zx/
clock.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Type-safe bindings for Zircon clock objects.

use crate::{
    ok, sys, AsHandleRef, BootTimeline, ClockUpdate, Handle, HandleBased, HandleRef, Instant,
    MonotonicTimeline, SyntheticTimeline, Timeline,
};
use bitflags::bitflags;
use std::mem::MaybeUninit;
use std::ptr;
use zx_status::Status;

/// An object representing a kernel [clock], used to track the progress of time. A clock is a
/// one-dimensional affine transformation of the [clock monotonic] reference timeline which may be
/// atomically adjusted by a maintainer and observed by clients.
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
///
/// [clock]: https://fuchsia.dev/fuchsia-src/reference/kernel_objects/clock
/// [clock monotonic]: https://fuchsia.dev/fuchsia-src/reference/syscalls/clock_get_monotonic.md
#[derive(Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(transparent)]
pub struct Clock<Reference = MonotonicTimeline, Output = SyntheticTimeline>(
    Handle,
    std::marker::PhantomData<(Reference, Output)>,
);

pub type SyntheticClock = Clock<MonotonicTimeline, SyntheticTimeline>;
pub type SyntheticClockOnBoot = Clock<BootTimeline, SyntheticTimeline>;

impl<Output: Timeline> Clock<MonotonicTimeline, Output> {
    /// Create a new clock object with the provided arguments, with the monotonic clock as the
    /// reference timeline. Wraps the [zx_clock_create] syscall.
    ///
    /// [zx_clock_create]: https://fuchsia.dev/fuchsia-src/reference/syscalls/clock_create
    pub fn create(opts: ClockOpts, backstop: Option<Instant<Output>>) -> Result<Self, Status> {
        let mut out = 0;
        let status = match backstop {
            Some(backstop) => {
                // When using backstop time, use the API v1 args struct.
                let args = sys::zx_clock_create_args_v1_t { backstop_time: backstop.into_nanos() };
                unsafe {
                    sys::zx_clock_create(
                        sys::ZX_CLOCK_ARGS_VERSION_1 | opts.bits(),
                        std::ptr::from_ref(&args).cast::<u8>(),
                        &mut out,
                    )
                }
            }
            None => unsafe { sys::zx_clock_create(opts.bits(), ptr::null(), &mut out) },
        };
        ok(status)?;
        unsafe { Ok(Self::from(Handle::from_raw(out))) }
    }
}

impl<Output: Timeline> Clock<BootTimeline, Output> {
    /// Create a new clock object with the provided arguments, with the boot clock as the reference
    /// timeline. Wraps the [zx_clock_create] syscall.
    ///
    /// [zx_clock_create]: https://fuchsia.dev/fuchsia-src/reference/syscalls/clock_create
    pub fn create(opts: ClockOpts, backstop: Option<Instant<Output>>) -> Result<Self, Status> {
        let mut out = 0;
        let opts = opts | ClockOpts::BOOT;
        let status = match backstop {
            Some(backstop) => {
                // When using backstop time, use the API v1 args struct.
                let args = sys::zx_clock_create_args_v1_t { backstop_time: backstop.into_nanos() };
                unsafe {
                    sys::zx_clock_create(
                        sys::ZX_CLOCK_ARGS_VERSION_1 | opts.bits(),
                        &args as *const _ as *const u8,
                        &mut out,
                    )
                }
            }
            None => unsafe { sys::zx_clock_create(opts.bits(), ptr::null(), &mut out) },
        };
        ok(status)?;
        unsafe { Ok(Self::from(Handle::from_raw(out))) }
    }
}

impl<Reference: Timeline, Output: Timeline> Clock<Reference, Output> {
    /// Perform a basic read of this clock. Wraps the [zx_clock_read] syscall. Requires
    /// `ZX_RIGHT_READ` and that the clock has had an initial time established.
    ///
    /// [zx_clock_read]: https://fuchsia.dev/fuchsia-src/reference/syscalls/clock_read
    pub fn read(&self) -> Result<Instant<Output>, Status> {
        let mut now = 0;
        let status = unsafe { sys::zx_clock_read(self.raw_handle(), &mut now) };
        ok(status)?;
        Ok(Instant::<Output>::from_nanos(now))
    }

    /// Get low level details of this clock's current status. Wraps the
    /// [zx_clock_get_details] syscall. Requires `ZX_RIGHT_READ`.
    ///
    /// [zx_clock_get_details]: https://fuchsia.dev/fuchsia-src/reference/syscalls/clock_get_details
    pub fn get_details(&self) -> Result<ClockDetails<Reference, Output>, Status> {
        let mut out_details = MaybeUninit::<sys::zx_clock_details_v1_t>::uninit();
        let status = unsafe {
            sys::zx_clock_get_details(
                self.raw_handle(),
                sys::ZX_CLOCK_ARGS_VERSION_1,
                out_details.as_mut_ptr().cast::<u8>(),
            )
        };
        ok(status)?;
        let out_details = unsafe { out_details.assume_init() };
        Ok(out_details.into())
    }

    /// Make adjustments to this clock. Wraps the [zx_clock_update] syscall. Requires
    /// `ZX_RIGHT_WRITE`.
    ///
    /// [zx_clock_update]: https://fuchsia.dev/fuchsia-src/reference/syscalls/clock_update
    pub fn update(&self, update: impl Into<ClockUpdate<Reference, Output>>) -> Result<(), Status> {
        let update = update.into();
        let options = update.options();
        let args = update.args();
        let status = unsafe {
            sys::zx_clock_update(self.raw_handle(), options, std::ptr::from_ref(&args).cast::<u8>())
        };
        ok(status)?;
        Ok(())
    }

    /// Convert this clock to one on a generic synthetic timeline, erasing any user-defined
    /// timeline.
    pub fn downcast<NewReference: Timeline>(self) -> Clock<NewReference, SyntheticTimeline> {
        Clock(self.0, std::marker::PhantomData)
    }
}

impl<Reference: Timeline> Clock<Reference, SyntheticTimeline> {
    /// Cast a "base" clock to one with a user-defined timeline that will carry the timeline for
    /// all transformations and reads.
    pub fn cast<NewReference: Timeline, UserTimeline: Timeline>(
        self,
    ) -> Clock<NewReference, UserTimeline> {
        Clock(self.0, std::marker::PhantomData)
    }
}

impl<Reference: Timeline, Output: Timeline> AsHandleRef for Clock<Reference, Output> {
    fn as_handle_ref(&self) -> HandleRef<'_> {
        self.0.as_handle_ref()
    }
}

impl<Reference: Timeline, Output: Timeline> From<Handle> for Clock<Reference, Output> {
    fn from(handle: Handle) -> Self {
        Clock(handle, std::marker::PhantomData)
    }
}

impl<Reference: Timeline, Output: Timeline> From<Clock<Reference, Output>> for Handle {
    fn from(x: Clock<Reference, Output>) -> Handle {
        x.0
    }
}

impl<Reference: Timeline, Output: Timeline> HandleBased for Clock<Reference, Output> {}

bitflags! {
    #[repr(transparent)]
    #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
    pub struct ClockOpts: u64 {
        /// When set, creates a clock object which is guaranteed to never run backwards. Monotonic
        /// clocks must always move forward.
        const MONOTONIC = sys::ZX_CLOCK_OPT_MONOTONIC;

        /// When set, creates a clock which is guaranteed to never jump either forwards or
        /// backwards. Continuous clocks may only be maintained using frequency adjustments and are,
        /// by definition, also monotonic.
        const CONTINUOUS = sys::ZX_CLOCK_OPT_CONTINUOUS | Self::MONOTONIC.bits();

        /// When set, creates a clock that is automatically started and is initially a clone of
        /// clock monotonic. Users may still update the clock within the limits defined by the
        /// other options, the handle rights, and the backstop time of the clock.
        const AUTO_START = sys::ZX_CLOCK_OPT_AUTO_START;

        // When set, creates a clock object that uses the boot timeline as its reference timeline.
        const BOOT = sys::ZX_CLOCK_OPT_BOOT;
    }
}

/// Fine grained details of a [`Clock`] object.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ClockDetails<Reference = MonotonicTimeline, Output = SyntheticTimeline> {
    /// The minimum time the clock can ever be set to.
    pub backstop: Instant<Output>,

    /// The current ticks to clock transformation.
    pub ticks_to_synthetic: ClockTransformation<Reference, Output>,

    /// The current clock monotonic to clock transformation.
    pub reference_to_synthetic: ClockTransformation<Reference, Output>,

    /// The current symmetric error estimate (if any) for the clock, measured in nanoseconds.
    pub error_bounds: u64,

    /// An observation of the system tick counter which was taken during the observation of the
    /// clock.
    pub query_ticks: sys::zx_ticks_t,

    /// The last time the clock's value was updated as defined by the clock monotonic reference
    /// timeline.
    pub last_value_update_ticks: sys::zx_ticks_t,

    /// The last time the clock's rate adjustment was updated as defined by the clock monotonic
    /// reference timeline.
    pub last_rate_adjust_update_ticks: sys::zx_ticks_t,

    /// The last time the clock's error bounds were updated as defined by the clock monotonic
    /// reference timeline.
    pub last_error_bounds_update_ticks: sys::zx_ticks_t,

    /// The generation nonce.
    pub generation_counter: u32,
}

impl<Reference: Timeline, Output: Timeline> From<sys::zx_clock_details_v1_t>
    for ClockDetails<Reference, Output>
{
    fn from(details: sys::zx_clock_details_v1_t) -> Self {
        ClockDetails {
            backstop: Instant::from_nanos(details.backstop_time),
            ticks_to_synthetic: details.reference_ticks_to_synthetic.into(),
            reference_to_synthetic: details.reference_to_synthetic.into(),
            error_bounds: details.error_bound,
            query_ticks: details.query_ticks,
            last_value_update_ticks: details.last_value_update_ticks,
            last_rate_adjust_update_ticks: details.last_rate_adjust_update_ticks,
            last_error_bounds_update_ticks: details.last_error_bounds_update_ticks,
            generation_counter: details.generation_counter,
        }
    }
}

/// A one-dimensional affine transformation that maps points from the reference timeline to the
/// clock timeline. See [clock transformations].
///
/// [clock transformations]: https://fuchsia.dev/fuchsia-src/concepts/kernel/clock_transformations
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct ClockTransformation<Reference = MonotonicTimeline, Output = SyntheticTimeline> {
    /// The offset on the reference timeline, measured in reference clock ticks.
    pub reference_offset: Instant<Reference>,
    /// The offset on the clock timeline, measured in clock ticks (typically normalized to
    /// nanoseconds).
    pub synthetic_offset: Instant<Output>,
    /// The ratio of the reference to clock rate.
    pub rate: sys::zx_clock_rate_t,
}

impl<Reference: Timeline, Output: Timeline> From<sys::zx_clock_transformation_t>
    for ClockTransformation<Reference, Output>
{
    fn from(ct: sys::zx_clock_transformation_t) -> Self {
        ClockTransformation {
            reference_offset: Instant::<Reference>::from_nanos(ct.reference_offset),
            synthetic_offset: Instant::<Output>::from_nanos(ct.synthetic_offset),
            rate: ct.rate,
        }
    }
}

/// Apply affine transformation to convert the reference time "r" to the synthetic time
/// "c". All values are widened to i128 before calculations and the end result is converted back to
/// a i64. If "c" is a larger number than would fit in an i64, the result saturates when cast to
/// i64.
fn transform_clock(r: i64, r_offset: i64, c_offset: i64, r_rate: u32, c_rate: u32) -> i64 {
    let r = r as i128;
    let r_offset = r_offset as i128;
    let c_offset = c_offset as i128;
    let r_rate = r_rate as i128;
    let c_rate = c_rate as i128;
    let c = (((r - r_offset) * c_rate) / r_rate) + c_offset;
    c.try_into().unwrap_or_else(|_| if c.is_positive() { i64::MAX } else { i64::MIN })
}

/// [Clock transformations](https://fuchsia.dev/fuchsia-src/concepts/kernel/clock_transformations)
/// can be applied to convert a time from a reference time to a synthetic time. The inverse
/// transformation can be applied to convert a synthetic time back to the reference time.
impl<Reference: Timeline + Copy, Output: Timeline + Copy> ClockTransformation<Reference, Output> {
    pub fn apply(&self, time: Instant<Reference>) -> Instant<Output> {
        let c = transform_clock(
            time.into_nanos(),
            self.reference_offset.into_nanos(),
            self.synthetic_offset.into_nanos(),
            self.rate.reference_ticks,
            self.rate.synthetic_ticks,
        );

        Instant::from_nanos(c)
    }

    pub fn apply_inverse(&self, time: Instant<Output>) -> Instant<Reference> {
        let r = transform_clock(
            time.into_nanos(),
            self.synthetic_offset.into_nanos(),
            self.reference_offset.into_nanos(),
            self.rate.synthetic_ticks,
            self.rate.reference_ticks,
        );

        Instant::from_nanos(r as i64)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{MonotonicInstant, SyntheticInstant};
    use assert_matches::assert_matches;

    #[test]
    fn create_clocks() {
        assert_matches!(SyntheticClock::create(ClockOpts::empty(), None), Ok(_));
        assert_matches!(SyntheticClock::create(ClockOpts::MONOTONIC, None), Ok(_));
        assert_matches!(SyntheticClock::create(ClockOpts::CONTINUOUS, None), Ok(_));
        assert_matches!(
            SyntheticClock::create(ClockOpts::AUTO_START | ClockOpts::MONOTONIC, None),
            Ok(_)
        );
        assert_matches!(
            SyntheticClock::create(ClockOpts::AUTO_START | ClockOpts::CONTINUOUS, None),
            Ok(_)
        );

        // Now with backstop.
        let backstop = Some(SyntheticInstant::from_nanos(5500));
        assert_matches!(SyntheticClock::create(ClockOpts::MONOTONIC, backstop), Ok(_));
        assert_matches!(SyntheticClock::create(ClockOpts::CONTINUOUS, backstop), Ok(_));
        assert_matches!(
            SyntheticClock::create(ClockOpts::AUTO_START | ClockOpts::MONOTONIC, backstop),
            Ok(_)
        );
        assert_matches!(
            SyntheticClock::create(ClockOpts::AUTO_START | ClockOpts::CONTINUOUS, backstop),
            Ok(_)
        );
    }

    #[test]
    fn read_time() {
        let clock =
            SyntheticClock::create(ClockOpts::MONOTONIC, None).expect("failed to create clock");
        assert_matches!(clock.read(), Ok(_));
    }

    #[test]
    fn get_clock_details() {
        // No backstop.
        let clock =
            SyntheticClock::create(ClockOpts::MONOTONIC, None).expect("failed to create clock");
        let details = clock.get_details().expect("failed to get details");
        assert_eq!(details.backstop, SyntheticInstant::from_nanos(0));

        // With backstop.
        let clock =
            SyntheticClock::create(ClockOpts::MONOTONIC, Some(SyntheticInstant::from_nanos(5500)))
                .expect("failed to create clock");
        let details = clock.get_details().expect("failed to get details");
        assert_eq!(details.backstop, SyntheticInstant::from_nanos(5500));
    }

    #[test]
    fn update_clock() {
        let clock =
            SyntheticClock::create(ClockOpts::MONOTONIC, None).expect("failed to create clock");
        let before_details = clock.get_details().expect("failed to get details");
        assert_eq!(before_details.last_value_update_ticks, 0);
        assert_eq!(before_details.last_rate_adjust_update_ticks, 0);
        assert_eq!(before_details.last_error_bounds_update_ticks, 0);

        // Update all properties.
        clock
            .update(
                ClockUpdate::builder()
                    .absolute_value(
                        MonotonicInstant::from_nanos(999),
                        SyntheticInstant::from_nanos(42),
                    )
                    .rate_adjust(52)
                    .error_bounds(52),
            )
            .expect("failed to update clock");
        let after_details = clock.get_details().expect("failed to get details");
        assert!(before_details.generation_counter < after_details.generation_counter);
        assert!(after_details.last_value_update_ticks > before_details.last_value_update_ticks);
        assert_eq!(
            after_details.last_value_update_ticks,
            after_details.last_rate_adjust_update_ticks
        );
        assert_eq!(
            after_details.last_value_update_ticks,
            after_details.last_error_bounds_update_ticks
        );
        assert_eq!(after_details.error_bounds, 52);
        assert_eq!(after_details.ticks_to_synthetic.synthetic_offset.into_nanos(), 42);
        assert_eq!(after_details.reference_to_synthetic.reference_offset.into_nanos(), 999);
        assert_eq!(after_details.reference_to_synthetic.synthetic_offset.into_nanos(), 42);

        let before_details = after_details;

        // Update only one property.
        clock.update(ClockUpdate::builder().error_bounds(100)).expect("failed to update clock");
        let after_details = clock.get_details().expect("failed to get details");
        assert!(before_details.generation_counter < after_details.generation_counter);
        assert!(
            after_details.last_error_bounds_update_ticks > before_details.last_value_update_ticks
        );
        assert!(
            after_details.last_error_bounds_update_ticks
                > after_details.last_rate_adjust_update_ticks
        );
        assert_eq!(
            after_details.last_rate_adjust_update_ticks,
            after_details.last_value_update_ticks
        );
        assert_eq!(after_details.error_bounds, 100);
        assert_eq!(after_details.ticks_to_synthetic.synthetic_offset.into_nanos(), 42);
        assert_eq!(after_details.reference_to_synthetic.synthetic_offset.into_nanos(), 42);
    }

    #[test]
    fn clock_identity_transformation_roundtrip() {
        let t_0 = MonotonicInstant::ZERO;
        // Identity clock transformation
        let xform = ClockTransformation {
            reference_offset: MonotonicInstant::from_nanos(0),
            synthetic_offset: SyntheticInstant::from_nanos(0),
            rate: sys::zx_clock_rate_t { synthetic_ticks: 1, reference_ticks: 1 },
        };

        // Transformation roundtrip should be equivalent with the identity transformation.
        let transformed_time = xform.apply(t_0);
        let original_time = xform.apply_inverse(transformed_time);
        assert_eq!(t_0, original_time);
    }

    #[test]
    fn clock_trivial_transformation() {
        let t_0 = MonotonicInstant::ZERO;
        // Identity clock transformation
        let xform = ClockTransformation {
            reference_offset: MonotonicInstant::from_nanos(3),
            synthetic_offset: SyntheticInstant::from_nanos(2),
            rate: sys::zx_clock_rate_t { synthetic_ticks: 6, reference_ticks: 2 },
        };

        let utc_time = xform.apply(t_0);
        let monotonic_time = xform.apply_inverse(utc_time);
        // Verify that the math is correct.
        assert_eq!(3 * (t_0.into_nanos() - 3) + 2, utc_time.into_nanos());

        // Transformation roundtrip should be equivalent.
        assert_eq!(t_0, monotonic_time);
    }

    #[test]
    fn clock_transformation_roundtrip() {
        let t_0 = MonotonicInstant::ZERO;
        // Arbitrary clock transformation
        let xform = ClockTransformation {
            reference_offset: MonotonicInstant::from_nanos(196980085208),
            synthetic_offset: SyntheticInstant::from_nanos(1616900096031887801),
            rate: sys::zx_clock_rate_t { synthetic_ticks: 999980, reference_ticks: 1000000 },
        };

        // Transformation roundtrip should be equivalent modulo rounding error.
        let transformed_time = xform.apply(t_0);
        let original_time = xform.apply_inverse(transformed_time);
        let roundtrip_diff = t_0 - original_time;
        assert!(roundtrip_diff.into_nanos().abs() <= 1);
    }

    #[test]
    fn clock_trailing_transformation_roundtrip() {
        let t_0 = MonotonicInstant::ZERO;
        // Arbitrary clock transformation where the synthetic clock is trailing behind the
        // reference clock.
        let xform = ClockTransformation {
            reference_offset: MonotonicInstant::from_nanos(1616900096031887801),
            synthetic_offset: SyntheticInstant::from_nanos(196980085208),
            rate: sys::zx_clock_rate_t { synthetic_ticks: 1000000, reference_ticks: 999980 },
        };

        // Transformation roundtrip should be equivalent modulo rounding error.
        let transformed_time = xform.apply(t_0);
        let original_time = xform.apply_inverse(transformed_time);
        let roundtrip_diff = t_0 - original_time;
        assert!(roundtrip_diff.into_nanos().abs() <= 1);
    }

    #[test]
    fn clock_saturating_transformations() {
        let t_0 = MonotonicInstant::from_nanos(i64::MAX);
        // Clock transformation which will positively overflow t_0
        let xform = ClockTransformation {
            reference_offset: MonotonicInstant::from_nanos(0),
            synthetic_offset: SyntheticInstant::from_nanos(1),
            rate: sys::zx_clock_rate_t { synthetic_ticks: 1, reference_ticks: 1 },
        };

        // Applying the transformation will lead to saturation
        let time = xform.apply(t_0).into_nanos();
        assert_eq!(time, i64::MAX);

        let t_0 = MonotonicInstant::from_nanos(i64::MIN);
        // Clock transformation which will negatively overflow t_0
        let xform = ClockTransformation {
            reference_offset: MonotonicInstant::from_nanos(1),
            synthetic_offset: SyntheticInstant::from_nanos(0),
            rate: sys::zx_clock_rate_t { synthetic_ticks: 1, reference_ticks: 1 },
        };

        // Applying the transformation will lead to saturation
        let time = xform.apply(t_0).into_nanos();
        assert_eq!(time, i64::MIN);
    }
}