netstack3_ip/
reassembly.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Module for IP fragmented packet reassembly support.
//!
//! `reassembly` is a utility to support reassembly of fragmented IP packets.
//! Fragmented packets are associated by a combination of the packets' source
//! address, destination address and identification value. When a potentially
//! fragmented packet is received, this utility will check to see if the packet
//! is in fact fragmented or not. If it isn't fragmented, it will be returned as
//! is without any modification. If it is fragmented, this utility will capture
//! its body and store it in a cache while waiting for all the fragments for a
//! packet to arrive. The header information from a fragment with offset set to
//! 0 will also be kept to add to the final, reassembled packet. Once this
//! utility has received all the fragments for a combination of source address,
//! destination address and identification value, the implementer will need to
//! allocate a buffer of sufficient size to reassemble the final packet into and
//! pass it to this utility. This utility will then attempt to reassemble and
//! parse the packet, which will be returned to the caller. The caller should
//! then handle the returned packet as a normal IP packet. Note, there is a
//! timer from receipt of the first fragment to reassembly of the final packet.
//! See [`REASSEMBLY_TIMEOUT_SECONDS`].
//!
//! Note, this utility does not support reassembly of jumbogram packets.
//! According to the IPv6 Jumbogram RFC (RFC 2675), the jumbogram payload option
//! is relevant only for nodes that may be attached to links with a link MTU
//! greater than 65575 bytes. Note, the maximum size of a non-jumbogram IPv6
//! packet is also 65575 (as the payload length field for IP packets is 16 bits
//! + 40 byte IPv6 header). If a link supports an MTU greater than the maximum
//! size of a non-jumbogram packet, the packet should not be fragmented.

use alloc::collections::hash_map::{Entry, HashMap};
use alloc::collections::{BTreeSet, BinaryHeap};
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::time::Duration;

use assert_matches::assert_matches;
use log::debug;
use net_types::ip::{GenericOverIp, Ip, IpAddr, IpAddress, IpVersionMarker};
use netstack3_base::{
    CoreTimerContext, HandleableTimer, InstantBindingsTypes, IpExt, LocalTimerHeap,
    TimerBindingsTypes, TimerContext,
};
use packet::BufferViewMut;
use packet_formats::ip::IpPacket;
use packet_formats::ipv4::{Ipv4Header, Ipv4Packet};
use packet_formats::ipv6::ext_hdrs::Ipv6ExtensionHeaderData;
use packet_formats::ipv6::Ipv6Packet;
use zerocopy::{SplitByteSlice, SplitByteSliceMut};

/// The maximum amount of time from receipt of the first fragment to reassembly
/// of a packet. Note, "first fragment" does not mean a fragment with offset 0;
/// it means the first fragment packet we receive with a new combination of
/// source address, destination address and fragment identification value.
const REASSEMBLY_TIMEOUT: Duration = Duration::from_secs(60);

/// Number of bytes per fragment block for IPv4 and IPv6.
///
/// IPv4 outlines the fragment block size in RFC 791 section 3.1, under the
/// fragment offset field's description: "The fragment offset is measured in
/// units of 8 octets (64 bits)".
///
/// IPv6 outlines the fragment block size in RFC 8200 section 4.5, under the
/// fragment offset field's description: "The offset, in 8-octet units, of the
/// data following this header".
const FRAGMENT_BLOCK_SIZE: u8 = 8;

/// Maximum number of fragment blocks an IPv4 or IPv6 packet can have.
///
/// We use this value because both IPv4 fixed header's fragment offset field and
/// IPv6 fragment extension header's fragment offset field are 13 bits wide.
const MAX_FRAGMENT_BLOCKS: u16 = 8191;

/// Maximum number of bytes of all currently cached fragments per IP protocol.
///
/// If the current cache size is less than this number, a new fragment can be
/// cached (even if this will result in the total cache size exceeding this
/// threshold). If the current cache size >= this number, the incoming fragment
/// will be dropped.
const MAX_FRAGMENT_CACHE_SIZE: usize = 4 * 1024 * 1024;

/// The state context for the fragment cache.
pub trait FragmentContext<I: Ip, BT: FragmentBindingsTypes> {
    /// Returns a mutable reference to the fragment cache.
    fn with_state_mut<O, F: FnOnce(&mut IpPacketFragmentCache<I, BT>) -> O>(&mut self, cb: F) -> O;
}

/// The bindings types for IP packet fragment reassembly.
pub trait FragmentBindingsTypes: TimerBindingsTypes + InstantBindingsTypes {}
impl<BT> FragmentBindingsTypes for BT where BT: TimerBindingsTypes + InstantBindingsTypes {}

/// The bindings execution context for IP packet fragment reassembly.
pub trait FragmentBindingsContext: TimerContext + FragmentBindingsTypes {}
impl<BC> FragmentBindingsContext for BC where BC: TimerContext + FragmentBindingsTypes {}

/// The timer ID for the fragment cache.
#[derive(Hash, Eq, PartialEq, Default, Clone, Debug, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct FragmentTimerId<I: Ip>(IpVersionMarker<I>);

/// An implementation of a fragment cache.
pub trait FragmentHandler<I: IpExt, BC> {
    /// Attempts to process a packet fragment.
    ///
    /// # Panics
    ///
    /// Panics if the packet has no fragment data.
    fn process_fragment<B: SplitByteSlice>(
        &mut self,
        bindings_ctx: &mut BC,
        packet: I::Packet<B>,
    ) -> FragmentProcessingState<I, B>
    where
        I::Packet<B>: FragmentablePacket;

    /// Attempts to reassemble a packet.
    ///
    /// Attempts to reassemble a packet associated with a given
    /// `FragmentCacheKey`, `key`, and cancels the timer to reset reassembly
    /// data. The caller is expected to allocate a buffer of sufficient size
    /// (available from `process_fragment` when it returns a
    /// `FragmentProcessingState::Ready` value) and provide it to
    /// `reassemble_packet` as `buffer` where the packet will be reassembled
    /// into.
    ///
    /// # Panics
    ///
    /// Panics if the provided `buffer` does not have enough capacity for the
    /// reassembled packet. Also panics if a different `ctx` is passed to
    /// `reassemble_packet` from the one passed to `process_fragment` when
    /// processing a packet with a given `key` as `reassemble_packet` will fail
    /// to cancel the reassembly timer.
    fn reassemble_packet<B: SplitByteSliceMut, BV: BufferViewMut<B>>(
        &mut self,
        bindings_ctx: &mut BC,
        key: &FragmentCacheKey<I::Addr>,
        buffer: BV,
    ) -> Result<(), FragmentReassemblyError>;
}

impl<I: IpExt, BC: FragmentBindingsContext, CC: FragmentContext<I, BC>> FragmentHandler<I, BC>
    for CC
{
    fn process_fragment<B: SplitByteSlice>(
        &mut self,
        bindings_ctx: &mut BC,
        packet: I::Packet<B>,
    ) -> FragmentProcessingState<I, B>
    where
        I::Packet<B>: FragmentablePacket,
    {
        self.with_state_mut(|cache| {
            let (res, timer_action) = cache.process_fragment(packet);

            if let Some(timer_action) = timer_action {
                match timer_action {
                    CacheTimerAction::CreateNewTimer(key) => {
                        assert_eq!(
                            cache.timers.schedule_after(bindings_ctx, key, (), REASSEMBLY_TIMEOUT),
                            None
                        )
                    }
                    CacheTimerAction::CancelExistingTimer(key) => {
                        assert_ne!(cache.timers.cancel(bindings_ctx, &key), None)
                    }
                }
            }

            res
        })
    }

    fn reassemble_packet<B: SplitByteSliceMut, BV: BufferViewMut<B>>(
        &mut self,
        bindings_ctx: &mut BC,
        key: &FragmentCacheKey<I::Addr>,
        buffer: BV,
    ) -> Result<(), FragmentReassemblyError> {
        self.with_state_mut(|cache| {
            let res = cache.reassemble_packet(key, buffer);

            match res {
                Ok(_) | Err(FragmentReassemblyError::PacketParsingError) => {
                    // Cancel the reassembly timer as we attempt reassembly which
                    // means we had all the fragments for the final packet, even
                    // if parsing the reassembled packet failed.
                    assert_matches!(cache.timers.cancel(bindings_ctx, key), Some(_));
                }
                Err(FragmentReassemblyError::InvalidKey)
                | Err(FragmentReassemblyError::MissingFragments) => {}
            }

            res
        })
    }
}

impl<I: IpExt, BC: FragmentBindingsContext, CC: FragmentContext<I, BC>> HandleableTimer<CC, BC>
    for FragmentTimerId<I>
{
    fn handle(self, core_ctx: &mut CC, bindings_ctx: &mut BC, _: BC::UniqueTimerId) {
        let Self(IpVersionMarker { .. }) = self;
        core_ctx.with_state_mut(|cache| {
            let Some((key, ())) = cache.timers.pop(bindings_ctx) else {
                return;
            };

            // If a timer fired, the `key` must still exist in our fragment cache.
            let FragmentCacheData { missing_blocks: _, body_fragments, header: _, total_size } =
                assert_matches!(cache.remove_data(&key), Some(c) => c);
            debug!(
                "reassembly for {key:?} \
                timed out with {} fragments and {total_size} bytes",
                body_fragments.len(),
            );
        });
    }
}

/// Trait that must be implemented by any packet type that is fragmentable.
pub trait FragmentablePacket {
    /// Return fragment identifier data.
    ///
    /// Returns the fragment identification, offset and more flag as `(a, b, c)`
    /// where `a` is the fragment identification value, `b` is the fragment
    /// offset and `c` is the more flag.
    ///
    /// # Panics
    ///
    /// Panics if the packet has no fragment data.
    fn fragment_data(&self) -> (u32, u16, bool);
}

impl<B: SplitByteSlice> FragmentablePacket for Ipv4Packet<B> {
    fn fragment_data(&self) -> (u32, u16, bool) {
        (u32::from(self.id()), self.fragment_offset().into_raw(), self.mf_flag())
    }
}

impl<B: SplitByteSlice> FragmentablePacket for Ipv6Packet<B> {
    fn fragment_data(&self) -> (u32, u16, bool) {
        for ext_hdr in self.iter_extension_hdrs() {
            if let Ipv6ExtensionHeaderData::Fragment { fragment_data } = ext_hdr.data() {
                return (
                    fragment_data.identification(),
                    fragment_data.fragment_offset().into_raw(),
                    fragment_data.m_flag(),
                );
            }
        }

        unreachable!(
            "Should never call this function if the packet does not have a fragment header"
        );
    }
}

/// Possible return values for [`IpPacketFragmentCache::process_fragment`].
#[derive(Debug)]
pub enum FragmentProcessingState<I: IpExt, B: SplitByteSlice> {
    /// The provided packet is not fragmented so no processing is required.
    /// The packet is returned with this value without any modification.
    NotNeeded(I::Packet<B>),

    /// The provided packet is fragmented but it is malformed.
    ///
    /// Possible reasons for being malformed are:
    ///  1) Body is not a multiple of `FRAGMENT_BLOCK_SIZE` and  it is not the
    ///     last fragment (last fragment of a packet, not last fragment received
    ///     for a packet).
    ///  2) Overlaps with an existing fragment. This is explicitly not allowed
    ///     for IPv6 as per RFC 8200 section 4.5 (more details in RFC 5722). We
    ///     choose the same behaviour for IPv4 for the same reasons.
    ///  3) Packet's fragment offset + # of fragment blocks >
    ///     `MAX_FRAGMENT_BLOCKS`.
    // TODO(ghanan): Investigate whether disallowing overlapping fragments for
    //               IPv4 cause issues interoperating with hosts that produce
    //               overlapping fragments.
    InvalidFragment,

    /// Successfully processed the provided fragment. We are still waiting on
    /// more fragments for a packet to arrive before being ready to reassemble
    /// the packet.
    NeedMoreFragments,

    /// Cannot process the fragment because `MAX_FRAGMENT_CACHE_SIZE` is
    /// reached.
    OutOfMemory,

    /// Successfully processed the provided fragment. We now have all the
    /// fragments we need to reassemble the packet. The caller must create a
    /// buffer with capacity for at least `packet_len` bytes and provide the
    /// buffer and `key` to `reassemble_packet`.
    Ready { key: FragmentCacheKey<I::Addr>, packet_len: usize },
}

/// Possible errors when attempting to reassemble a packet.
#[derive(Debug, PartialEq, Eq)]
pub enum FragmentReassemblyError {
    /// At least one fragment for a packet has not arrived.
    MissingFragments,

    /// A `FragmentCacheKey` is not associated with any packet. This could be
    /// because either no fragment has yet arrived for a packet associated with
    /// a `FragmentCacheKey` or some fragments did arrive, but the reassembly
    /// timer expired and got discarded.
    InvalidKey,

    /// Packet parsing error.
    PacketParsingError,
}

/// Fragment Cache Key.
///
/// Composed of the original packet's source address, destination address,
/// and fragment id.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct FragmentCacheKey<A: IpAddress>(A, A, u32);

impl<A: IpAddress> FragmentCacheKey<A> {
    pub(crate) fn new(src_ip: A, dst_ip: A, fragment_id: u32) -> Self {
        FragmentCacheKey(src_ip, dst_ip, fragment_id)
    }
}

/// An inclusive-inclusive range of bytes within a reassembled packet.
// NOTE: We use this instead of `std::ops::RangeInclusive` because the latter
// provides getter methods which return references, and it adds a lot of
// unnecessary dereferences.
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
struct BlockRange {
    start: u16,
    end: u16,
}

/// Data required for fragmented packet reassembly.
#[derive(Debug)]
struct FragmentCacheData {
    /// List of non-overlapping inclusive ranges of fragment blocks required
    /// before being ready to reassemble a packet.
    ///
    /// When creating a new instance of `FragmentCacheData`, we will set
    /// `missing_blocks` to a list with a single element representing all
    /// blocks, (0, MAX_VALUE). In this case, MAX_VALUE will be set to
    /// `core::u16::MAX`.
    missing_blocks: BTreeSet<BlockRange>,

    /// Received fragment blocks.
    ///
    /// We use a binary heap for help when reassembling packets. When we
    /// reassemble packets, we will want to fill up a new buffer with all the
    /// body fragments. The easiest way to do this is in order, from the
    /// fragment with offset 0 to the fragment with the highest offset. Since we
    /// only need to enforce the order when reassembling, we use a min-heap so
    /// we have a defined order (increasing fragment offset values) when
    /// popping. `BinaryHeap` is technically a max-heap, but we use the negative
    /// of the offset values as the key for the heap. See
    /// [`PacketBodyFragment::new`].
    body_fragments: BinaryHeap<PacketBodyFragment>,

    /// The header data for the reassembled packet.
    ///
    /// The header of the fragment packet with offset 0 will be used as the
    /// header for the final, reassembled packet.
    header: Option<Vec<u8>>,

    /// Total number of bytes in the reassembled packet.
    ///
    /// This is used so that we don't have to iterated through `body_fragments`
    /// and sum the partial body sizes to calculate the reassembled packet's
    /// size.
    total_size: usize,
}

impl Default for FragmentCacheData {
    fn default() -> FragmentCacheData {
        FragmentCacheData {
            missing_blocks: core::iter::once(BlockRange { start: 0, end: u16::MAX }).collect(),
            body_fragments: BinaryHeap::new(),
            header: None,
            total_size: 0,
        }
    }
}

impl FragmentCacheData {
    /// Attempts to find a gap where `fragment_blocks_range` will fit in.
    ///
    /// Returns `Some(o)` if a valid gap is found where `o` is the gap's offset
    /// range; otherwise, returns `None`. `fragment_blocks_range` is an
    /// inclusive range of fragment block offsets.
    fn find_gap(&self, BlockRange { start, end }: BlockRange) -> Option<BlockRange> {
        use core::ops::Bound::{Included, Unbounded};

        // Find a gap that starts earlier or at the same point as a fragment.
        let possible_free_place =
            self.missing_blocks.range((Unbounded, Included(BlockRange { start, end: u16::MAX })));

        // Make sure that `fragment` belongs purely within
        // `potential_gap`.
        //
        // If `fragment` does not fit purely within
        // `potential_gap`, then at least one block in
        // `fragment` overlaps with an already received block.
        // We should never receive overlapping fragments from non-malicious
        // nodes.
        possible_free_place
            .last()
            .filter(|&range| {
                // range.start <= start must be always true here - so comparing only ending part
                return end <= range.end;
            })
            .copied()
    }
}

/// A cache of inbound IP packet fragments.
#[derive(Debug)]
pub struct IpPacketFragmentCache<I: Ip, BT: FragmentBindingsTypes> {
    cache: HashMap<FragmentCacheKey<I::Addr>, FragmentCacheData>,
    size: usize,
    threshold: usize,
    timers: LocalTimerHeap<FragmentCacheKey<I::Addr>, (), BT>,
}

impl<I: Ip, BC: FragmentBindingsContext> IpPacketFragmentCache<I, BC> {
    /// Creates a new `IpFragmentCache`.
    pub fn new<CC: CoreTimerContext<FragmentTimerId<I>, BC>>(
        bindings_ctx: &mut BC,
    ) -> IpPacketFragmentCache<I, BC> {
        IpPacketFragmentCache {
            cache: HashMap::new(),
            size: 0,
            threshold: MAX_FRAGMENT_CACHE_SIZE,
            timers: LocalTimerHeap::new(bindings_ctx, CC::convert_timer(Default::default())),
        }
    }
}

enum CacheTimerAction<A: IpAddress> {
    CreateNewTimer(FragmentCacheKey<A>),
    CancelExistingTimer(FragmentCacheKey<A>),
}

impl<I: IpExt, BT: FragmentBindingsTypes> IpPacketFragmentCache<I, BT> {
    /// Attempts to process a packet fragment.
    ///
    /// # Panics
    ///
    /// Panics if the packet has no fragment data.
    fn process_fragment<B: SplitByteSlice>(
        &mut self,
        packet: I::Packet<B>,
    ) -> (FragmentProcessingState<I, B>, Option<CacheTimerAction<I::Addr>>)
    where
        I::Packet<B>: FragmentablePacket,
    {
        if self.above_size_threshold() {
            return (FragmentProcessingState::OutOfMemory, None);
        }

        // Get the fragment data.
        let (id, offset, m_flag) = packet.fragment_data();

        // Check if `packet` is actually fragmented. We know it is not
        // fragmented if the fragment offset is 0 (contains first fragment) and
        // we have no more fragments. This means the first fragment is the only
        // fragment, implying we have a full packet.
        if offset == 0 && !m_flag {
            return (FragmentProcessingState::NotNeeded(packet), None);
        }

        // Make sure packet's body isn't empty. Since at this point we know that
        // the packet is definitely fragmented (`offset` is not 0 or `m_flag` is
        // `true`), we simply let the caller know we need more fragments. This
        // should never happen, but just in case :).
        if packet.body().is_empty() {
            return (FragmentProcessingState::NeedMoreFragments, None);
        }

        // Make sure body is a multiple of `FRAGMENT_BLOCK_SIZE` bytes, or
        // `packet` contains the last fragment block which is allowed to be less
        // than `FRAGMENT_BLOCK_SIZE` bytes.
        if m_flag && (packet.body().len() % (FRAGMENT_BLOCK_SIZE as usize) != 0) {
            return (FragmentProcessingState::InvalidFragment, None);
        }

        // Key used to find this connection's fragment cache data.
        let key = FragmentCacheKey::new(packet.src_ip(), packet.dst_ip(), id);

        // The number of fragment blocks `packet` contains.
        //
        // Note, we are calculating the ceiling of an integer division.
        // Essentially:
        //     ceil(packet.body.len() / FRAGMENT_BLOCK_SIZE)
        //
        // We need to calculate the ceiling of the division because the final
        // fragment block for a reassembled packet is allowed to contain less
        // than `FRAGMENT_BLOCK_SIZE` bytes.
        //
        // We know `packet.body().len() - 1` will never be less than 0 because
        // we already made sure that `packet`'s body is not empty, and it is
        // impossible to have a negative body size.
        let num_fragment_blocks = 1 + ((packet.body().len() - 1) / (FRAGMENT_BLOCK_SIZE as usize));
        assert!(num_fragment_blocks > 0);

        // The range of fragment blocks `packet` contains.
        //
        // The maximum number of fragment blocks a reassembled packet is allowed
        // to contain is `MAX_FRAGMENT_BLOCKS` so we make sure that the fragment
        // we received does not violate this.
        let fragment_blocks_range =
            if let Ok(offset_end) = u16::try_from((offset as usize) + num_fragment_blocks - 1) {
                if offset_end <= MAX_FRAGMENT_BLOCKS {
                    BlockRange { start: offset, end: offset_end }
                } else {
                    return (FragmentProcessingState::InvalidFragment, None);
                }
            } else {
                return (FragmentProcessingState::InvalidFragment, None);
            };

        // Get (or create) the fragment cache data.
        let (fragment_data, timer_not_yet_scheduled) = self.get_or_create(key);

        // Find the gap where `packet` belongs.
        let found_gap = match fragment_data.find_gap(fragment_blocks_range) {
            // We did not find a potential gap `packet` fits in so some of the
            // fragment blocks in `packet` overlaps with fragment blocks we
            // already received.
            None => {
                // Drop all reassembly data as per RFC 8200 section 4.5 (IPv6).
                // See RFC 5722 for more information.
                //
                // IPv4 (RFC 791) does not specify what to do for overlapped
                // fragments. RFC 1858 section 4.2 outlines a way to prevent an
                // overlapping fragment attack for IPv4, but this is primarily
                // for IP filtering since "no standard requires that an
                // overlap-safe reassemble algorithm be used" on hosts. In
                // practice, non-malicious nodes should not intentionally send
                // data for the same fragment block multiple times, so we will
                // do the same thing as IPv6 in this case.
                //
                // TODO(ghanan): Check to see if the fragment block's data is
                //               identical to already received data before
                //               dropping the reassembly data as packets may be
                //               duplicated in the network. Duplicate packets
                //               which are also fragmented are probably rare, so
                //               we should first determine if it is even
                //               worthwhile to do this check first. Note, we can
                //               choose to simply not do this check as RFC 8200
                //               section 4.5 mentions an implementation *may
                //               choose* to do this check. It does not say we
                //               MUST, so we would not be violating the RFC if
                //               we don't check for this case and just drop the
                //               packet.
                assert_matches!(self.remove_data(&key), Some(_));

                return (
                    FragmentProcessingState::InvalidFragment,
                    (!timer_not_yet_scheduled).then(|| CacheTimerAction::CancelExistingTimer(key)),
                );
            }
            Some(f) => f,
        };

        let timer_id = timer_not_yet_scheduled.then(|| CacheTimerAction::CreateNewTimer(key));

        // Remove `found_gap` since the gap as it exists will no longer be
        // valid.
        assert!(fragment_data.missing_blocks.remove(&found_gap));

        // If the received fragment blocks start after the beginning of
        // `found_gap`, create a new gap between the beginning of `found_gap`
        // and the first fragment block contained in `packet`.
        //
        // Example:
        //   `packet` w/ fragments [4, 7]
        //                 |-----|-----|-----|-----|
        //                    4     5     6     7
        //
        //   `found_gap` w/ fragments [X, 7] where 0 <= X < 4
        //     |-----| ... |-----|-----|-----|-----|
        //        X    ...    4     5     6     7
        //
        //   Here we can see that with a `found_gap` of [2, 7], `packet` covers
        //   [4, 7] but we are still missing [X, 3] so we create a new gap of
        //   [X, 3].
        if found_gap.start < fragment_blocks_range.start {
            assert!(fragment_data
                .missing_blocks
                .insert(BlockRange { start: found_gap.start, end: fragment_blocks_range.end - 1 }));
        }

        // If the received fragment blocks end before the end of `found_gap` and
        // we expect more fragments, create a new gap between the last fragment
        // block contained in `packet` and the end of `found_gap`.
        //
        // Example 1:
        //   `packet` w/ fragments [4, 7] & m_flag = true
        //     |-----|-----|-----|-----|
        //        4     5     6     7
        //
        //   `found_gap` w/ fragments [4, Y] where 7 < Y <= `MAX_FRAGMENT_BLOCKS`.
        //     |-----|-----|-----|-----| ... |-----|
        //        4     5     6     7    ...    Y
        //
        //   Here we can see that with a `found_gap` of [4, Y], `packet` covers
        //   [4, 7] but we still expect more fragment blocks after the blocks in
        //   `packet` (as noted by `m_flag`) so we are still missing [8, Y] so
        //   we create a new gap of [8, Y].
        //
        // Example 2:
        //   `packet` w/ fragments [4, 7] & m_flag = false
        //     |-----|-----|-----|-----|
        //        4     5     6     7
        //
        //   `found_gap` w/ fragments [4, Y] where MAX = `MAX_FRAGMENT_BLOCKS`.
        //     |-----|-----|-----|-----| ... |-----|
        //        4     5     6     7    ...   MAX
        //
        //   Here we can see that with a `found_gap` of [4, MAX], `packet`
        //   covers [4, 7] and we don't expect more fragment blocks after the
        //   blocks in `packet` (as noted by `m_flag`) so we don't create a new
        //   gap. Note, if we encounter a `packet` where `m_flag` is false,
        //   `found_gap`'s end value must be MAX because we should only ever not
        //   create a new gap where the end is MAX when we are processing a
        //   packet with the last fragment block.
        if found_gap.end > fragment_blocks_range.end && m_flag {
            assert!(fragment_data
                .missing_blocks
                .insert(BlockRange { start: fragment_blocks_range.end + 1, end: found_gap.end }));
        } else if found_gap.end > fragment_blocks_range.end && !m_flag && found_gap.end < u16::MAX {
            // There is another fragment after this one that is already present
            // in the cache. That means that this fragment can't be the last
            // one (must have `m_flag` set).
            return (FragmentProcessingState::InvalidFragment, timer_id);
        } else {
            // Make sure that if we are not adding a fragment after the packet,
            // it is because `packet` goes up to the `found_gap`'s end boundary,
            // or this is the last fragment. If it is the last fragment for a
            // packet, we make sure that `found_gap`'s end value is
            // `core::u16::MAX`.
            assert!(
                found_gap.end == fragment_blocks_range.end
                    || (!m_flag && found_gap.end == u16::MAX),
                "found_gap: {:?}, fragment_blocks_range: {:?} offset: {:?}, m_flag: {:?}",
                found_gap,
                fragment_blocks_range,
                offset,
                m_flag
            );
        }

        let mut added_bytes = 0;
        // Get header buffer from `packet` if its fragment offset equals to 0.
        if offset == 0 {
            assert_eq!(fragment_data.header, None);
            let header = get_header::<B, I>(&packet);
            added_bytes = header.len();
            fragment_data.header = Some(header);
        }

        // Add our `packet`'s body to the store of body fragments.
        let mut body = Vec::with_capacity(packet.body().len());
        body.extend_from_slice(packet.body());
        added_bytes += body.len();
        fragment_data.total_size += added_bytes;
        fragment_data.body_fragments.push(PacketBodyFragment::new(offset, body));

        // If we still have missing fragments, let the caller know that we are
        // still waiting on some fragments. Otherwise, we let them know we are
        // ready to reassemble and give them a key and the final packet length
        // so they can allocate a sufficient buffer and call
        // `reassemble_packet`.
        let result = if fragment_data.missing_blocks.is_empty() {
            FragmentProcessingState::Ready { key, packet_len: fragment_data.total_size }
        } else {
            FragmentProcessingState::NeedMoreFragments
        };

        self.increment_size(added_bytes);
        (result, timer_id)
    }

    /// Attempts to reassemble a packet.
    ///
    /// Attempts to reassemble a packet associated with a given
    /// `FragmentCacheKey`, `key`, and cancels the timer to reset reassembly
    /// data. The caller is expected to allocate a buffer of sufficient size
    /// (available from `process_fragment` when it returns a
    /// `FragmentProcessingState::Ready` value) and provide it to
    /// `reassemble_packet` as `buffer` where the packet will be reassembled
    /// into.
    ///
    /// # Panics
    ///
    /// Panics if the provided `buffer` does not have enough capacity for the
    /// reassembled packet. Also panics if a different `ctx` is passed to
    /// `reassemble_packet` from the one passed to `process_fragment` when
    /// processing a packet with a given `key` as `reassemble_packet` will fail
    /// to cancel the reassembly timer.
    fn reassemble_packet<B: SplitByteSliceMut, BV: BufferViewMut<B>>(
        &mut self,
        key: &FragmentCacheKey<I::Addr>,
        buffer: BV,
    ) -> Result<(), FragmentReassemblyError> {
        let entry = match self.cache.entry(*key) {
            Entry::Occupied(entry) => entry,
            Entry::Vacant(_) => return Err(FragmentReassemblyError::InvalidKey),
        };

        // Make sure we are not missing fragments.
        if !entry.get().missing_blocks.is_empty() {
            return Err(FragmentReassemblyError::MissingFragments);
        }
        // Remove the entry from the cache now that we've validated that we will
        // be able to reassemble it.
        let (_key, data) = entry.remove_entry();
        self.size -= data.total_size;

        // If we are not missing fragments, we must have header data.
        assert_matches!(data.header, Some(_));

        // TODO(https://github.com/rust-lang/rust/issues/59278): Use
        // `BinaryHeap::into_iter_sorted`.
        let body_fragments = data.body_fragments.into_sorted_vec().into_iter().map(|x| x.data);
        I::Packet::reassemble_fragmented_packet(buffer, data.header.unwrap(), body_fragments)
            .map_err(|_| FragmentReassemblyError::PacketParsingError)
    }

    /// Gets or creates a new entry in the cache for a given `key`.
    ///
    /// Returns a tuple whose second component indicates whether a reassembly
    /// timer needs to be scheduled.
    fn get_or_create(&mut self, key: FragmentCacheKey<I::Addr>) -> (&mut FragmentCacheData, bool) {
        match self.cache.entry(key) {
            Entry::Occupied(e) => (e.into_mut(), false),
            Entry::Vacant(e) => {
                // We have no reassembly data yet so this fragment is the first
                // one associated with the given `key`. Create a new entry in
                // the hash table and let the caller know to schedule a timer to
                // reset the entry.
                (e.insert(FragmentCacheData::default()), true)
            }
        }
    }

    fn above_size_threshold(&self) -> bool {
        self.size >= self.threshold
    }

    fn increment_size(&mut self, sz: usize) {
        assert!(!self.above_size_threshold());
        self.size += sz;
    }

    fn remove_data(&mut self, key: &FragmentCacheKey<I::Addr>) -> Option<FragmentCacheData> {
        let data = self.cache.remove(key)?;
        self.size -= data.total_size;
        Some(data)
    }
}

/// Gets the header bytes for a packet.
fn get_header<B: SplitByteSlice, I: IpExt>(packet: &I::Packet<B>) -> Vec<u8> {
    match packet.as_ip_addr_ref() {
        IpAddr::V4(packet) => packet.copy_header_bytes_for_fragment(),
        IpAddr::V6(packet) => {
            // We are guaranteed not to panic here because we will only panic if
            // `packet` does not have a fragment extension header. We can only get
            // here if `packet` is a fragment packet, so we know that `packet` has a
            // fragment extension header.
            packet.copy_header_bytes_for_fragment()
        }
    }
}

/// A fragment of a packet's body.
#[derive(Debug, PartialEq, Eq)]
struct PacketBodyFragment {
    offset: u16,
    data: Vec<u8>,
}

impl PacketBodyFragment {
    /// Constructs a new `PacketBodyFragment` to be stored in a `BinaryHeap`.
    fn new(offset: u16, data: Vec<u8>) -> Self {
        PacketBodyFragment { offset, data }
    }
}

// The ordering of a `PacketBodyFragment` is only dependant on the fragment
// offset.
impl PartialOrd for PacketBodyFragment {
    fn partial_cmp(&self, other: &PacketBodyFragment) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for PacketBodyFragment {
    fn cmp(&self, other: &Self) -> Ordering {
        self.offset.cmp(&other.offset)
    }
}

#[cfg(test)]
mod tests {
    use alloc::vec;

    use assert_matches::assert_matches;
    use ip_test_macro::ip_test;
    use net_types::ip::{Ipv4, Ipv6};
    use net_types::Witness;
    use netstack3_base::testutil::{
        assert_empty, FakeBindingsCtx, FakeCoreCtx, FakeInstant, FakeTimerCtxExt, TestAddrs,
        TEST_ADDRS_V4, TEST_ADDRS_V6,
    };
    use netstack3_base::{CtxPair, IntoCoreTimerCtx};
    use packet::{Buf, ParsablePacket, ParseBuffer, Serializer};
    use packet_formats::ip::{FragmentOffset, IpProto, Ipv6ExtHdrType};
    use packet_formats::ipv4::Ipv4PacketBuilder;
    use packet_formats::ipv6::Ipv6PacketBuilder;

    use super::*;

    struct FakeFragmentContext<I: Ip, BT: FragmentBindingsTypes> {
        cache: IpPacketFragmentCache<I, BT>,
    }

    impl<I: Ip, BC: FragmentBindingsContext> FakeFragmentContext<I, BC>
    where
        BC::DispatchId: From<FragmentTimerId<I>>,
    {
        fn new(bindings_ctx: &mut BC) -> Self {
            Self { cache: IpPacketFragmentCache::new::<IntoCoreTimerCtx>(bindings_ctx) }
        }
    }

    type FakeCtxImpl<I> = CtxPair<FakeCoreCtxImpl<I>, FakeBindingsCtxImpl<I>>;
    type FakeBindingsCtxImpl<I> = FakeBindingsCtx<FragmentTimerId<I>, (), (), ()>;
    type FakeCoreCtxImpl<I> = FakeCoreCtx<FakeFragmentContext<I, FakeBindingsCtxImpl<I>>, (), ()>;

    impl<I: Ip> FragmentContext<I, FakeBindingsCtxImpl<I>> for FakeCoreCtxImpl<I> {
        fn with_state_mut<
            O,
            F: FnOnce(&mut IpPacketFragmentCache<I, FakeBindingsCtxImpl<I>>) -> O,
        >(
            &mut self,
            cb: F,
        ) -> O {
            cb(&mut self.state.cache)
        }
    }

    macro_rules! assert_frag_proc_state_ready {
        ($lhs:expr, $src_ip:expr, $dst_ip:expr, $fragment_id:expr, $packet_len:expr) => {{
            let lhs_val = $lhs;
            match lhs_val {
                FragmentProcessingState::Ready { key, packet_len } => {
                    if key == FragmentCacheKey::new($src_ip, $dst_ip, $fragment_id as u32)
                        && packet_len == $packet_len
                    {
                        (key, packet_len)
                    } else {
                        panic!("Invalid key or packet_len values");
                    }
                }
                _ => panic!("{:?} is not `Ready`", lhs_val),
            }
        }};
    }

    /// The result `process_ipv4_fragment` or `process_ipv6_fragment` should
    /// expect after processing a fragment.
    #[derive(PartialEq)]
    enum ExpectedResult {
        /// After processing a packet fragment, we should be ready to reassemble
        /// the packet.
        Ready { total_body_len: usize },

        /// After processing a packet fragment, we need more packet fragments
        /// before being ready to reassemble the packet.
        NeedMore,

        /// The packet fragment is invalid.
        Invalid,

        /// The Cache is full.
        OutOfMemory,
    }

    /// Get an IPv4 packet builder.
    fn get_ipv4_builder() -> Ipv4PacketBuilder {
        Ipv4PacketBuilder::new(
            TEST_ADDRS_V4.remote_ip,
            TEST_ADDRS_V4.local_ip,
            10,
            IpProto::Tcp.into(),
        )
    }

    /// Get an IPv6 packet builder.
    fn get_ipv6_builder() -> Ipv6PacketBuilder {
        Ipv6PacketBuilder::new(
            TEST_ADDRS_V6.remote_ip,
            TEST_ADDRS_V6.local_ip,
            10,
            IpProto::Tcp.into(),
        )
    }

    /// Validate that IpPacketFragmentCache has correct size.
    fn validate_size<I: Ip, BT: FragmentBindingsTypes>(cache: &IpPacketFragmentCache<I, BT>) {
        let mut sz: usize = 0;

        for v in cache.cache.values() {
            sz += v.total_size;
        }

        assert_eq!(sz, cache.size);
    }

    /// Processes an IP fragment depending on the `Ip` `process_ip_fragment` is
    /// specialized with.
    ///
    /// See [`process_ipv4_fragment`] and [`process_ipv6_fragment`] which will
    /// be called when `I` is `Ipv4` and `Ipv6`, respectively.
    fn process_ip_fragment<
        I: TestIpExt,
        CC: FragmentContext<I, BC>,
        BC: FragmentBindingsContext,
    >(
        core_ctx: &mut CC,
        bindings_ctx: &mut BC,
        fragment_id: u16,
        fragment_offset: u16,
        m_flag: bool,
        expected_result: ExpectedResult,
    ) {
        I::process_ip_fragment(
            core_ctx,
            bindings_ctx,
            fragment_id,
            fragment_offset,
            m_flag,
            expected_result,
        )
    }

    /// Generates and processes an IPv4 fragment packet.
    ///
    /// The generated packet will have body of size `FRAGMENT_BLOCK_SIZE` bytes.
    fn process_ipv4_fragment<CC: FragmentContext<Ipv4, BC>, BC: FragmentBindingsContext>(
        core_ctx: &mut CC,
        bindings_ctx: &mut BC,
        fragment_id: u16,
        fragment_offset: u16,
        m_flag: bool,
        expected_result: ExpectedResult,
    ) {
        let mut builder = get_ipv4_builder();
        builder.id(fragment_id);
        builder.fragment_offset(FragmentOffset::new(fragment_offset).unwrap());
        builder.mf_flag(m_flag);
        let body =
            generate_body_fragment(fragment_id, fragment_offset, usize::from(FRAGMENT_BLOCK_SIZE));

        let mut buffer = Buf::new(body, ..).encapsulate(builder).serialize_vec_outer().unwrap();
        let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();

        match expected_result {
            ExpectedResult::Ready { total_body_len } => {
                let _: (FragmentCacheKey<_>, usize) = assert_frag_proc_state_ready!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    TEST_ADDRS_V4.remote_ip.get(),
                    TEST_ADDRS_V4.local_ip.get(),
                    fragment_id,
                    total_body_len + Ipv4::HEADER_LENGTH
                );
            }
            ExpectedResult::NeedMore => {
                assert_matches!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    FragmentProcessingState::NeedMoreFragments
                );
            }
            ExpectedResult::Invalid => {
                assert_matches!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    FragmentProcessingState::InvalidFragment
                );
            }
            ExpectedResult::OutOfMemory => {
                assert_matches!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    FragmentProcessingState::OutOfMemory
                );
            }
        }
    }

    /// Generates and processes an IPv6 fragment packet.
    ///
    /// The generated packet will have body of size `FRAGMENT_BLOCK_SIZE` bytes.
    fn process_ipv6_fragment<CC: FragmentContext<Ipv6, BC>, BC: FragmentBindingsContext>(
        core_ctx: &mut CC,
        bindings_ctx: &mut BC,
        fragment_id: u16,
        fragment_offset: u16,
        m_flag: bool,
        expected_result: ExpectedResult,
    ) {
        let mut bytes = vec![0; 48];
        bytes[..4].copy_from_slice(&[0x60, 0x20, 0x00, 0x77][..]);
        bytes[6] = Ipv6ExtHdrType::Fragment.into(); // Next Header
        bytes[7] = 64;
        bytes[8..24].copy_from_slice(TEST_ADDRS_V6.remote_ip.bytes());
        bytes[24..40].copy_from_slice(TEST_ADDRS_V6.local_ip.bytes());
        bytes[40] = IpProto::Tcp.into();
        bytes[42] = (fragment_offset >> 5) as u8;
        bytes[43] = ((fragment_offset & 0x1F) << 3) as u8 | if m_flag { 1 } else { 0 };
        bytes[44..48].copy_from_slice(&(fragment_id as u32).to_be_bytes());
        bytes.extend(
            generate_body_fragment(fragment_id, fragment_offset, usize::from(FRAGMENT_BLOCK_SIZE))
                .iter(),
        );
        let payload_len = (bytes.len() - Ipv6::HEADER_LENGTH) as u16;
        bytes[4..6].copy_from_slice(&payload_len.to_be_bytes());
        let mut buf = Buf::new(bytes, ..);
        let packet = buf.parse::<Ipv6Packet<_>>().unwrap();

        match expected_result {
            ExpectedResult::Ready { total_body_len } => {
                let _: (FragmentCacheKey<_>, usize) = assert_frag_proc_state_ready!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    TEST_ADDRS_V6.remote_ip.get(),
                    TEST_ADDRS_V6.local_ip.get(),
                    fragment_id,
                    total_body_len + Ipv6::HEADER_LENGTH
                );
            }
            ExpectedResult::NeedMore => {
                assert_matches!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    FragmentProcessingState::NeedMoreFragments
                );
            }
            ExpectedResult::Invalid => {
                assert_matches!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    FragmentProcessingState::InvalidFragment
                );
            }
            ExpectedResult::OutOfMemory => {
                assert_matches!(
                    FragmentHandler::process_fragment::<&[u8]>(core_ctx, bindings_ctx, packet),
                    FragmentProcessingState::OutOfMemory
                );
            }
        }
    }

    trait TestIpExt: netstack3_base::testutil::TestIpExt {
        const HEADER_LENGTH: usize;

        fn process_ip_fragment<CC: FragmentContext<Self, BC>, BC: FragmentBindingsContext>(
            core_ctx: &mut CC,
            bindings_ctx: &mut BC,
            fragment_id: u16,
            fragment_offset: u16,
            m_flag: bool,
            expected_result: ExpectedResult,
        );
    }

    impl TestIpExt for Ipv4 {
        const HEADER_LENGTH: usize = packet_formats::ipv4::HDR_PREFIX_LEN;

        fn process_ip_fragment<CC: FragmentContext<Self, BC>, BC: FragmentBindingsContext>(
            core_ctx: &mut CC,
            bindings_ctx: &mut BC,
            fragment_id: u16,
            fragment_offset: u16,
            m_flag: bool,
            expected_result: ExpectedResult,
        ) {
            process_ipv4_fragment(
                core_ctx,
                bindings_ctx,
                fragment_id,
                fragment_offset,
                m_flag,
                expected_result,
            )
        }
    }
    impl TestIpExt for Ipv6 {
        const HEADER_LENGTH: usize = packet_formats::ipv6::IPV6_FIXED_HDR_LEN;

        fn process_ip_fragment<CC: FragmentContext<Self, BC>, BC: FragmentBindingsContext>(
            core_ctx: &mut CC,
            bindings_ctx: &mut BC,
            fragment_id: u16,
            fragment_offset: u16,
            m_flag: bool,
            expected_result: ExpectedResult,
        ) {
            process_ipv6_fragment(
                core_ctx,
                bindings_ctx,
                fragment_id,
                fragment_offset,
                m_flag,
                expected_result,
            )
        }
    }

    /// Tries to reassemble the packet with the given fragment ID.
    fn try_reassemble_ip_packet<
        I: TestIpExt + netstack3_base::IpExt,
        CC: FragmentContext<I, BC>,
        BC: FragmentBindingsContext,
    >(
        core_ctx: &mut CC,
        bindings_ctx: &mut BC,
        fragment_id: u16,
        total_body_len: usize,
    ) {
        let mut buffer: Vec<u8> = vec![0; total_body_len + I::HEADER_LENGTH];
        let mut buffer = &mut buffer[..];
        let key = FragmentCacheKey::new(
            I::TEST_ADDRS.remote_ip.get(),
            I::TEST_ADDRS.local_ip.get(),
            fragment_id.into(),
        );

        FragmentHandler::reassemble_packet(core_ctx, bindings_ctx, &key, &mut buffer).unwrap();
        let packet = I::Packet::parse_mut(&mut buffer, ()).unwrap();

        let expected_body = generate_body_fragment(fragment_id, 0, total_body_len);
        assert_eq!(packet.body(), &expected_body[..]);
    }

    /// Generates the body of a packet with the given fragment ID, offset, and
    /// length.
    ///
    /// Overlapping body bytes from different calls to `generate_body_fragment`
    /// are guaranteed to have the same values.
    fn generate_body_fragment(fragment_id: u16, fragment_offset: u16, len: usize) -> Vec<u8> {
        // The body contains increasing byte values which start at `fragment_id`
        // at byte 0. This ensures that different packets with different
        // fragment IDs contain bodies with different byte values.
        let start = usize::from(fragment_id)
            + usize::from(fragment_offset) * usize::from(FRAGMENT_BLOCK_SIZE);
        (start..start + len).map(|byte| byte as u8).collect()
    }

    /// Gets a `FragmentCacheKey` with the remote and local IP addresses hard
    /// coded to their test values.
    fn test_key<I: TestIpExt>(id: u32) -> FragmentCacheKey<I::Addr> {
        FragmentCacheKey::new(I::TEST_ADDRS.remote_ip.get(), I::TEST_ADDRS.local_ip.get(), id)
    }

    fn new_context<I: Ip>() -> FakeCtxImpl<I> {
        FakeCtxImpl::<I>::with_default_bindings_ctx(|bindings_ctx| {
            FakeCoreCtxImpl::with_state(FakeFragmentContext::new(bindings_ctx))
        })
    }

    #[test]
    fn test_ipv4_reassembly_not_needed() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv4>();

        // Test that we don't attempt reassembly if the packet is not
        // fragmented.

        let builder = get_ipv4_builder();
        let body = [1, 2, 3, 4, 5];
        let mut buffer =
            Buf::new(body.to_vec(), ..).encapsulate(builder).serialize_vec_outer().unwrap();
        let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
        assert_matches!(
            FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
            FragmentProcessingState::NotNeeded(unfragmented) if unfragmented.body() == body
        );
    }

    #[test]
    #[should_panic(
        expected = "internal error: entered unreachable code: Should never call this function if the packet does not have a fragment header"
    )]
    fn test_ipv6_reassembly_not_needed() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv6>();

        // Test that we panic if we call `fragment_data` on a packet that has no
        // fragment data.

        let builder = get_ipv6_builder();
        let mut buffer =
            Buf::new(vec![1, 2, 3, 4, 5], ..).encapsulate(builder).serialize_vec_outer().unwrap();
        let packet = buffer.parse::<Ipv6Packet<_>>().unwrap();
        assert_matches!(
            FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
            FragmentProcessingState::InvalidFragment
        );
    }

    #[ip_test(I)]
    fn test_ip_reassembly<I: TestIpExt + netstack3_base::IpExt>() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id = 5;

        // Test that we properly reassemble fragmented packets.

        // Process fragment #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            1,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            2,
            false,
            ExpectedResult::Ready { total_body_len: 24 },
        );

        try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id, 24);
    }

    #[ip_test(I)]
    fn test_ip_reassemble_with_missing_blocks<I: TestIpExt + netstack3_base::IpExt>() {
        let fake_config = I::TEST_ADDRS;
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id = 5;

        // Test the error we get when we attempt to reassemble with missing
        // fragments.

        // Process fragment #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            1,
            true,
            ExpectedResult::NeedMore,
        );

        let mut buffer: Vec<u8> = vec![0; 1];
        let mut buffer = &mut buffer[..];
        let key = FragmentCacheKey::new(
            fake_config.remote_ip.get(),
            fake_config.local_ip.get(),
            fragment_id as u32,
        );
        assert_eq!(
            FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
                .unwrap_err(),
            FragmentReassemblyError::MissingFragments,
        );
    }

    #[ip_test(I)]
    fn test_ip_reassemble_after_timer<I: TestIpExt + netstack3_base::IpExt>() {
        let fake_config = I::TEST_ADDRS;
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id = 5;
        let key = test_key::<I>(fragment_id.into());

        // Make sure no timers in the dispatcher yet.
        bindings_ctx.timers.assert_no_timers_installed();
        assert_eq!(core_ctx.state.cache.size, 0);

        // Test that we properly reset fragment cache on timer.

        // Process fragment #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Make sure a timer got added.
        core_ctx.state.cache.timers.assert_timers([(
            key,
            (),
            FakeInstant::from(REASSEMBLY_TIMEOUT),
        )]);
        validate_size(&core_ctx.state.cache);

        // Process fragment #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            1,
            true,
            ExpectedResult::NeedMore,
        );
        // Make sure no new timers got added or fired.
        core_ctx.state.cache.timers.assert_timers([(
            key,
            (),
            FakeInstant::from(REASSEMBLY_TIMEOUT),
        )]);
        validate_size(&core_ctx.state.cache);

        // Process fragment #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            2,
            false,
            ExpectedResult::Ready { total_body_len: 24 },
        );
        // Make sure no new timers got added or fired.
        core_ctx.state.cache.timers.assert_timers([(
            key,
            (),
            FakeInstant::from(REASSEMBLY_TIMEOUT),
        )]);
        validate_size(&core_ctx.state.cache);

        // Trigger the timer (simulate a timer for the fragmented packet).
        assert_eq!(
            bindings_ctx.trigger_next_timer(&mut core_ctx),
            Some(FragmentTimerId::<I>::default())
        );

        // Make sure no other times exist..
        bindings_ctx.timers.assert_no_timers_installed();
        assert_eq!(core_ctx.state.cache.size, 0);

        // Attempt to reassemble the packet but get an error since the fragment
        // data would have been reset/cleared.
        let key = FragmentCacheKey::new(
            fake_config.local_ip.get(),
            fake_config.remote_ip.get(),
            fragment_id as u32,
        );
        let packet_len = 44;
        let mut buffer: Vec<u8> = vec![0; packet_len];
        let mut buffer = &mut buffer[..];
        assert_eq!(
            FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
                .unwrap_err(),
            FragmentReassemblyError::InvalidKey,
        );
    }

    #[ip_test(I)]
    fn test_ip_fragment_cache_oom<I: TestIpExt + netstack3_base::IpExt>() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let mut fragment_id = 0;
        const THRESHOLD: usize = 8196usize;

        assert_eq!(core_ctx.state.cache.size, 0);
        core_ctx.state.cache.threshold = THRESHOLD;

        // Test that when cache size exceeds the threshold, process_fragment
        // returns OOM.

        while core_ctx.state.cache.size < THRESHOLD {
            process_ip_fragment(
                &mut core_ctx,
                &mut bindings_ctx,
                fragment_id,
                0,
                true,
                ExpectedResult::NeedMore,
            );
            validate_size(&core_ctx.state.cache);
            fragment_id += 1;
        }

        // Now that the cache is at or above the threshold, observe OOM.
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::OutOfMemory,
        );
        validate_size(&core_ctx.state.cache);

        // Trigger the timers, which will clear the cache.
        let timers = bindings_ctx
            .trigger_timers_for(REASSEMBLY_TIMEOUT + Duration::from_secs(1), &mut core_ctx)
            .len();
        assert!(timers == 171 || timers == 293, "timers is {timers}"); // ipv4 || ipv6
        assert_eq!(core_ctx.state.cache.size, 0);
        validate_size(&core_ctx.state.cache);

        // Can process fragments again.
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );
    }

    #[ip_test(I)]
    fn test_unordered_fragments<I: TestIpExt>() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id = 5;

        // Test that we error on overlapping/duplicate fragments.

        // Process fragment #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            2,
            false,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            1,
            true,
            ExpectedResult::Ready { total_body_len: 24 },
        );
    }

    #[ip_test(I)]
    fn test_ip_overlapping_single_fragment<I: TestIpExt>() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id = 5;

        // Test that we error on overlapping/duplicate fragments.

        // Process fragment #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #0 (overlaps original fragment #0 completely)
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::Invalid,
        );
    }

    #[test]
    fn test_ipv4_fragment_not_multiple_of_offset_unit() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv4>();
        let fragment_id = 0;

        assert_eq!(core_ctx.state.cache.size, 0);
        // Test that fragment bodies must be a multiple of
        // `FRAGMENT_BLOCK_SIZE`, except for the last fragment.

        // Process fragment #0
        process_ipv4_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1 (body size is not a multiple of
        // `FRAGMENT_BLOCK_SIZE` and more flag is `true`).
        let mut builder = get_ipv4_builder();
        builder.id(fragment_id);
        builder.fragment_offset(FragmentOffset::new(1).unwrap());
        builder.mf_flag(true);
        // Body with 1 byte less than `FRAGMENT_BLOCK_SIZE` so it is not a
        // multiple of `FRAGMENT_BLOCK_SIZE`.
        let mut body: Vec<u8> = Vec::new();
        body.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
        let mut buffer = Buf::new(body, ..).encapsulate(builder).serialize_vec_outer().unwrap();
        let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
        assert_matches!(
            FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
            FragmentProcessingState::InvalidFragment
        );

        // Process fragment #1 (body size is not a multiple of
        // `FRAGMENT_BLOCK_SIZE` but more flag is `false`). The last fragment is
        // allowed to not be a multiple of `FRAGMENT_BLOCK_SIZE`.
        let mut builder = get_ipv4_builder();
        builder.id(fragment_id);
        builder.fragment_offset(FragmentOffset::new(1).unwrap());
        builder.mf_flag(false);
        // Body with 1 byte less than `FRAGMENT_BLOCK_SIZE` so it is not a
        // multiple of `FRAGMENT_BLOCK_SIZE`.
        let mut body: Vec<u8> = Vec::new();
        body.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
        let mut buffer = Buf::new(body, ..).encapsulate(builder).serialize_vec_outer().unwrap();
        let packet = buffer.parse::<Ipv4Packet<_>>().unwrap();
        let (key, packet_len) = assert_frag_proc_state_ready!(
            FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
            TEST_ADDRS_V4.remote_ip.get(),
            TEST_ADDRS_V4.local_ip.get(),
            fragment_id,
            35
        );
        validate_size(&core_ctx.state.cache);
        let mut buffer: Vec<u8> = vec![0; packet_len];
        let mut buffer = &mut buffer[..];
        FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
            .unwrap();
        let packet = Ipv4Packet::parse_mut(&mut buffer, ()).unwrap();
        let mut expected_body: Vec<u8> = Vec::new();
        expected_body.extend(0..15);
        assert_eq!(packet.body(), &expected_body[..]);
        assert_eq!(core_ctx.state.cache.size, 0);
    }

    #[test]
    fn test_ipv6_fragment_not_multiple_of_offset_unit() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv6>();
        let fragment_id = 0;

        assert_eq!(core_ctx.state.cache.size, 0);
        // Test that fragment bodies must be a multiple of
        // `FRAGMENT_BLOCK_SIZE`, except for the last fragment.

        // Process fragment #0
        process_ipv6_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1 (body size is not a multiple of
        // `FRAGMENT_BLOCK_SIZE` and more flag is `true`).
        let mut bytes = vec![0; 48];
        bytes[..4].copy_from_slice(&[0x60, 0x20, 0x00, 0x77][..]);
        bytes[6] = Ipv6ExtHdrType::Fragment.into(); // Next Header
        bytes[7] = 64;
        bytes[8..24].copy_from_slice(TEST_ADDRS_V6.remote_ip.bytes());
        bytes[24..40].copy_from_slice(TEST_ADDRS_V6.local_ip.bytes());
        bytes[40] = IpProto::Tcp.into();
        bytes[42] = 0;
        bytes[43] = (1 << 3) | 1;
        bytes[44..48].copy_from_slice(&u32::try_from(fragment_id).unwrap().to_be_bytes());
        bytes.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
        let payload_len = (bytes.len() - 40) as u16;
        bytes[4..6].copy_from_slice(&payload_len.to_be_bytes());
        let mut buf = Buf::new(bytes, ..);
        let packet = buf.parse::<Ipv6Packet<_>>().unwrap();
        assert_matches!(
            FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
            FragmentProcessingState::InvalidFragment
        );

        // Process fragment #1 (body size is not a multiple of
        // `FRAGMENT_BLOCK_SIZE` but more flag is `false`). The last fragment is
        // allowed to not be a multiple of `FRAGMENT_BLOCK_SIZE`.
        let mut bytes = vec![0; 48];
        bytes[..4].copy_from_slice(&[0x60, 0x20, 0x00, 0x77][..]);
        bytes[6] = Ipv6ExtHdrType::Fragment.into(); // Next Header
        bytes[7] = 64;
        bytes[8..24].copy_from_slice(TEST_ADDRS_V6.remote_ip.bytes());
        bytes[24..40].copy_from_slice(TEST_ADDRS_V6.local_ip.bytes());
        bytes[40] = IpProto::Tcp.into();
        bytes[42] = 0;
        bytes[43] = 1 << 3;
        bytes[44..48].copy_from_slice(&u32::try_from(fragment_id).unwrap().to_be_bytes());
        bytes.extend(FRAGMENT_BLOCK_SIZE..FRAGMENT_BLOCK_SIZE * 2 - 1);
        let payload_len = (bytes.len() - 40) as u16;
        bytes[4..6].copy_from_slice(&payload_len.to_be_bytes());
        let mut buf = Buf::new(bytes, ..);
        let packet = buf.parse::<Ipv6Packet<_>>().unwrap();
        let (key, packet_len) = assert_frag_proc_state_ready!(
            FragmentHandler::process_fragment::<&[u8]>(&mut core_ctx, &mut bindings_ctx, packet),
            TEST_ADDRS_V6.remote_ip.get(),
            TEST_ADDRS_V6.local_ip.get(),
            fragment_id,
            55
        );
        validate_size(&core_ctx.state.cache);
        let mut buffer: Vec<u8> = vec![0; packet_len];
        let mut buffer = &mut buffer[..];
        FragmentHandler::reassemble_packet(&mut core_ctx, &mut bindings_ctx, &key, &mut buffer)
            .unwrap();
        let packet = Ipv6Packet::parse_mut(&mut buffer, ()).unwrap();
        let mut expected_body: Vec<u8> = Vec::new();
        expected_body.extend(0..15);
        assert_eq!(packet.body(), &expected_body[..]);
        assert_eq!(core_ctx.state.cache.size, 0);
    }

    #[ip_test(I)]
    fn test_ip_reassembly_with_multiple_intertwined_packets<
        I: TestIpExt + netstack3_base::IpExt,
    >() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id_0 = 5;
        let fragment_id_1 = 10;

        // Test that we properly reassemble fragmented packets when they arrive
        // intertwined with other packets' fragments.

        // Process fragment #0 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_0,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #0 for packet #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_1,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_0,
            1,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_1,
            1,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #2 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_0,
            2,
            false,
            ExpectedResult::Ready { total_body_len: 24 },
        );

        try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_0, 24);

        // Process fragment #2 for packet #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_1,
            2,
            false,
            ExpectedResult::Ready { total_body_len: 24 },
        );

        try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_1, 24);
    }

    #[ip_test(I)]
    fn test_ip_reassembly_timer_with_multiple_intertwined_packets<
        I: TestIpExt + netstack3_base::IpExt,
    >() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();
        let fragment_id_0 = 5;
        let fragment_id_1 = 10;
        let fragment_id_2 = 15;

        // Test that we properly timer with multiple intertwined packets that
        // all arrive out of order. We expect packet 1 and 3 to succeed, and
        // packet 1 to fail due to the reassembly timer.
        //
        // The flow of events:
        //   T=0s:
        //     - Packet #0, Fragment #0 arrives (timer scheduled for T=60s).
        //     - Packet #1, Fragment #2 arrives (timer scheduled for T=60s).
        //     - Packet #2, Fragment #2 arrives (timer scheduled for T=60s).
        //   T=30s:
        //     - Packet #0, Fragment #2 arrives.
        //   T=40s:
        //     - Packet #2, Fragment #1 arrives.
        //     - Packet #0, Fragment #1 arrives (timer cancelled since all
        //       fragments arrived).
        //   T=50s:
        //     - Packet #1, Fragment #0 arrives.
        //     - Packet #2, Fragment #0 arrives (timer cancelled since all
        //       fragments arrived).
        //   T=60s:
        //     - Timeout for reassembly of Packet #1.
        //     - Packet #1, Fragment #1 arrives (final fragment but timer
        //       already triggered so fragment not complete).

        // Process fragment #0 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_0,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1 for packet #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_1,
            2,
            false,
            ExpectedResult::NeedMore,
        );

        // Process fragment #2 for packet #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_2,
            2,
            false,
            ExpectedResult::NeedMore,
        );

        // Advance time by 30s (should be at 30s now).
        assert_empty(bindings_ctx.trigger_timers_for(Duration::from_secs(30), &mut core_ctx));

        // Process fragment #2 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_0,
            2,
            false,
            ExpectedResult::NeedMore,
        );

        // Advance time by 10s (should be at 40s now).
        assert_empty(bindings_ctx.trigger_timers_for(Duration::from_secs(10), &mut core_ctx));

        // Process fragment #1 for packet #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_2,
            1,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #1 for packet #0
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_0,
            1,
            true,
            ExpectedResult::Ready { total_body_len: 24 },
        );

        try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_0, 24);

        // Advance time by 10s (should be at 50s now).
        assert_empty(bindings_ctx.trigger_timers_for(Duration::from_secs(10), &mut core_ctx));

        // Process fragment #0 for packet #1
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_1,
            0,
            true,
            ExpectedResult::NeedMore,
        );

        // Process fragment #0 for packet #2
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_2,
            0,
            true,
            ExpectedResult::Ready { total_body_len: 24 },
        );

        try_reassemble_ip_packet(&mut core_ctx, &mut bindings_ctx, fragment_id_2, 24);

        // Advance time by 10s (should be at 60s now)), triggering the timer for
        // the reassembly of packet #1
        bindings_ctx.trigger_timers_for_and_expect(
            Duration::from_secs(10),
            [FragmentTimerId::<I>::default()],
            &mut core_ctx,
        );

        // Make sure no other times exist.
        bindings_ctx.timers.assert_no_timers_installed();

        // Process fragment #2 for packet #1 Should get a need more return value
        // since even though we technically received all the fragments, the last
        // fragment didn't arrive until after the reassembly timer.
        process_ip_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            fragment_id_1,
            2,
            true,
            ExpectedResult::NeedMore,
        );
    }

    #[test]
    fn test_no_more_fragments_in_middle_of_block() {
        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<Ipv4>();
        process_ipv4_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            0,
            100,
            false,
            ExpectedResult::NeedMore,
        );

        process_ipv4_fragment(
            &mut core_ctx,
            &mut bindings_ctx,
            0,
            50,
            false,
            ExpectedResult::Invalid,
        );
    }

    #[ip_test(I)]
    fn test_cancel_timer_on_overlap<I: TestIpExt>() {
        const FRAGMENT_ID: u16 = 1;
        const FRAGMENT_OFFSET: u16 = 0;
        const M_FLAG: bool = true;

        let FakeCtxImpl { mut core_ctx, mut bindings_ctx } = new_context::<I>();

        let TestAddrs { local_ip, remote_ip, .. } = I::TEST_ADDRS;
        let key = FragmentCacheKey::new(remote_ip.get(), local_ip.get(), FRAGMENT_ID.into());

        // Do this a couple times to make sure that new packets matching the
        // invalid packet's fragment cache key create a new entry.
        for _ in 0..=2 {
            process_ip_fragment(
                &mut core_ctx,
                &mut bindings_ctx,
                FRAGMENT_ID,
                FRAGMENT_OFFSET,
                M_FLAG,
                ExpectedResult::NeedMore,
            );
            core_ctx
                .state
                .cache
                .timers
                .assert_timers_after(&mut bindings_ctx, [(key, (), REASSEMBLY_TIMEOUT)]);

            process_ip_fragment(
                &mut core_ctx,
                &mut bindings_ctx,
                FRAGMENT_ID,
                FRAGMENT_OFFSET,
                M_FLAG,
                ExpectedResult::Invalid,
            );
            assert_eq!(bindings_ctx.timers.timers(), [],);
        }
    }
}