packet_formats/
arp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Parsing and serialization of ARP packets.

#[cfg(test)]
use core::fmt::{self, Debug, Formatter};
use core::hash::Hash;
use core::mem;

use net_types::ethernet::Mac;
use net_types::ip::{IpAddress, Ipv4Addr};
use packet::{BufferView, BufferViewMut, InnerPacketBuilder, ParsablePacket, ParseMetadata};
use zerocopy::byteorder::network_endian::U16;
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, Unaligned};

use crate::error::{ParseError, ParseResult};

#[cfg(test)]
pub(crate) const ARP_HDR_LEN: usize = 8;
#[cfg(test)]
pub(crate) const ARP_ETHERNET_IPV4_PACKET_LEN: usize = 28;

create_protocol_enum!(
    /// The type of an ARP operation.
    #[derive(Copy, Clone, Eq, PartialEq)]
    #[allow(missing_docs)]
    pub enum ArpOp : u16 {
        Request, 0x0001, "Request";
        Response, 0x0002, "Response";
        _, "ArpOp {}";
    }
);

/// A trait to represent an ARP hardware type.
pub trait HType: FromBytes + IntoBytes + Immutable + Unaligned + Copy + Clone + Hash + Eq {
    /// The hardware type.
    const HTYPE: ArpHardwareType;
    /// The in-memory size of an instance of the type.
    const HLEN: u8;
    /// The broadcast address for this type.
    const BROADCAST: Self;
}

/// A trait to represent an ARP protocol type.
pub trait PType: FromBytes + IntoBytes + Immutable + Unaligned + Copy + Clone + Hash + Eq {
    /// The protocol type.
    const PTYPE: ArpNetworkType;
    /// The in-memory size of an instance of the type.
    const PLEN: u8;
}

impl HType for Mac {
    const HTYPE: ArpHardwareType = ArpHardwareType::Ethernet;
    const HLEN: u8 = mem::size_of::<Mac>() as u8;
    const BROADCAST: Mac = Mac::BROADCAST;
}

impl PType for Ipv4Addr {
    const PTYPE: ArpNetworkType = ArpNetworkType::Ipv4;
    const PLEN: u8 = Ipv4Addr::BYTES;
}

create_protocol_enum!(
    /// An ARP hardware protocol.
    #[derive(PartialEq)]
    #[allow(missing_docs)]
    pub enum ArpHardwareType : u16 {
        Ethernet, 0x0001, "Ethernet";
    }
);

create_protocol_enum!(
    /// An ARP network protocol.
    #[derive(PartialEq)]
    #[allow(missing_docs)]
    pub enum ArpNetworkType : u16 {
        Ipv4, 0x0800, "IPv4";
    }
);

#[derive(Default, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct Header {
    htype: U16, // Hardware (e.g. Ethernet)
    ptype: U16, // Protocol (e.g. IPv4)
    hlen: u8,   // Length (in octets) of hardware address
    plen: u8,   // Length (in octets) of protocol address
    oper: U16,  // Operation: 1 for Req, 2 for Reply
}

impl Header {
    fn new<HwAddr: HType, ProtoAddr: PType>(op: ArpOp) -> Header {
        Header {
            htype: U16::new(<HwAddr as HType>::HTYPE.into()),
            hlen: <HwAddr as HType>::HLEN,
            ptype: U16::new(<ProtoAddr as PType>::PTYPE.into()),
            plen: <ProtoAddr as PType>::PLEN,
            oper: U16::new(op.into()),
        }
    }
}

/// Peek at an ARP header to see what hardware and protocol address types are
/// used.
///
/// Since `ArpPacket` is statically typed with the hardware and protocol address
/// types expected in the header and body, these types must be known ahead of
/// time before calling `parse`. If multiple different types are valid in a
/// given parsing context, and so the caller cannot know ahead of time which
/// types to use, `peek_arp_types` can be used to peek at the header first to
/// figure out which static types should be used in a subsequent call to
/// `parse`.
///
/// Note that `peek_arp_types` only inspects certain fields in the header, and
/// so `peek_arp_types` succeeding does not guarantee that a subsequent call to
/// `parse` will also succeed.
pub fn peek_arp_types<B: SplitByteSlice>(
    bytes: B,
) -> ParseResult<(ArpHardwareType, ArpNetworkType)> {
    let (header, _) = Ref::<B, Header>::from_prefix(bytes).map_err(Into::into).map_err(
        |_: zerocopy::SizeError<_, _>| debug_err!(ParseError::Format, "too few bytes for header"),
    )?;

    let hw = ArpHardwareType::try_from(header.htype.get()).ok().ok_or_else(debug_err_fn!(
        ParseError::NotSupported,
        "unrecognized hardware protocol: {:x}",
        header.htype.get()
    ))?;
    let proto = ArpNetworkType::try_from(header.ptype.get()).ok().ok_or_else(debug_err_fn!(
        ParseError::NotSupported,
        "unrecognized network protocol: {:x}",
        header.ptype.get()
    ))?;
    let hlen = match hw {
        ArpHardwareType::Ethernet => <Mac as HType>::HLEN,
    };
    let plen = match proto {
        ArpNetworkType::Ipv4 => <Ipv4Addr as PType>::PLEN,
    };
    if header.hlen != hlen || header.plen != plen {
        return debug_err!(
            Err(ParseError::Format),
            "unexpected hardware or protocol address length for protocol {:?}",
            proto
        );
    }
    Ok((hw, proto))
}

// Body has the same memory layout (thanks to repr(C)) as an ARP body. Thus, we
// can simply reinterpret the bytes of the ARP body as a Body and then safely
// access its fields.
#[derive(KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct Body<HwAddr, ProtoAddr> {
    sha: HwAddr,
    spa: ProtoAddr,
    tha: HwAddr,
    tpa: ProtoAddr,
}

/// An ARP packet.
///
/// A `ArpPacket` shares its underlying memory with the byte slice it was parsed
/// from or serialized to, meaning that no copying or extra allocation is
/// necessary.
pub struct ArpPacket<B, HwAddr, ProtoAddr> {
    header: Ref<B, Header>,
    body: Ref<B, Body<HwAddr, ProtoAddr>>,
}

impl<B: SplitByteSlice, HwAddr, ProtoAddr> ParsablePacket<B, ()> for ArpPacket<B, HwAddr, ProtoAddr>
where
    HwAddr: Copy + HType + FromBytes + KnownLayout + Unaligned,
    ProtoAddr: Copy + PType + FromBytes + KnownLayout + Unaligned,
{
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        ParseMetadata::from_inner_packet(
            Ref::bytes(&self.header).len() + Ref::bytes(&self.body).len(),
        )
    }

    fn parse<BV: BufferView<B>>(mut buffer: BV, _args: ()) -> ParseResult<Self> {
        let header = buffer
            .take_obj_front::<Header>()
            .ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for header"))?;
        let body = buffer
            .take_obj_front::<Body<HwAddr, ProtoAddr>>()
            .ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for body"))?;
        // Consume any padding bytes added by the previous layer.
        let _: B = buffer.take_rest_front();

        if header.htype.get() != <HwAddr as HType>::HTYPE.into()
            || header.ptype.get() != <ProtoAddr as PType>::PTYPE.into()
        {
            return debug_err!(
                Err(ParseError::NotExpected),
                "unexpected hardware or network protocols"
            );
        }
        if header.hlen != <HwAddr as HType>::HLEN || header.plen != <ProtoAddr as PType>::PLEN {
            return debug_err!(
                Err(ParseError::Format),
                "unexpected hardware or protocol address length"
            );
        }

        if let ArpOp::Other(x) = header.oper.get().into() {
            return debug_err!(Err(ParseError::Format), "unrecognized op code: {:x}", x);
        }

        Ok(ArpPacket { header, body })
    }
}

impl<B: SplitByteSlice, HwAddr, ProtoAddr> ArpPacket<B, HwAddr, ProtoAddr>
where
    HwAddr: Copy + HType + FromBytes + KnownLayout + Immutable + Unaligned,
    ProtoAddr: Copy + PType + FromBytes + KnownLayout + Immutable + Unaligned,
{
    /// The type of ARP packet
    pub fn operation(&self) -> ArpOp {
        self.header.oper.get().into()
    }

    /// The hardware address of the ARP packet sender.
    pub fn sender_hardware_address(&self) -> HwAddr {
        self.body.sha
    }

    /// The protocol address of the ARP packet sender.
    pub fn sender_protocol_address(&self) -> ProtoAddr {
        self.body.spa
    }

    /// The hardware address of the ARP packet target.
    pub fn target_hardware_address(&self) -> HwAddr {
        self.body.tha
    }

    /// The protocol address of the ARP packet target.
    pub fn target_protocol_address(&self) -> ProtoAddr {
        self.body.tpa
    }

    /// Construct a builder with the same contents as this packet.
    pub fn builder(&self) -> ArpPacketBuilder<HwAddr, ProtoAddr> {
        ArpPacketBuilder {
            op: self.operation(),
            sha: self.sender_hardware_address(),
            spa: self.sender_protocol_address(),
            tha: self.target_hardware_address(),
            tpa: self.target_protocol_address(),
        }
    }
}

/// A builder for ARP packets.
#[derive(Debug)]
pub struct ArpPacketBuilder<HwAddr, ProtoAddr> {
    op: ArpOp,
    sha: HwAddr,
    spa: ProtoAddr,
    tha: HwAddr,
    tpa: ProtoAddr,
}

impl<HwAddr, ProtoAddr> ArpPacketBuilder<HwAddr, ProtoAddr> {
    /// Construct a new `ArpPacketBuilder`.
    pub fn new(
        operation: ArpOp,
        sender_hardware_addr: HwAddr,
        sender_protocol_addr: ProtoAddr,
        target_hardware_addr: HwAddr,
        target_protocol_addr: ProtoAddr,
    ) -> ArpPacketBuilder<HwAddr, ProtoAddr> {
        ArpPacketBuilder {
            op: operation,
            sha: sender_hardware_addr,
            spa: sender_protocol_addr,
            tha: target_hardware_addr,
            tpa: target_protocol_addr,
        }
    }
}

impl<HwAddr, ProtoAddr> InnerPacketBuilder for ArpPacketBuilder<HwAddr, ProtoAddr>
where
    HwAddr: Copy + HType + FromBytes + IntoBytes + Immutable + Unaligned,
    ProtoAddr: Copy + PType + FromBytes + IntoBytes + Immutable + Unaligned,
{
    fn bytes_len(&self) -> usize {
        mem::size_of::<Header>() + mem::size_of::<Body<HwAddr, ProtoAddr>>()
    }

    fn serialize(&self, mut buffer: &mut [u8]) {
        // implements BufferViewMut, giving us write_obj_front method
        let mut buffer = &mut buffer;
        buffer
            .write_obj_front(&Header::new::<HwAddr, ProtoAddr>(self.op))
            .expect("too few bytes for ARP packet");
        buffer
            .write_obj_front(&Body { sha: self.sha, spa: self.spa, tha: self.tha, tpa: self.tpa })
            .expect("too few bytes for ARP packet");
    }
}

#[cfg(test)]
impl<B, HwAddr, ProtoAddr> Debug for ArpPacket<B, HwAddr, ProtoAddr> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        write!(fmt, "ArpPacket")
    }
}

#[cfg(test)]
mod tests {
    use packet::{ParseBuffer, Serializer};

    use super::*;
    use crate::ethernet::{EthernetFrame, EthernetFrameLengthCheck};
    use crate::testutil::*;

    const TEST_SENDER_IPV4: Ipv4Addr = Ipv4Addr::new([1, 2, 3, 4]);
    const TEST_TARGET_IPV4: Ipv4Addr = Ipv4Addr::new([5, 6, 7, 8]);
    const TEST_SENDER_MAC: Mac = Mac::new([0, 1, 2, 3, 4, 5]);
    const TEST_TARGET_MAC: Mac = Mac::new([6, 7, 8, 9, 10, 11]);

    #[test]
    fn test_parse_serialize_full() {
        use crate::testdata::arp_request::*;

        let mut buf = ETHERNET_FRAME.bytes;
        let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
        verify_ethernet_frame(&frame, ETHERNET_FRAME);

        let (hw, proto) = peek_arp_types(frame.body()).unwrap();
        assert_eq!(hw, ArpHardwareType::Ethernet);
        assert_eq!(proto, ArpNetworkType::Ipv4);

        let mut body = frame.body();
        let arp = body.parse::<ArpPacket<_, Mac, Ipv4Addr>>().unwrap();
        assert_eq!(arp.operation(), ARP_OPERATION);
        assert_eq!(frame.src_mac(), arp.sender_hardware_address());

        let frame_bytes = arp
            .builder()
            .into_serializer()
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(frame_bytes.as_ref(), ETHERNET_FRAME.bytes);
    }

    fn header_to_bytes(header: Header) -> [u8; ARP_HDR_LEN] {
        zerocopy::transmute!(header)
    }

    // Return a new Header for an Ethernet/IPv4 ARP request.
    fn new_header() -> Header {
        Header::new::<Mac, Ipv4Addr>(ArpOp::Request)
    }

    #[test]
    fn test_peek() {
        let header = new_header();
        let (hw, proto) = peek_arp_types(&header_to_bytes(header)[..]).unwrap();
        assert_eq!(hw, ArpHardwareType::Ethernet);
        assert_eq!(proto, ArpNetworkType::Ipv4);

        // Test that an invalid operation is not rejected; peek_arp_types does
        // not inspect the operation.
        let mut header = new_header();
        header.oper = U16::new(3);
        let (hw, proto) = peek_arp_types(&header_to_bytes(header)[..]).unwrap();
        assert_eq!(hw, ArpHardwareType::Ethernet);
        assert_eq!(proto, ArpNetworkType::Ipv4);
    }

    #[test]
    fn test_parse() {
        let mut buf = &mut [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 5, 6, 7, 8,
        ][..];
        (&mut buf[..ARP_HDR_LEN]).copy_from_slice(&header_to_bytes(new_header()));
        let (hw, proto) = peek_arp_types(&buf[..]).unwrap();
        assert_eq!(hw, ArpHardwareType::Ethernet);
        assert_eq!(proto, ArpNetworkType::Ipv4);

        let buf = &mut buf;
        let packet = buf.parse::<ArpPacket<_, Mac, Ipv4Addr>>().unwrap();
        assert_eq!(packet.sender_hardware_address(), TEST_SENDER_MAC);
        assert_eq!(packet.sender_protocol_address(), TEST_SENDER_IPV4);
        assert_eq!(packet.target_hardware_address(), TEST_TARGET_MAC);
        assert_eq!(packet.target_protocol_address(), TEST_TARGET_IPV4);
        assert_eq!(packet.operation(), ArpOp::Request);
    }

    #[test]
    fn test_serialize() {
        let mut buf = ArpPacketBuilder::new(
            ArpOp::Request,
            TEST_SENDER_MAC,
            TEST_SENDER_IPV4,
            TEST_TARGET_MAC,
            TEST_TARGET_IPV4,
        )
        .into_serializer()
        .serialize_vec_outer()
        .unwrap();
        assert_eq!(
            AsRef::<[u8]>::as_ref(&buf),
            &[0, 1, 8, 0, 6, 4, 0, 1, 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 5, 6, 7, 8,]
        );
        let packet = buf.parse::<ArpPacket<_, Mac, Ipv4Addr>>().unwrap();
        assert_eq!(packet.sender_hardware_address(), TEST_SENDER_MAC);
        assert_eq!(packet.sender_protocol_address(), TEST_SENDER_IPV4);
        assert_eq!(packet.target_hardware_address(), TEST_TARGET_MAC);
        assert_eq!(packet.target_protocol_address(), TEST_TARGET_IPV4);
        assert_eq!(packet.operation(), ArpOp::Request);
    }

    #[test]
    fn test_peek_error() {
        // Test that a header which is too short is rejected.
        let buf = [0; ARP_HDR_LEN - 1];
        assert_eq!(peek_arp_types(&buf[..]).unwrap_err(), ParseError::Format);

        // Test that an unexpected hardware protocol type is rejected.
        let mut header = new_header();
        header.htype = U16::ZERO;
        assert_eq!(
            peek_arp_types(&header_to_bytes(header)[..]).unwrap_err(),
            ParseError::NotSupported
        );

        // Test that an unexpected network protocol type is rejected.
        let mut header = new_header();
        header.ptype = U16::ZERO;
        assert_eq!(
            peek_arp_types(&header_to_bytes(header)[..]).unwrap_err(),
            ParseError::NotSupported
        );

        // Test that an incorrect hardware address len is rejected.
        let mut header = new_header();
        header.hlen = 7;
        assert_eq!(peek_arp_types(&header_to_bytes(header)[..]).unwrap_err(), ParseError::Format);

        // Test that an incorrect protocol address len is rejected.
        let mut header = new_header();
        header.plen = 5;
        assert_eq!(peek_arp_types(&header_to_bytes(header)[..]).unwrap_err(), ParseError::Format);
    }

    #[test]
    fn test_parse_error() {
        // Assert that parsing a buffer results in an error.
        fn assert_err(mut buf: &[u8], err: ParseError) {
            assert_eq!(buf.parse::<ArpPacket<_, Mac, Ipv4Addr>>().unwrap_err(), err);
        }

        // Assert that parsing a particular header results in an error.
        fn assert_header_err(header: Header, err: ParseError) {
            let mut buf = [0; ARP_ETHERNET_IPV4_PACKET_LEN];
            *Ref::<_, Header>::from_prefix(&mut buf[..]).unwrap().0 = header;
            assert_err(&buf[..], err);
        }

        // Test that a packet which is too short is rejected.
        let buf = [0; ARP_ETHERNET_IPV4_PACKET_LEN - 1];
        assert_err(&buf[..], ParseError::Format);

        // Test that an unexpected hardware protocol type is rejected.
        let mut header = new_header();
        header.htype = U16::ZERO;
        assert_header_err(header, ParseError::NotExpected);

        // Test that an unexpected network protocol type is rejected.
        let mut header = new_header();
        header.ptype = U16::ZERO;
        assert_header_err(header, ParseError::NotExpected);

        // Test that an incorrect hardware address len is rejected.
        let mut header = new_header();
        header.hlen = 7;
        assert_header_err(header, ParseError::Format);

        // Test that an incorrect protocol address len is rejected.
        let mut header = new_header();
        header.plen = 5;
        assert_header_err(header, ParseError::Format);

        // Test that an invalid operation is rejected.
        let mut header = new_header();
        header.oper = U16::new(3);
        assert_header_err(header, ParseError::Format);
    }

    #[test]
    fn test_serialize_zeroes() {
        // Test that ArpPacket::serialize properly zeroes memory before
        // serializing the packet.
        let mut buf_0 = [0; ARP_ETHERNET_IPV4_PACKET_LEN];
        ArpPacketBuilder::new(
            ArpOp::Request,
            TEST_SENDER_MAC,
            TEST_SENDER_IPV4,
            TEST_TARGET_MAC,
            TEST_TARGET_IPV4,
        )
        .serialize(&mut buf_0[..]);
        let mut buf_1 = [0xFF; ARP_ETHERNET_IPV4_PACKET_LEN];
        ArpPacketBuilder::new(
            ArpOp::Request,
            TEST_SENDER_MAC,
            TEST_SENDER_IPV4,
            TEST_TARGET_MAC,
            TEST_TARGET_IPV4,
        )
        .serialize(&mut buf_1[..]);
        assert_eq!(buf_0, buf_1);
    }

    #[test]
    #[should_panic(expected = "too few bytes for ARP packet")]
    fn test_serialize_panic_insufficient_packet_space() {
        // Test that a buffer which doesn't leave enough room for the packet is
        // rejected.
        ArpPacketBuilder::new(
            ArpOp::Request,
            TEST_SENDER_MAC,
            TEST_SENDER_IPV4,
            TEST_TARGET_MAC,
            TEST_TARGET_IPV4,
        )
        .serialize(&mut [0; ARP_ETHERNET_IPV4_PACKET_LEN - 1]);
    }
}