err(FragmentReassemblyError::InvalidKey)
| Err(FragmentReassemblyError::MissingFragments) => {}
}
res
})
}
}
impl<I: IpExt, BC: FragmentBindingsContext, CC: FragmentContext<I, BC>> HandleableTimer<CC, BC>
for FragmentTimerId<I>
{
fn handle(self, core_ctx: &mut CC, bindings_ctx: &mut BC, _: BC::UniqueTimerId) {
let Self(IpVersionMarker { .. }) = self;
core_ctx.with_state_mut(|cache| {
let Some((key, ())) = cache.timers.pop(bindings_ctx) else {
return;
};
// If a timer fired, the `key` must still exist in our fragment cache.
let FragmentCacheData { missing_blocks: _, body_fragments, header: _, total_size } =
assert_matches!(cache.remove_data(&key), Some(c) => c);
debug!(
"reassembly for {key:?} \
timed out with {} fragments and {total_size} bytes",
body_fragments.len(),
);
});
}
}
/// Trait that must be implemented by any packet type that is fragmentable.
pub trait FragmentablePacket {
/// Return fragment identifier data.
///
/// Returns the fragment identification, offset and more flag as `(a, b, c)`
/// where `a` is the fragment identification value, `b` is the fragment
/// offset and `c` is the more flag.
///
/// # Panics
///
/// Panics if the packet has no fragment data.
fn fragment_data(&self) -> (u32, u16, bool);
}
impl<B: SplitByteSlice> FragmentablePacket for Ipv4Packet<B> {
fn fragment_data(&self) -> (u32, u16, bool) {
(u32::from(self.id()), self.fragment_offset().into_raw(), self.mf_flag())
}
}
impl<B: SplitByteSlice> FragmentablePacket for Ipv6Packet<B> {
fn fragment_data(&self) -> (u32, u16, bool) {
for ext_hdr in self.iter_extension_hdrs() {
if let Ipv6ExtensionHeaderData::Fragment { fragment_data } = ext_hdr.data() {
return (
fragment_data.identification(),
fragment_data.fragment_offset().into_raw(),
fragment_data.m_flag(),
);
}
}
unreachable!(
"Should never call this function if the packet does not have a fragment header"
);
}
}
/// Possible return values for [`IpPacketFragmentCache::process_fragment`].
#[derive(Debug)]
pub enum FragmentProcessingState<I: IpExt, B: SplitByteSlice> {
/// The provided packet is not fragmented so no processing is required.
/// The packet is returned with this value without any modification.
NotNeeded(I::Packet<B>),
/// The provided packet is fragmented but it is malformed.
///
/// Possible reasons for being malformed are:
/// 1) Body is not a multiple of `FRAGMENT_BLOCK_SIZE` and it is not the
/// last fragment (last fragment of a packet, not last fragment received
/// for a packet).
/// 2) Overlaps with an existing fragment. This is explicitly not allowed
/// for IPv6 as per RFC 8200 section 4.5 (more details in RFC 5722). We
/// choose the same behaviour for IPv4 for the same reasons.
/// 3) Packet's fragment offset + # of fragment blocks >
/// `MAX_FRAGMENT_BLOCKS`.
// TODO(ghanan): Investigate whether disallowing overlapping fragments for
// IPv4 cause issues interoperating with hosts that produce
// overlapping fragments.
InvalidFragment,
/// Successfully processed the provided fragment. We are still waiting on
/// more fragments for a packet to arrive before being ready to reassemble
/// the packet.
NeedMoreFragments,
/// Cannot process the fragment because `MAX_FRAGMENT_CACHE_SIZE` is
/// reached.
OutOfMemory,
/// Successfully processed the provided fragment. We now have all the
/// fragments we need to reassemble the packet. The caller must create a
/// buffer with capacity for at least `packet_len` bytes and provide the
/// buffer and `key` to `reassemble_packet`.
Ready { key: FragmentCacheKey<I::Addr>, packet_len: usize },
}
/// Possible errors when attempting to reassemble a packet.
#[derive(Debug, PartialEq, Eq)]
pub enum FragmentReassemblyError {
/// At least one fragment for a packet has not arrived.
MissingFragments,
/// A `FragmentCacheKey` is not associated with any packet. This could be
/// because either no fragment has yet arrived for a packet associated with
/// a `FragmentCacheKey` or some fragments did arrive, but the reassembly
/// timer expired and got discarded.
InvalidKey,
/// Packet parsing error.
PacketParsingError,
}
/// Fragment Cache Key.
///
/// Composed of the original packet's source address, destination address,
/// and fragment id.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct FragmentCacheKey<A: IpAddress>(A, A, u32);
impl<A: IpAddress> FragmentCacheKey<A> {
pub(crate) fn new(src_ip: A, dst_ip: A, fragment_id: u32) -> Self {
FragmentCacheKey(src_ip, dst_ip, fragment_id)
}
}
/// An inclusive-inclusive range of bytes within a reassembled packet.
// NOTE: We use this instead of `std::ops::RangeInclusive` because the latter
// provides getter methods which return references, and it adds a lot of
// unnecessary dereferences.
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
struct BlockRange {
start: u16,
end: u16,
}
/// Data required for fragmented packet reassembly.
#[derive(Debug)]
struct FragmentCacheData {
/// List of non-overlapping inclusive ranges of fragment blocks required
/// before being ready to reassemble a packet.
///
/// When creating a new instance of `FragmentCacheData`, we will set
/// `missing_blocks` to a list with a single element representing all
/// blocks, (0, MAX_VALUE). In this case, MAX_VALUE will be set to
/// `core::u16::MAX`.
missing_blocks: BTreeSet<BlockRange>,
/// Received fragment blocks.
///
/// We use a binary heap for help when reassembling packets. When we
/// reassemble packets, we will want to fill up a new buffer with all the
/// body fragments. The easiest way to do this is in order, from the
/// fragment with offset 0 to the fragment with the highest offset. Since we
/// only need to enforce the order when reassembling, we use a min-heap so
/// we have a defined order (increasing fragment offset values) when
/// popping. `BinaryHeap` is technically a max-heap, but we use the negative
/// of the offset values as the key for the heap. See
/// [`PacketBodyFragment::new`].
body_fragments: BinaryHeap<PacketBodyFragment>,
/// The header data for the reassembled packet.
///
/// The header of the fragment packet with offset 0 will be used as the
/// header for the final, reassembled packet.
header: Option<Vec<u8>>,
/// Total number of bytes in the reassembled packet.
///
/// This is used so that we don't have to iterated through `body_fragments`
/// and sum the partial body sizes to calculate the reassembled packet's
/// size.
total_size: usize,
}
impl Default for FragmentCacheData {
fn default() -> FragmentCacheData {
FragmentCacheData {
missing_blocks: core::iter::once(BlockRange { start: 0, end: u16::MAX }).collect(),
body_fragments: BinaryHeap::new(),
header: None,
total_size: 0,
}
}
}
impl FragmentCacheData {
/// Attempts to find a gap where `fragment_blocks_range` will fit in.
///
/// Returns `Some(o)` if a valid gap is found where `o` is the gap's offset
/// range; otherwise, returns `None`. `fragment_blocks_range` is an
/// inclusive range of fragment block offsets.
fn find_gap(&self, BlockRange { start, end }: BlockRange) -> Option<BlockRange> {
use core::ops::Bound::{Included, Unbounded};
// Find a gap that starts earlier or at the same point as a fragment.
let possible_free_place =
self.missing_blocks.range((Unbounded, Included(BlockRange { start, end: u16::MAX })));
// Make sure that `fragment` belongs purely within
// `potential_gap`.
//
// If `fragment` does not fit purely within
// `potential_gap`, then at least one block in
// `fragment` overlaps with an already received block.
// We should never receive overlapping fragments from non-malicious
// nodes.
possible_free_place
.last()
.filter(|&range| {
// range.start <= start must be always true here - so comparing only ending part
return end <= range.end;
})
.copied()
}
}
/// A cache of inbound IP packet fragments.
#[derive(Debug)]
pub struct IpPacketFragmentCache<I: Ip, BT: FragmentBindingsTypes> {
cache: HashMap<FragmentCacheKey<I::Addr>, FragmentCacheData>,
size: usize,
threshold: usize,
timers: LocalTimerHeap<FragmentCacheKey<I::Addr>, (), BT>,
}
impl<I: Ip, BC: FragmentBindingsContext> IpPacketFragmentCache<I, BC> {
/// Creates a new `IpFragmentCache`.
pub fn new<CC: CoreTimerContext<FragmentTimerId<I>, BC>>(
bindings_ctx: &mut BC,
) -> IpPacketFragmentCache<I, BC> {
IpPacketFragmentCache {
cache: HashMap::new(),
size: 0,
threshold: MAX_FRAGMENT_CACHE_SIZE,
timers: LocalTimerHeap::new(bindings_ctx, CC::convert_timer(Default::default())),
}
}
}
enum CacheTimerAction<A: IpAddress> {
CreateNewTimer(FragmentCacheKey<A>),
CancelExistingTimer(FragmentCacheKey<A>),
}
impl<I: IpExt, BT: FragmentBindingsTypes> IpPacketFragmentCache<I, BT> {
/// Attempts to process a packet fragment.
///
/// # Panics
///
/// Panics if the packet has no fragment data.
fn process_fragment<B: SplitByteSlice>(
&mut self,
packet: I::Packet<B>,
) -> (FragmentProcessingState<I, B>, Option<CacheTimerAction<I::Addr>>)
where
I::Packet<B>: FragmentablePacket,
{
if self.above_size_threshold() {
return (FragmentProcessingState::OutOfMemory, None);
}
// Get the fragment data.
let (id, offset, m_flag) = packet.fragment_data();
// Check if `packet` is actually fragmented. We know it is not
// fragmented if the fragment offset is 0 (contains first fragment) and
// we have no more fragments. This means the first fragment is the only
// fragment, implying we have a full packet.
if offset == 0 && !m_flag {
return (FragmentProcessingState::NotNeeded(packet), None);
}
// Make sure packet's body isn't empty. Since at this point we know that
// the packet is definitely fragmented (`offset` is not 0 or `m_flag` is
// `true`), we simply let the caller know we need more fragments. This
// should never happen, but just in case :).
if packet.body().is_empty() {
return (FragmentProcessingState::NeedMoreFragments, None);
}
// Make sure body is a multiple of `FRAGMENT_BLOCK_SIZE` bytes, or
// `packet` contains the last fragment block which is allowed to be less
// than `FRAGMENT_BLOCK_SIZE` bytes.
if m_flag && (packet.body().len() % (FRAGMENT_BLOCK_SIZE as usize) != 0) {
return (FragmentProcessingState::InvalidFragment, None);
}
// Key used to find this connection's fragment cache data.
let key = FragmentCacheKey::new(packet.src_ip(), packet.dst_ip(), id);
// The number of fragment blocks `packet` contains.
//
// Note, we are calculating the ceiling of an integer division.
// Essentially:
// ceil(packet.body.len() / FRAGMENT_BLOCK_SIZE)
//
// We need to calculate the ceiling of the division because the final
// fragment block for a reassembled packet is allowed to contain less
// than `FRAGMENT_BLOCK_SIZE` bytes.
//
// We know `packet.body().len() - 1` will never be less than 0 because
// we already made sure that `packet`'s body is not empty, and it is
// impossible to have a negative body size.
let num_fragment_blocks = 1 + ((packet.body().len() - 1) / (FRAGMENT_BLOCK_SIZE as usize));
assert!(num_fragment_blocks > 0);
// The range of fragment blocks `packet` contains.
//
// The maximum number of fragment blocks a reassembled packet is allowed
// to contain is `MAX_FRAGMENT_BLOCKS` so we make sure that the fragment
// we received does not violate this.
let fragment_blocks_range =
if let Ok(offset_end) = u16::try_from((offset as usize) + num_fragment_blocks - 1) {
if offset_end <= MAX_FRAGMENT_BLOCKS {
BlockRange { start: offset, end: offset_end }
} else {
return (FragmentProcessingState::InvalidFragment, None);
}
} else {
return (FragmentProcessingState::InvalidFragment, None);
};
// Get (or create) the fragment cache data.
let (fragment_data, timer_not_yet_scheduled) = self.get_or_create(key);
// Find the gap where `packet` belongs.
let found_gap = match fragment_data.find_gap(fragment_blocks_range) {
// We did not find a potential gap `packet` fits in so some of the
// fragment blocks in `packet` overlaps with fragment blocks we
// already received.
None => {
// Drop all reassembly data as per RFC 8200 section 4.5 (IPv6).
// See RFC 5722 for more information.
//
// IPv4 (RFC 791) does not specify what to do for overlapped
// fragments. RFC 1858 section 4.2 outlines a way to prevent an
// overlapping fragment attack for IPv4, but this is primarily
// for IP filtering since "no standard requires that an
// overlap-safe reassemble algorithm be used" on hosts. In
// practice, non-malicious nodes should not intentionally send
// data for the same fragment block multiple times, so we will
// do the same thing as IPv6 in this case.
//
// TODO(ghanan): Check to see if the fragment block's data is
// identical to already received data before
// dropping the reassembly data as packets may be
// duplicated in the network. Duplicate packets
// which are also fragmented are probably rare, so
// we should first determine if it is even
// worthwhile to do this check first. Note, we can
// choose to simply not do this check as RFC 8200
// section 4.5 mentions an implementation *may
// choose* to do this check. It does not say we
// MUST, so we would not be violating the RFC if
// we don't check for this case and just drop the
// packet.
assert_matches!(self.remove_data(&key), Some(_));
return (
FragmentProcessingState::InvalidFragment,
(!timer_not_yet_scheduled).then(|| CacheTimerAction::CancelExistingTimer(key)),
);
}
Some(f) => f,
};
let timer_id = timer_not_yet_scheduled.then(|| CacheTimerAction::CreateNewTimer(key));
// Remove `found_gap` since the gap as it exists will no longer be
// valid.
assert!(fragment_data.missing_blocks.remove(&found_gap));
// If the received fragment blocks start after the beginning of
// `found_gap`, create a new gap between the beginning of `found_gap`
// and the first fragment block contained in `packet`.
//
// Example:
// `packet` w/ fragments [4, 7]
// |-----|-----|-----|-----|
// 4 5 6 7
//
// `found_gap` w/ fragments [X, 7] where 0 <= X < 4
// |-----| ... |-----|-----|-----|-----|
// X ... 4 5 6 7
//
// Here we can see that with a `found_gap` of [2, 7], `packet` covers
// [4, 7] but we are still missing [X, 3] so we create a new gap of
// [X, 3].
if found_gap.start < fragment_blocks_range.start {
assert!(fragment_data
.missing_blocks
.insert(BlockRange { start: found_gap.start, end: fragment_blocks_range.end - 1 }));
}
// If the received fragment blocks end before the end of `found_gap` and
// we expect more fragments, create a new gap between the last fragment
// block contained in `packet` and the end of `found_gap`.
//
// Example 1:
// `packet` w/ fragments [4, 7] & m_flag = true
// |-----|-----|-----|-----|
// 4 5 6 7
//
// `found_gap` w/ fragments [4, Y] where 7 < Y <= `MAX_FRAGMENT_BLOCKS`.
// |-----|-----|-----|-----| ... |-----|
// 4 5 6 7 ... Y
//
// Here we can see that with a `found_gap` of [4, Y], `packet` covers
// [4, 7] but we still expect more fragment blocks after the blocks in
// `packet` (as noted by `m_flag`) so we are still missing [8, Y] so
// we create a new gap of [8, Y].
//
// Example 2:
// `packet` w/ fragments [4, 7] & m_flag = false
// |-----|-----|-----|-----|
// 4 5 6 7
//
// `found_gap` w/ fragments [4, Y] where MAX = `MAX_FRAGMENT_BLOCKS`.
// |-----|-----|-----|-----| ... |-----|
// 4 5 6 7 ... MAX
//
// Here we can see that with a `found_gap` of [4, MAX], `packet`
// covers [4, 7] and we don't expect more fragment blocks after the
// blocks in `packet` (as noted by `m_flag`) so we don't create a new
// gap. Note, if we encounter a `packet` where `m_flag` is false,
// `found_gap`'s end value must be MAX because we should only ever not
// create a new gap where the end is MAX when we are processing a
// packet with the last fragment block.
if found_gap.end > fragment_blocks_range.end && m_flag {
assert!(fragment_data
.missing_blocks
.insert(BlockRange { start: fragment_blocks_range.end + 1, end: found_gap.end }));
} else if found_gap.end > fragment_blocks_range.end && !m_flag && found_gap.end < u16::MAX {
// There is another fragment after this one that is already present
// in the cache. That means that this fragment can't be the last
// one (must have `m_flag` set).
return (FragmentProcessingState::InvalidFragment, timer_id);
} else {
// Make sure that if we are not adding a fragment after the packet,
// it is because `packet` goes up to the `found_gap`'s end boundary,
// or this is the last fragment. If it is the last fragment for a
// packet, we make sure that `found_gap`'s end value is
// `core::u16::MAX`.
assert!(
found_gap.end == fragment_blocks_range.end
|| (!m_flag && found_gap.end == u16::MAX),
"found_gap: {:?}, fragment_blocks_range: {:?} offset: {:?}, m_flag: {:?}",
found_gap,
fragment_blocks_range,
offset,
m_flag
);
}
let mut added_bytes = 0;
// Get header buffer from `packet` if its fragment offset equals to 0.
if offset == 0 {
assert_eq!(fragment_data.header, None);
let header = get_header::<B, I>(&packet);
added_bytes = header.len();
fragment_data.header = Some(header);
}
// Add our `packet`'s body to the store of body fragments.
let mut body = Vec::with_capacity(packet.body().len());
body.extend_from_slice(packet.body());
added_bytes += body.len();
fragment_data.total_size += added_bytes;
fragment_data.body_fragments.push(PacketBodyFragment::new(offset, body));
// If we still have missing fragments, let the caller know that we are
// still waiting on some fragments. Otherwise, we let them know we are
// ready to reassemble and give them a key and the final packet length
// so they can allocate a sufficient buffer and call
// `reassemble_packet`.
let result = if fragment_data.missing_blocks.is_empty() {
FragmentProcessingState::Ready { key, packet_len: fragment_data.total_size }
} else {
FragmentProcessingState::NeedMoreFragments
};
self.increment_size(added_bytes);
(result, timer_id)
}
/// Attempts to reassemble a packet.
///
/// Attempts to reassemble a packet associated with a given
/// `FragmentCacheKey`, `key`, and cancels the timer to reset reassembly
/// data. The caller is expected to allocate a buffer of sufficient size
/// (available from `process_fragment` when it returns a
/// `FragmentProcessingState::Ready` value) and provide it to
/// `reassemble_packet` as `buffer` where the packet will be reassembled
/// into.
///
/// # Panics
///
/// Panics if the provided `buffer` does not have enough capacity for the
/// reassembled packet. Also panics if a different `ctx` is passed to
/// `reassemble_packet` from the one passed to `process_fragment` when
/// processing a packet with a given `key` as `reassemble_packet` will fail
/// to cancel the reassembly timer.
fn reassemble_packet<B: SplitByteSliceMut, BV: BufferViewMut<B>>(
&mut self,
key: &FragmentCacheKey<I::Addr>,
buffer: BV,
) -> Result<(), FragmentReassemblyError> {
let entry = match self.cache.entry(*key) {
Entry::Occupied(entry) => entry,
Entry::Vacant(_) => return Err(FragmentReassemblyError::InvalidKey),
};
// Make sure we are not missing fragments.
if !entry.get().missing_blocks.is_empty() {
return Err(FragmentReassemblyError::MissingFragments);
}
// Remove the entry from the cache now that we've validated that we will
// be able to reassemble it.
let (_key, data) = entry.remove_entry();
self.size -= data.total_size;
// If we are not missing fragments, we must have header data.
assert_matches!(data.header, Some(_));
// TODO(https://github.com/rust-lang/rust/issues/59278): Use
// `BinaryHeap::into_iter_sorted`.
let body_fragments = data.body_fragments.into_sorted_vec().into_iter().map(|x| x.data);
I::Packet::reassemble_fragmented_packet(buffer, data.header.unwrap(), body_fragments)
.map_err(|_| FragmentReassemblyError::PacketParsingError)
}
/// Gets or creates a new entry in the cache for a given `key`.
///
/// Returns a tuple whose second component indicates whether a reassembly
/// timer needs to be scheduled.
fn get_or_create(&mut self, key: FragmentCacheKey<I::Addr>) -> (&mut FragmentCacheData, bool) {
match self.cache.entry(key) {
Entry::Occupied(e) => (e.into_mut(), false),
Entry::Vacant(e) => {
// We have no reassembly data yet so this fragment is the first
// one associated with the given `key`. Create a new entry in
// the hash table and let the caller know to schedule a timer to
// reset the entry.
(e.insert(FragmentCacheData::default()), true)
}
}
}
fn above_size_threshold(&self) -> bool {
self.size >= self.threshold
}
fn increment_size(&mut self, sz: usize) {
assert!(!self.above_size_threshold());
self.size += sz;
}
fn remove_data(&mut self, key: &FragmentCacheKey<I::Addr>) -> Option<FragmentCacheData> {
let data = self.cache.remove(key)?;
self.size -= data.total_size;
Some(data)
}
}
/// Gets the header bytes for a packet.
fn get_header<B: SplitByteSlice, I: IpExt>(packet: &I::Packet<B>) -> Vec<u8> {
match packet.as_ip_addr_ref() {
IpAddr::V4(packet) => packet.copy_header_bytes_for_fragment(),
IpAddr::V6(packet) => {
// We are guaranteed not to panic here because we will only panic if
// `packet` does not have a fragment extension header. We can only get
// here if `packet` is a fragment packet, so we know that `packet` has a
// fragment extension header.
packet.copy_header_bytes_for_fragment()
}
}
}
/// A fragment of a packet's body.
#[derive(Debug, PartialEq, Eq)]
struct PacketBodyFragment {
offset: u16,
data: Vec<u8>,
}
impl PacketBodyFragment {
/// Constructs a new `PacketBodyFragment` to be stored in a `BinaryHeap`.
fn new(offset: u16, data: Vec<u8>) -> Self {
PacketBodyFragment { offset, data }
}
}
// The ordering of a `PacketBodyFragment` is only dependant on the fragment
// offset.
impl PartialOrd for PacketBodyFragment {
fn partial_cmp(&self, other: &PacketBodyFragment) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for PacketBodyFragment {
fn cmp(&self, other: &Self) -> Ordering {
self.offset.cmp(&other.offset)
}
}
#[cfg(test)]
mod tests {
use alloc::vec;
use assert_matches::assert_matches;
use ip_test_macro::ip_test;
use net_types::ip::{Ipv4, Ipv6};
use net_types::Witness;
use netstack3_base::testutil::{
assert_empty, FakeBindingsCtx, FakeCoreCtx, FakeInstant, FakeTimerCtxExt, TestAddrs,
TEST_ADDRS_V4, TEST_ADDRS_V6,
};
use netstack3_base::{CtxPair, IntoCoreTimerCtx};
use packet::{Buf, ParsablePacket, ParseBuffer, Serializer};
use packet_formats::ip::{FragmentOffset, IpProto, Ipv6ExtHdrType};
use packet_formats::ipv4::Ipv4PacketBuilder;
use packet_formats::ipv6::Ipv6PacketBuilder;
use super::*;
struct FakeFragmentContext<I: Ip, BT: FragmentBindingsTypes> {
cache: IpPacketFragmentCache<I, BT>,
}
impl<I: Ip, BC: FragmentBindingsContext> FakeFragmentContext<I, BC>
where
BC::DispatchId: From<FragmentTimerId<I>>,
{
fn new(bindings_ctx: &mut BC) -> Self {
Self { cache: IpPacketFragmentCache::new::<IntoCoreTimerCtx>(bindings_ctx) }
}
}
type FakeCtxImpl<I> = CtxPair<FakeCoreCtxImpl<I>, FakeBindingsCtxImpl<I>>;
type FakeBindingsCtxImpl<I> = FakeBindingsCtx<FragmentTimerId<I>, (), (), ()>;
type FakeCoreCtxImpl<I> = FakeCoreCtx<FakeFragmentContext<I, FakeBindingsCtxImpl<I>>, (), ()>;
impl<I: Ip> FragmentContext<I, FakeBindingsCtxImpl<I>> for FakeCoreCtxImpl<I> {
fn with_state_mut<
O,
F: FnOnce(&mut IpPacketFragmentCache<I, FakeBindingsCtxImpl<I>>) -> O,
>(
&mut self,
cb: F,
) -> O {
cb(&mut self.state.cache)
}
}
macro_rules! assert_frag_proc_state_ready {
($lhs:expr, $src_ip:expr, $dst_ip:expr, $fragment_id:expr, $packet_len:expr) => {{
let lhs_val = $lhs;
match lhs_val {
FragmentProcessingState::Ready { key, packet_len } => {
if key == FragmentCacheKey::new($src_ip, $dst_ip, $fragment_id as u32)
&& packet_len == $packet_len
{
(key, packet_len)
} else {
panic!("Invalid key or packet_len values");
}
}
_ => panic!("{:?} is not `Ready`", lhs_val),
}
}};
}
/// The result `process_ipv4_fragment` or `process_ipv6_fragment` should
/// expect after processing a fragment.
#[derive(PartialEq)]
enum ExpectedResult {
/// After processing a packet fragment, we should be ready to reassemble
/// the packet.
Ready { total_body_len: usize },
/// After processing a packet fragment, we need more packet fragments
/// before being ready to reassemble the packet.
NeedMore,
/// The packet fragment is invalid.
Invalid,
/// The Cache is full.
OutOfMemory,
}
/// Get an IPv4 packet builder.
fn get_ipv4_builder() -> Ipv4PacketBuilder {
Ipv4PacketBuilder::new(
TEST_ADDRS_V4.remote_ip,
TEST_ADDRS_V4.local_ip,
10,
IpProto::Tcp.into(),
)
}
/// Get an IPv6 packet builder.
fn get_ipv6_builder() -> Ipv6PacketBuilder {
Ipv6PacketBuilder::new(
TEST_ADDRS_V6.remote_ip,
TEST_ADDRS_V6.local_ip,
10,
IpProto::Tcp.into(),
)
}
/// Validate that IpPacketFragmentCache has correct size.
fn validate_size<I: Ip, BT: FragmentBindingsTypes>(cache: &IpPacketFragmentCache<I, BT>) {
let mut sz: usize = 0;
for v in cache.cache.values() {
sz += v.total_size;
}
assert_eq!(sz, cache.size);
}
/// Processes an IP fragment depending on the `Ip` `process_ip_fragment` is
/// specialized with.
///
/// See [`process_ipv4_fragment`] and [`process_ipv6_fragment`] which will
/// be called when `I` is `Ipv4` and `Ipv6`, respectively.
fn process_ip_fragment<
I: TestIpExt,
CC: FragmentContext<I, BC>,
BC: FragmentBindingsContext,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
fragment_offset: u16,
m_flag: bool,
expected_result: ExpectedResult,
) {
I::process_ip_fragment(
core_ctx,
bindings_ctx,
fragment_id,
fragment_offset,
m_flag,
expected_result,
)
}
/// Generates and processes an IPv4 fragment packet.
///
/// The generated packet will have body of size `FRAGMENT_BLOCK_SIZE` bytes.
fn process_ipv4_fragment<CC: FragmentContext<Ipv4, BC>, BC: FragmentBindingsContext>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
fragment_offset: u16,
m_flag: bool,
expected_result: ExpectedResult,
) {
let mut builder = get_ipv4_builder();
builder.id(fragment_id);
builder.fragment_offset(FragmentOffset::new(fragment_offset).unwrap());
builder.mf_flag(m_flag);
let body =
generate_body_fragment(fragment_id, fragment_offset, usize::from(FRAGMENT_BLOCK_SIZE));
let mut buffer = Buf::new(body, ..).encapsulate(builder).serialize_vec_outer().unwrap();
let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
match expected_result {
ExpectedResult::Ready { total_body_len } => {
let _: (FragmentCacheKey<_>, usize) = assert_frag_proc_state_ready!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
TEST_ADDRS_V4.remote_ip.get(),
TEST_ADDRS_V4.local_ip.get(),
fragment_id,
total_body_len + Ipv4::HEADER_LENGTH
);
}
ExpectedResult::NeedMore => {
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
FragmentProcessingState::NeedMoreFragments
);
}
ExpectedResult::Invalid => {
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
FragmentProcessingState::InvalidFragment
);
}
ExpectedResult::OutOfMemory => {
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
FragmentProcessingState::OutOfMemory
);
}
}
}
/// Generates and processes an IPv6 fragment packet.
///
/// The generated packet will have body of size `FRAGMENT_BLOCK_SIZE` bytes.
fn process_ipv6_fragment<CC: FragmentContext<Ipv6, BC>, BC: FragmentBindingsContext>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
fragment_offset: u16,
m_flag: bool,
expected_result: ExpectedResult,
) {
let mut bytes = vec![0; 48];
bytes[..4].copy_from_slice(&[0x60, 0x20, 0x00, 0x77][..]);
bytes[6] = Ipv6ExtHdrType::Fragment.into(); // Next Header
bytes[7] = 64;
bytes[8..24].copy_from_slice(TEST_ADDRS_V6.remote_ip.bytes());
bytes[24..40].copy_from_slice(TEST_ADDRS_V6.local_ip.bytes());
bytes[40] = IpProto::Tcp.into();
bytes[42] = (fragment_offset >> 5) as u8;
bytes[43] = ((fragment_offset & 0x1F) << 3) as u8 | if m_flag { 1 } else { 0 };
bytes[44..48].copy_from_slice(&(fragment_id as u32).to_be_bytes());
bytes.extend(
generate_body_fragment(fragment_id, fragment_offset, usize::from(FRAGMENT_BLOCK_SIZE))
.iter(),
);
let payload_len = (bytes.len() - Ipv6::HEADER_LENGTH) as u16;
bytes[4..6].copy_from_slice(&payload_len.to_be_bytes());
let mut buf = Buf::new(bytes, ..);
let packet = buf.parse::<Ipv6Packet<_>>().unwrap();
match expected_result {
ExpectedResult::Ready { total_body_len } => {
let _: (FragmentCacheKey<_>, usize) = assert_frag_proc_state_ready!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
TEST_ADDRS_V6.remote_ip.get(),
TEST_ADDRS_V6.local_ip.get(),
fragment_id,
total_body_len + Ipv6::HEADER_LENGTH
);
}
ExpectedResult::NeedMore => {
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
FragmentProcessingState::NeedMoreFragments
);
}
ExpectedResult::Invalid => {
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
FragmentProcessingState::InvalidFragment
);
}
ExpectedResult::OutOfMemory => {
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
FragmentProcessingState::OutOfMemory
);
}
}
}
trait TestIpExt: netstack3_base::testutil::TestIpExt {
const HEADER_LENGTH: usize;
fn process_ip_fragment<CC: FragmentContext<Self, BC>, BC: FragmentBindingsContext>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
fragment_offset: u16,
m_flag: bool,
expected_result: ExpectedResult,
);
}
impl TestIpExt for Ipv4 {
const HEADER_LENGTH: usize = packet_formats::ipv4::HDR_PREFIX_LEN;
fn process_ip_fragment<CC: FragmentContext<Self, BC>, BC: FragmentBindingsContext>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
fragment_offset: u16,
m_flag: bool,
expected_result: ExpectedResult,
) {
process_ipv4_fragment(
core_ctx,
bindings_ctx,
fragment_id,
fragment_offset,
m_flag,
expected_result,
)
}
}
impl TestIpExt for Ipv6 {
const HEADER_LENGTH: usize = packet_formats::ipv6::IPV6_FIXED_HDR_LEN;
fn process_ip_fragment<CC: FragmentContext<Self, BC>, BC: FragmentBindingsContext>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
fragment_offset: u16,
m_flag: bool,
expected_result: ExpectedResult,
) {
process_ipv6_fragment(
core_ctx,
bindings_ctx,
fragment_id,
fragment_offset,
m_flag,
expected_result,
)
}
}
/// Tries to reassemble the packet with the given fragment ID.
fn try_reassemble_ip_packet<
I: TestIpExt + netstack3_base::IpExt,
CC: FragmentContext<I, BC>,
BC: FragmentBindingsContext,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
fragment_id: u16,
total_body_len: usize,
) {
let mut buffer: Vec<u8> = vec![0; total_body_len + I::HEADER_LENGTH];
let mut buffer = &mut buffer[..];
let key = FragmentCacheKey::new(
I::TEST_ADDRS.remote_ip.get(),
I::TEST_ADDRS.local_ip.get(),
fragment_id.into(),
);
FragmentHandler::reassemble_packet(core_ctx, bindings_ctx, &key, &mut buffer).unwrap();
let packet = I::Packet::parse_mut(&mut buffer, ()).unwrap();
let expected_body = generate_body_fragment(fragment_id, 0, total_body_len);
assert_eq!(packet.body(), &expected_body[..]);
}
/// Generates the body of a packet with the given fragment ID, offset, and
/// length.
///
/// Overlapping body bytes from different calls to `generate_body_fragment`
/// are guaranteed to have the same values.
fn generate_body_fragment(fragment_id: u16, fragment_offset: u16, len: usize) -> Vec<u8> {
// The body contains increasing byte values which start at `fragment_id`
// at byte 0. This ensures that different packets with different
// fragment IDs contain bodies with different byte values.
let start = usize::from(fragment_id)
+ usize::from(fragment_offset) * usize::from(FRAGMENT_BLOCK_SIZE);
(start..start + len).map(|byte| byte as u8).collect()
}
/// Gets a `FragmentCacheKey` with the remote and local IP addresses hard
/// coded to their test values.
fn test_key<I: TestIpExt>(id: u32) -> FragmentCacheKey<I::Addr> {
FragmentCacheKey::new(I::TEST_ADDRS.remote_ip.get(), I::TEST_ADDRS.local_ip.get(), id)
}
fn new_context<I: Ip>() -> FakeCtxImpl<I> {
FakeCtxImpl::<I>::with_default_bindings_ctx(|bindings_ctx| {
FakeCoreCtxImpl::with_state(FakeFragmentContext::new(bindings_ctx))
})
}
#[test]
fn test_ipv4_reassembly_not_needed() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv4>();
// Test that we don't attempt reassembly if the packet is not
// fragmented.
let builder = get_ipv4_builder();
let body = [1, 2, 3, 4, 5];
let mut buffer =
Buf::new(body.to_vec(), ..).encapsulate(builder).serialize_vec_outer().unwrap();
let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
FragmentProcessingState::NotNeeded(unfragmented) if unfragmented.body() == body
);
}
#[test]
#[should_panic(
expected = "internal error: entered unreachable code: Should never call this function if the packet does not have a fragment header"
)]
fn test_ipv6_reassembly_not_needed() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv6>();
// Test that we panic if we call `fragment_data` on a packet that has no
// fragment data.
let builder = get_ipv6_builder();
let mut buffer =
Buf::new(vec![1, 2, 3, 4, 5], ..).encapsulate(builder).serialize_vec_outer().unwrap();
let packet = buffer.parse::<Ipv6Packet<_>>().unwrap();
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
FragmentProcessingState::InvalidFragment
);
}
#[ip_test(I)]
fn test_ip_reassembly<I: TestIpExt + netstack3_base::IpExt>() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id = 5;
// Test that we properly reassemble fragmented packets.
// Process fragment #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
1,
true,
ExpectedResult::NeedMore,
);
// Process fragment #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
2,
false,
ExpectedResult::Ready { total_body_len: 24 },
);
try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id, 24);
}
#[ip_test(I)]
fn test_ip_reassemble_with_missing_blocks<I: TestIpExt + netstack3_base::IpExt>() {
let fake_config = I::TEST_ADDRS;
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id = 5;
// Test the error we get when we attempt to reassemble with missing
// fragments.
// Process fragment #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
1,
true,
ExpectedResult::NeedMore,
);
let mut buffer: Vec<u8> = vec![0; 1];
let mut buffer = &mut buffer[..];
let key = FragmentCacheKey::new(
fake_config.remote_ip.get(),
fake_config.local_ip.get(),
fragment_id as u32,
);
assert_eq!(
FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
.unwrap_err(),
FragmentReassemblyError::MissingFragments,
);
}
#[ip_test(I)]
fn test_ip_reassemble_after_timer<I: TestIpExt + netstack3_base::IpExt>() {
let fake_config = I::TEST_ADDRS;
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id = 5;
let key = test_key::<I>(fragment_id.into());
// Make sure no timers in the dispatcher yet.
bindings_ctx.timers.assert_no_timers_installed();
assert_eq!(core_ctx.state.cache.size, 0);
// Test that we properly reset fragment cache on timer.
// Process fragment #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Make sure a timer got added.
core_ctx.state.cache.timers.assert_timers([(
key,
(),
FakeInstant::from(REASSEMBLY_TIMEOUT),
)]);
validate_size(&core_ctx.state.cache);
// Process fragment #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
1,
true,
ExpectedResult::NeedMore,
);
// Make sure no new timers got added or fired.
core_ctx.state.cache.timers.assert_timers([(
key,
(),
FakeInstant::from(REASSEMBLY_TIMEOUT),
)]);
validate_size(&core_ctx.state.cache);
// Process fragment #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
2,
false,
ExpectedResult::Ready { total_body_len: 24 },
);
// Make sure no new timers got added or fired.
core_ctx.state.cache.timers.assert_timers([(
key,
(),
FakeInstant::from(REASSEMBLY_TIMEOUT),
)]);
validate_size(&core_ctx.state.cache);
// Trigger the timer (simulate a timer for the fragmented packet).
assert_eq!(
bindings_ctx.trigger_next_timer(&mut core_ctx),
Some(FragmentTimerId::<I>::default())
);
// Make sure no other times exist..
bindings_ctx.timers.assert_no_timers_installed();
assert_eq!(core_ctx.state.cache.size, 0);
// Attempt to reassemble the packet but get an error since the fragment
// data would have been reset/cleared.
let key = FragmentCacheKey::new(
fake_config.local_ip.get(),
fake_config.remote_ip.get(),
fragment_id as u32,
);
let packet_len = 44;
let mut buffer: Vec<u8> = vec![0; packet_len];
let mut buffer = &mut buffer[..];
assert_eq!(
FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
.unwrap_err(),
FragmentReassemblyError::InvalidKey,
);
}
#[ip_test(I)]
fn test_ip_fragment_cache_oom<I: TestIpExt + netstack3_base::IpExt>() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let mut fragment_id = 0;
const THRESHOLD: usize = 8196usize;
assert_eq!(core_ctx.state.cache.size, 0);
core_ctx.state.cache.threshold = THRESHOLD;
// Test that when cache size exceeds the threshold, process_fragment
// returns OOM.
while core_ctx.state.cache.size < THRESHOLD {
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
validate_size(&core_ctx.state.cache);
fragment_id += 1;
}
// Now that the cache is at or above the threshold, observe OOM.
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::OutOfMemory,
);
validate_size(&core_ctx.state.cache);
// Trigger the timers, which will clear the cache.
let timers = bindings_ctx
.trigger_timers_for(REASSEMBLY_TIMEOUT + Duration::from_secs(1), &mut core_ctx)
.len();
assert!(timers == 171 || timers == 293, "timers is {timers}"); // ipv4 || ipv6
assert_eq!(core_ctx.state.cache.size, 0);
validate_size(&core_ctx.state.cache);
// Can process fragments again.
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
}
#[ip_test(I)]
fn test_unordered_fragments<I: TestIpExt>() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id = 5;
// Test that we error on overlapping/duplicate fragments.
// Process fragment #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
2,
false,
ExpectedResult::NeedMore,
);
// Process fragment #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
1,
true,
ExpectedResult::Ready { total_body_len: 24 },
);
}
#[ip_test(I)]
fn test_ip_overlapping_single_fragment<I: TestIpExt>() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id = 5;
// Test that we error on overlapping/duplicate fragments.
// Process fragment #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #0 (overlaps original fragment #0 completely)
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::Invalid,
);
}
#[test]
fn test_ipv4_fragment_not_multiple_of_offset_unit() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv4>();
let fragment_id = 0;
assert_eq!(core_ctx.state.cache.size, 0);
// Test that fragment bodies must be a multiple of
// `FRAGMENT_BLOCK_SIZE`, except for the last fragment.
// Process fragment #0
process_ipv4_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1 (body size is not a multiple of
// `FRAGMENT_BLOCK_SIZE` and more flag is `true`).
let mut builder = get_ipv4_builder();
builder.id(fragment_id);
builder.fragment_offset(FragmentOffset::new(1).unwrap());
builder.mf_flag(true);
// Body with 1 byte less than `FRAGMENT_BLOCK_SIZE` so it is not a
// multiple of `FRAGMENT_BLOCK_SIZE`.
let mut body: Vec<u8> = Vec::new();
body.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
let mut buffer = Buf::new(body, ..).encapsulate(builder).serialize_vec_outer().unwrap();
let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
FragmentProcessingState::InvalidFragment
);
// Process fragment #1 (body size is not a multiple of
// `FRAGMENT_BLOCK_SIZE` but more flag is `false`). The last fragment is
// allowed to not be a multiple of `FRAGMENT_BLOCK_SIZE`.
let mut builder = get_ipv4_builder();
builder.id(fragment_id);
builder.fragment_offset(FragmentOffset::new(1).unwrap());
builder.mf_flag(false);
// Body with 1 byte less than `FRAGMENT_BLOCK_SIZE` so it is not a
// multiple of `FRAGMENT_BLOCK_SIZE`.
let mut body: Vec<u8> = Vec::new();
body.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
let mut buffer = Buf::new(body, ..).encapsulate(builder).serialize_vec_outer().unwrap();
let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
let (key, packet_len) = assert_frag_proc_state_ready!(
FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
TEST_ADDRS_V4.remote_ip.get(),
TEST_ADDRS_V4.local_ip.get(),
fragment_id,
35
);
validate_size(&core_ctx.state.cache);
let mut buffer: Vec<u8> = vec![0; packet_len];
let mut buffer = &mut buffer[..];
FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
.unwrap();
let packet = Ipv4Packet::parse_mut(&mut buffer, ()).unwrap();
let mut expected_body: Vec<u8> = Vec::new();
expected_body.extend(0..15);
assert_eq!(packet.body(), &expected_body[..]);
assert_eq!(core_ctx.state.cache.size, 0);
}
#[test]
fn test_ipv6_fragment_not_multiple_of_offset_unit() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv6>();
let fragment_id = 0;
assert_eq!(core_ctx.state.cache.size, 0);
// Test that fragment bodies must be a multiple of
// `FRAGMENT_BLOCK_SIZE`, except for the last fragment.
// Process fragment #0
process_ipv6_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1 (body size is not a multiple of
// `FRAGMENT_BLOCK_SIZE` and more flag is `true`).
let mut bytes = vec![0; 48];
bytes[..4].copy_from_slice(&[0x60, 0x20, 0x00, 0x77][..]);
bytes[6] = Ipv6ExtHdrType::Fragment.into(); // Next Header
bytes[7] = 64;
bytes[8..24].copy_from_slice(TEST_ADDRS_V6.remote_ip.bytes());
bytes[24..40].copy_from_slice(TEST_ADDRS_V6.local_ip.bytes());
bytes[40] = IpProto::Tcp.into();
bytes[42] = 0;
bytes[43] = (1 << 3) | 1;
bytes[44..48].copy_from_slice(&u32::try_from(fragment_id).unwrap().to_be_bytes());
bytes.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
let payload_len = (bytes.len() - 40) as u16;
bytes[4..6].copy_from_slice(&payload_len.to_be_bytes());
let mut buf = Buf::new(bytes, ..);
let packet = buf.parse::<Ipv6Packet<_>>().unwrap();
assert_matches!(
FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
FragmentProcessingState::InvalidFragment
);
// Process fragment #1 (body size is not a multiple of
// `FRAGMENT_BLOCK_SIZE` but more flag is `false`). The last fragment is
// allowed to not be a multiple of `FRAGMENT_BLOCK_SIZE`.
let mut bytes = vec![0; 48];
bytes[..4].copy_from_slice(&[0x60, 0x20, 0x00, 0x77][..]);
bytes[6] = Ipv6ExtHdrType::Fragment.into(); // Next Header
bytes[7] = 64;
bytes[8..24].copy_from_slice(TEST_ADDRS_V6.remote_ip.bytes());
bytes[24..40].copy_from_slice(TEST_ADDRS_V6.local_ip.bytes());
bytes[40] = IpProto::Tcp.into();
bytes[42] = 0;
bytes[43] = 1 << 3;
bytes[44..48].copy_from_slice(&u32::try_from(fragment_id).unwrap().to_be_bytes());
bytes.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
let payload_len = (bytes.len() - 40) as u16;
bytes[4..6].copy_from_slice(&payload_len.to_be_bytes());
let mut buf = Buf::new(bytes, ..);
let packet = buf.parse::<Ipv6Packet<_>>().unwrap();
let (key, packet_len) = assert_frag_proc_state_ready!(
FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
TEST_ADDRS_V6.remote_ip.get(),
TEST_ADDRS_V6.local_ip.get(),
fragment_id,
55
);
validate_size(&core_ctx.state.cache);
let mut buffer: Vec<u8> = vec![0; packet_len];
let mut buffer = &mut buffer[..];
FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
.unwrap();
let packet = Ipv6Packet::parse_mut(&mut buffer, ()).unwrap();
let mut expected_body: Vec<u8> = Vec::new();
expected_body.extend(0..15);
assert_eq!(packet.body(), &expected_body[..]);
assert_eq!(core_ctx.state.cache.size, 0);
}
#[ip_test(I)]
fn test_ip_reassembly_with_multiple_intertwined_packets<
I: TestIpExt + netstack3_base::IpExt,
>() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id_0 = 5;
let fragment_id_1 = 10;
// Test that we properly reassemble fragmented packets when they arrive
// intertwined with other packets' fragments.
// Process fragment #0 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_0,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #0 for packet #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_1,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_0,
1,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_1,
1,
true,
ExpectedResult::NeedMore,
);
// Process fragment #2 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_0,
2,
false,
ExpectedResult::Ready { total_body_len: 24 },
);
try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_0, 24);
// Process fragment #2 for packet #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_1,
2,
false,
ExpectedResult::Ready { total_body_len: 24 },
);
try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_1, 24);
}
#[ip_test(I)]
fn test_ip_reassembly_timer_with_multiple_intertwined_packets<
I: TestIpExt + netstack3_base::IpExt,
>() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let fragment_id_0 = 5;
let fragment_id_1 = 10;
let fragment_id_2 = 15;
// Test that we properly timer with multiple intertwined packets that
// all arrive out of order. We expect packet 1 and 3 to succeed, and
// packet 1 to fail due to the reassembly timer.
//
// The flow of events:
// T=0s:
// - Packet #0, Fragment #0 arrives (timer scheduled for T=60s).
// - Packet #1, Fragment #2 arrives (timer scheduled for T=60s).
// - Packet #2, Fragment #2 arrives (timer scheduled for T=60s).
// T=30s:
// - Packet #0, Fragment #2 arrives.
// T=40s:
// - Packet #2, Fragment #1 arrives.
// - Packet #0, Fragment #1 arrives (timer cancelled since all
// fragments arrived).
// T=50s:
// - Packet #1, Fragment #0 arrives.
// - Packet #2, Fragment #0 arrives (timer cancelled since all
// fragments arrived).
// T=60s:
// - Timeout for reassembly of Packet #1.
// - Packet #1, Fragment #1 arrives (final fragment but timer
// already triggered so fragment not complete).
// Process fragment #0 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_0,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1 for packet #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_1,
2,
false,
ExpectedResult::NeedMore,
);
// Process fragment #2 for packet #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_2,
2,
false,
ExpectedResult::NeedMore,
);
// Advance time by 30s (should be at 30s now).
assert_empty(bindings_ctx.trigger_timers_for(Duration::from_secs(30), &mut core_ctx));
// Process fragment #2 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_0,
2,
false,
ExpectedResult::NeedMore,
);
// Advance time by 10s (should be at 40s now).
assert_empty(bindings_ctx.trigger_timers_for(Duration::from_secs(10), &mut core_ctx));
// Process fragment #1 for packet #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_2,
1,
true,
ExpectedResult::NeedMore,
);
// Process fragment #1 for packet #0
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_0,
1,
true,
ExpectedResult::Ready { total_body_len: 24 },
);
try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_0, 24);
// Advance time by 10s (should be at 50s now).
assert_empty(bindings_ctx.trigger_timers_for(Duration::from_secs(10), &mut core_ctx));
// Process fragment #0 for packet #1
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_1,
0,
true,
ExpectedResult::NeedMore,
);
// Process fragment #0 for packet #2
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_2,
0,
true,
ExpectedResult::Ready { total_body_len: 24 },
);
try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_2, 24);
// Advance time by 10s (should be at 60s now)), triggering the timer for
// the reassembly of packet #1
bindings_ctx.trigger_timers_for_and_expect(
Duration::from_secs(10),
[FragmentTimerId::<I>::default()],
&mut core_ctx,
);
// Make sure no other times exist.
bindings_ctx.timers.assert_no_timers_installed();
// Process fragment #2 for packet #1 Should get a need more return value
// since even though we technically received all the fragments, the last
// fragment didn't arrive until after the reassembly timer.
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
fragment_id_1,
2,
true,
ExpectedResult::NeedMore,
);
}
#[test]
fn test_no_more_fragments_in_middle_of_block() {
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv4>();
process_ipv4_fragment(
&mut core_ctx,
&mut bindings_ctx,
0,
100,
false,
ExpectedResult::NeedMore,
);
process_ipv4_fragment(
&mut core_ctx,
&mut bindings_ctx,
0,
50,
false,
ExpectedResult::Invalid,
);
}
#[ip_test(I)]
fn test_cancel_timer_on_overlap<I: TestIpExt>() {
const FRAGMENT_ID: u16 = 1;
const FRAGMENT_OFFSET: u16 = 0;
const M_FLAG: bool = true;
let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
let TestAddrs { local_ip, remote_ip, .. } = I::TEST_ADDRS;
let key = FragmentCacheKey::new(remote_ip.get(), local_ip.get(), FRAGMENT_ID.into());
// Do this a couple times to make sure that new packets matching the
// invalid packet's fragment cache key create a new entry.
for _ in 0..=2 {
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
FRAGMENT_ID,
FRAGMENT_OFFSET,
M_FLAG,
ExpectedResult::NeedMore,
);
core_ctx
.state
.cache
.timers
.assert_timers_after(&mut bindings_ctx, [(key, (), REASSEMBLY_TIMEOUT)]);
process_ip_fragment(
&mut core_ctx,
&mut bindings_ctx,
FRAGMENT_ID,
FRAGMENT_OFFSET,
M_FLAG,
ExpectedResult::Invalid,
);
assert_eq!(bindings_ctx.timers.timers(), [],);
}
}
}