wlan_sae/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
mod boringssl;
mod ecc;
mod frame;
pub mod hmac_utils;
mod state;

use anyhow::{bail, Error};
use boringssl::{Bignum, EcGroupId};
use fidl_fuchsia_wlan_ieee80211 as fidl_ieee80211;
pub use frame::{AntiCloggingTokenMsg, CommitMsg, ConfirmMsg};
use hmac_utils::{HmacUtils, HmacUtilsImpl};
use ieee80211::{MacAddr, Ssid};
use log::warn;
use mundane::hash::Sha256;
use num::FromPrimitive;
use wlan_common::ie::rsn::akm::{self, Akm};

/// Maximum number of incorrect frames sent before SAE fails.
const MAX_RETRIES_PER_EXCHANGE: u16 = 3;

/// A shared key computed by an SAE handshake.
#[derive(Clone, PartialEq, Debug)]
pub struct Key {
    pub pmk: Vec<u8>,
    pub pmkid: Vec<u8>,
}

/// IEEE Std 802.11-2020 9.4.2.241
/// Method used to generate the PWE from a password.
#[derive(Debug, Clone, PartialEq)]
pub enum PweMethod {
    /// IEEE Std 802.11-2020, 12.4.4.2.2/12.4.4.3.2
    /// Generate the PWE using the looping hunt-and-peck method.
    Loop = 0,

    /// IEEE Std 802.11-2020, 12.4.4.2.3/12.4.4.3.3
    /// Generate the PWE using the direct hashing method, hash-to-curve or hash-to-element.
    Direct = 1,
}

/// Types of timeout that are used by SAE handshakes. Duration and scheduling of these timeouts
/// is left to the user of this library.
#[derive(Debug, Clone, PartialEq)]
pub enum Timeout {
    /// Timeout before the most recent message(s) should be resent.
    Retransmission,
    /// Timeout before the PMK produced by a successful handshake is considered invalid.
    KeyExpiration,
}

#[derive(Debug)]
pub enum RejectReason {
    /// We experienced a failure that was unrelated to data received from the peer. This likely
    /// means we are not in a good state.
    InternalError(Error),
    /// Data received from the peer failed validation, and we cannot generate a PMK.
    AuthFailed,
    /// The peer has failed to respond or sent incorrect responses too many times.
    TooManyRetries,
    /// The SAE PMKSA has expired, reauthenticate.
    KeyExpiration,
}

impl From<Error> for RejectReason {
    fn from(e: Error) -> Self {
        Self::InternalError(e)
    }
}

#[derive(Debug)]
pub struct AuthFrameRx<'a> {
    pub seq: u16,
    pub status_code: fidl_ieee80211::StatusCode,
    pub body: &'a [u8],
}

#[derive(Debug, Clone, Eq, PartialEq)]
pub struct AuthFrameTx {
    pub seq: u16,
    pub status_code: fidl_ieee80211::StatusCode,
    pub body: Vec<u8>,
}

/// An update generated to progress an SAE handshake. These updates should generally be converted
/// into a frame and sent to the SAE peer.
#[derive(Debug)]
pub enum SaeUpdate {
    /// Send an auth frame to the peer.
    SendFrame(AuthFrameTx),
    /// Indicates the handshake is complete. The handshake should *not* be deleted at this point.
    Success(Key),
    /// Indicates that the handshake has failed and must be aborted or restarted.
    Reject(RejectReason),
    /// Request the user of the library to set or reset a timeout. If this timeout expires, it
    /// should be passed to SaeHandshake::handle_timeout.
    ResetTimeout(Timeout),
    /// Request the user of the library to cancel a timeout that was previously set.
    CancelTimeout(Timeout),
}

pub type SaeUpdateSink = Vec<SaeUpdate>;

/// IEEE 802.11-2016 12.4: Simultaneous Authentication of Equals (SAE)
///
/// An SAE handshake with a peer is a symmetric handshake that may be used in place of open
/// authentication as the AKM. A full handshake consists of both peers sending a Commit and Confirm
/// frame, at which point they have both derived a shared key that is unique to those peers and that
/// session.
///
/// Structs implementing this trait are responsible for handling both a successful SAE handshake,
/// various failure modes, and edge cases such as retries and timeouts.
///
/// None of the functions in this trait return errors. Instead, non-fatal errors are logged, and
/// fatal errors push an SaeUpdate::Reject to the update sink. Once an SaeUpdate::Reject is pushed,
/// all further operations are no-ops.
pub trait SaeHandshake: Send {
    /// Initiate SAE by sending the first commit message. If the peer STA sends the first commit
    /// message, handle_commit should be called first and initiate_sae should never be called.
    fn initiate_sae(&mut self, sink: &mut SaeUpdateSink);

    fn handle_commit(&mut self, sink: &mut SaeUpdateSink, commit_msg: &CommitMsg<'_>);
    fn handle_confirm(&mut self, sink: &mut SaeUpdateSink, confirm_msg: &ConfirmMsg<'_>);
    fn handle_anti_clogging_token(
        &mut self,
        sink: &mut SaeUpdateSink,
        act_msg: &AntiCloggingTokenMsg<'_>,
    );
    fn handle_timeout(&mut self, sink: &mut SaeUpdateSink, timeout: Timeout);

    fn handle_frame(&mut self, sink: &mut SaeUpdateSink, frame: &AuthFrameRx<'_>) {
        match frame::parse(frame) {
            Ok(parse) => match parse {
                frame::ParseSuccess::Commit(commit) => self.handle_commit(sink, &commit),
                frame::ParseSuccess::Confirm(confirm) => self.handle_confirm(sink, &confirm),
                frame::ParseSuccess::AntiCloggingToken(act_msg) => {
                    self.handle_anti_clogging_token(sink, &act_msg)
                }
            },
            Err(e) => warn!("Failed to parse SAE auth frame: {}", e),
        }
    }
}

/// Creates a new SAE handshake for the given group ID and authentication parameters.
pub fn new_sae_handshake(
    group_id: u16,
    akm: Akm,
    pwe_method: PweMethod,
    ssid: Ssid,
    password: Vec<u8>,
    password_id: Option<Vec<u8>>,
    mac: MacAddr,
    peer_mac: MacAddr,
) -> Result<Box<dyn SaeHandshake>, Error> {
    match akm.suite_type {
        akm::SAE | akm::FT_SAE => (),
        _ => bail!("Cannot construct SAE handshake with AKM {:?}", akm),
    };
    let (hmac, group_constructor) = match EcGroupId::from_u16(group_id) {
        Some(EcGroupId::P256) => {
            // IEEE 802.11-2020 12.4.2
            // Group 19 has a 256-bit prime length, thus we use SHA256.
            let hmac = Box::new(HmacUtilsImpl::<Sha256>::new());
            let group_constructor = Box::new(|| {
                ecc::Group::new(EcGroupId::P256).map(|group| {
                    Box::new(group)
                        as Box<
                            dyn internal::FiniteCyclicGroup<
                                Element = <ecc::Group as internal::FiniteCyclicGroup>::Element,
                            >,
                        >
                })
            });
            (hmac, group_constructor)
        }
        _ => bail!("Unsupported SAE group id: {}", group_id),
    };
    Ok(Box::new(state::SaeHandshakeImpl::new(
        group_constructor,
        internal::SaeParameters {
            hmac,
            pwe_method,
            ssid,
            password,
            password_id,
            sta_a_mac: mac,
            sta_b_mac: peer_mac,
        },
    )?))
}

/// Creates a new SAE handshake in response to a first message from a peer, using the FCG indiated
/// by the peer if possible. In a successful handshake, this will immediately push a Commit and
/// Confirm to the given update sink.
pub fn join_sae_handshake(
    sink: &mut SaeUpdateSink,
    first_frame: &AuthFrameRx<'_>,
    akm: Akm,
    ssid: Ssid,
    password: Vec<u8>,
    mac: MacAddr,
    peer_mac: MacAddr,
) -> Result<Box<dyn SaeHandshake>, Error> {
    let parsed_frame = frame::parse(first_frame)?;
    match parsed_frame {
        frame::ParseSuccess::Commit(commit) => {
            let mut handshake = new_sae_handshake(
                commit.group_id,
                akm,
                PweMethod::Loop,
                ssid,
                password,
                None,
                mac,
                peer_mac,
            )?;
            handshake.handle_commit(sink, &commit);
            Ok(handshake)
        }
        _ => bail!("Recieved incorrect first frame of SAE handshake"),
    }
}

// Internal mod for structs with mod-public visibility.
mod internal {
    use super::*;

    /// IEEE 802.11-2016 12.4.4
    /// SAE may use many different finite cyclic groups (FCGs) to compute the various values used
    /// during the handshake. This trait allows our SAE implementation to seamlessly handle
    /// different classes of FCG. IEEE 802.11-2016 defines support for both elliptic curve groups
    /// and finite field cryptography groups.
    ///
    /// All functions provided by this trait will only return an Error when something internal has
    /// gone wrong.
    pub trait FiniteCyclicGroup {
        /// Different classes of FCG have different Element types, but scalars can always be
        /// represented by a Bignum.
        type Element;

        fn group_id(&self) -> u16;

        /// IEEE 802.11-2016 12.4.3
        /// Generates a new password element, a secret value shared by the two peers in SAE.
        fn generate_pwe(&self, params: &SaeParameters) -> Result<Self::Element, Error>;

        /// IEEE 12.4.4.1
        /// These three operators are used to manipulate FCG elements for the purposes of the
        /// Diffie-Hellman key exchange used by SAE.
        fn scalar_op(
            &self,
            scalar: &Bignum,
            element: &Self::Element,
        ) -> Result<Self::Element, Error>;
        fn elem_op(
            &self,
            element1: &Self::Element,
            element2: &Self::Element,
        ) -> Result<Self::Element, Error>;
        fn inverse_op(&self, element: Self::Element) -> Result<Self::Element, Error>;

        /// Returns the prime order of the FCG.
        fn order(&self) -> Result<Bignum, Error>;
        /// IEEE 802.11-2016 12.4.5.4
        /// Maps the given secret element to the shared secret value. Returns None if this is the
        /// identity element for this FCG, indicating that we have in invalid secret element.
        fn map_to_secret_value(&self, element: &Self::Element) -> Result<Option<Vec<u8>>, Error>;
        /// IEEE 802.11-2016 12.4.2: The FCG Element must convert into an octet string such
        /// that it may be included in the confirmation hash when completing SAE.
        fn element_to_octets(&self, element: &Self::Element) -> Result<Vec<u8>, Error>;
        /// Convert octets into an element. Returns None if the given octet string does not
        /// contain a valid element for this group.
        fn element_from_octets(&self, octets: &[u8]) -> Result<Option<Self::Element>, Error>;

        /// Return the expected size of scalar and element values when serialized into a frame.
        fn scalar_size(&self) -> Result<usize, Error> {
            self.order().map(|order| order.len())
        }
    }

    pub struct SaeParameters {
        pub hmac: Box<dyn HmacUtils + Send>,
        pub pwe_method: PweMethod,
        // IEEE Std 802.11-2020 12.4.4.2.3/12.4.4.3.3: The SSID is needed to generate a password
        // seed.
        pub ssid: Ssid,
        // IEEE Std 802.11-2020 12.4.3
        pub password: Vec<u8>,
        pub password_id: Option<Vec<u8>>,
        // IEEE Std 802.11-2016 12.4.4.2.2: The MacAddrs are needed to generate a password seed.
        pub sta_a_mac: MacAddr,
        pub sta_b_mac: MacAddr,
    }
}

#[cfg(test)]
mod tests {
    #![allow(unused_variables)] // Allow unused variables in tests.
    use super::*;
    use lazy_static::lazy_static;
    use std::convert::TryFrom;
    use wlan_common::assert_variant;
    use wlan_common::ie::rsn::akm::{AKM_PSK, AKM_SAE};

    // IEEE 802.11-2016 Annex J.10 SAE test vector
    const TEST_SSID: &'static str = "SSID not in 802.11-2016";
    const TEST_PWD: &'static str = "thisisreallysecret";

    lazy_static! {
        static ref TEST_STA_A: MacAddr = MacAddr::from([0x7b, 0x88, 0x56, 0x20, 0x2d, 0x8d]);
        static ref TEST_STA_B: MacAddr = MacAddr::from([0xe2, 0x47, 0x1c, 0x0a, 0x5a, 0xcb]);
    }

    #[test]
    fn bad_akm() {
        let akm = AKM_PSK;
        let res = new_sae_handshake(
            19,
            akm,
            PweMethod::Loop,
            Ssid::try_from(TEST_SSID).unwrap(),
            Vec::from(TEST_PWD),
            None, // Not required for PweMethod::Loop
            *TEST_STA_A,
            *TEST_STA_B,
        );
        assert!(res.is_err());
        assert!(format!("{}", res.err().unwrap())
            .contains("Cannot construct SAE handshake with AKM 00-0F-AC:2"));
    }

    #[test]
    fn bad_fcg() {
        let akm = AKM_SAE;
        let res = new_sae_handshake(
            200,
            akm,
            PweMethod::Loop,
            Ssid::try_from(TEST_SSID).unwrap(),
            Vec::from(TEST_PWD),
            None, // Not required for PweMethod::Loop
            *TEST_STA_A,
            *TEST_STA_B,
        );
        assert!(res.is_err());
        assert!(format!("{}", res.err().unwrap()).contains("Unsupported SAE group id: 200"));
    }

    struct TestHandshake {
        sta1: Box<dyn SaeHandshake>,
        sta2: Box<dyn SaeHandshake>,
    }

    // Helper structs for differentiating Commit/Confirm messages once they've been converted into
    // generic auth frames.
    #[derive(Clone, Eq, PartialEq, Debug)]
    struct CommitTx(AuthFrameTx);
    #[derive(Clone, Eq, PartialEq, Debug)]
    struct ConfirmTx(AuthFrameTx);
    struct CommitRx<'a>(AuthFrameRx<'a>);
    struct ConfirmRx<'a>(AuthFrameRx<'a>);

    fn to_rx(frame: &AuthFrameTx) -> AuthFrameRx<'_> {
        AuthFrameRx { seq: frame.seq, status_code: frame.status_code, body: &frame.body[..] }
    }

    impl CommitTx {
        fn to_rx(&self) -> CommitRx<'_> {
            CommitRx(to_rx(&self.0))
        }
    }

    impl ConfirmTx {
        fn to_rx(&self) -> ConfirmRx<'_> {
            ConfirmRx(to_rx(&self.0))
        }
    }

    impl<'a> CommitRx<'a> {
        fn msg(&'a self) -> CommitMsg<'a> {
            assert_variant!(frame::parse(&self.0),
                Ok(frame::ParseSuccess::Commit(commit)) => commit)
        }
    }

    impl<'a> ConfirmRx<'a> {
        fn msg(&'a self) -> ConfirmMsg<'a> {
            assert_variant!(frame::parse(&self.0),
                Ok(frame::ParseSuccess::Confirm(confirm)) => confirm)
        }
    }

    fn expect_commit(sink: &mut Vec<SaeUpdate>) -> CommitTx {
        let commit = assert_variant!(sink.remove(0), SaeUpdate::SendFrame(frame) => frame);
        assert_variant!(frame::parse(&to_rx(&commit)), Ok(frame::ParseSuccess::Commit(msg)));
        CommitTx(commit)
    }

    fn expect_confirm(sink: &mut Vec<SaeUpdate>) -> ConfirmTx {
        let confirm = assert_variant!(sink.remove(0), SaeUpdate::SendFrame(frame) => frame);
        assert_variant!(frame::parse(&to_rx(&confirm)), Ok(frame::ParseSuccess::Confirm(msg)));
        ConfirmTx(confirm)
    }

    fn expect_reset_timeout(sink: &mut Vec<SaeUpdate>, timeout: Timeout) {
        assert_variant!(sink.remove(0), SaeUpdate::ResetTimeout(timeout));
    }

    fn expect_cancel_timeout(sink: &mut Vec<SaeUpdate>, timeout: Timeout) {
        assert_variant!(sink.remove(0), SaeUpdate::CancelTimeout(timeout));
    }

    // Test helper to advance through successful steps of an SAE handshake.
    impl TestHandshake {
        fn new() -> Self {
            let akm = AKM_SAE;
            let sta1 = new_sae_handshake(
                19,
                akm.clone(),
                PweMethod::Loop,
                Ssid::try_from(TEST_SSID).unwrap(),
                Vec::from(TEST_PWD),
                None, // Not required for PweMethod::Loop
                *TEST_STA_A,
                *TEST_STA_B,
            )
            .unwrap();
            let sta2 = new_sae_handshake(
                19,
                akm,
                PweMethod::Loop,
                Ssid::try_from(TEST_SSID).unwrap(),
                Vec::from(TEST_PWD),
                None, // Not required for PweMethod::Loop
                *TEST_STA_B,
                *TEST_STA_A,
            )
            .unwrap();
            Self { sta1, sta2 }
        }

        fn sta1_init(&mut self) -> CommitTx {
            let mut sink = vec![];
            self.sta1.initiate_sae(&mut sink);
            assert_eq!(sink.len(), 2);
            let commit = expect_commit(&mut sink);
            expect_reset_timeout(&mut sink, Timeout::Retransmission);
            commit
        }

        fn sta2_handle_commit(&mut self, commit1: CommitRx<'_>) -> (CommitTx, ConfirmTx) {
            let mut sink = vec![];
            self.sta2.handle_commit(&mut sink, &commit1.msg());
            assert_eq!(sink.len(), 3);
            let commit2 = expect_commit(&mut sink);
            let confirm2 = expect_confirm(&mut sink);
            expect_reset_timeout(&mut sink, Timeout::Retransmission);
            (commit2, confirm2)
        }

        fn sta1_handle_commit(&mut self, commit2: CommitRx<'_>) -> ConfirmTx {
            let mut sink = vec![];
            self.sta1.handle_commit(&mut sink, &commit2.msg());
            assert_eq!(sink.len(), 2);
            let confirm1 = expect_confirm(&mut sink);
            expect_reset_timeout(&mut sink, Timeout::Retransmission);
            confirm1
        }

        fn sta1_handle_confirm(&mut self, confirm2: ConfirmRx<'_>) -> Key {
            Self::__internal_handle_confirm(&mut self.sta1, confirm2.msg())
        }

        fn sta2_handle_confirm(&mut self, confirm1: ConfirmRx<'_>) -> Key {
            Self::__internal_handle_confirm(&mut self.sta2, confirm1.msg())
        }

        fn __internal_handle_confirm(
            sta: &mut Box<dyn SaeHandshake>,
            confirm: ConfirmMsg<'_>,
        ) -> Key {
            let mut sink = vec![];
            sta.handle_confirm(&mut sink, &confirm);
            assert_eq!(sink.len(), 3);
            expect_cancel_timeout(&mut sink, Timeout::Retransmission);
            expect_reset_timeout(&mut sink, Timeout::KeyExpiration);
            assert_variant!(sink.remove(0), SaeUpdate::Success(key) => key)
        }
    }

    #[test]
    fn sae_handshake_success() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());
        let key1 = handshake.sta1_handle_confirm(confirm2.to_rx());
        let key2 = handshake.sta2_handle_confirm(confirm1.to_rx());
        assert_eq!(key1, key2);
    }

    #[test]
    fn password_mismatch() {
        let akm = AKM_SAE;
        let sta1 = new_sae_handshake(
            19,
            akm.clone(),
            PweMethod::Loop,
            Ssid::try_from(TEST_SSID).unwrap(),
            Vec::from(TEST_PWD),
            None, // Not required for PweMethod::Loop
            *TEST_STA_A,
            *TEST_STA_B,
        )
        .unwrap();
        let sta2 = new_sae_handshake(
            19,
            akm,
            PweMethod::Loop,
            Ssid::try_from(TEST_SSID).unwrap(),
            Vec::from("other_pwd"),
            None, // Not required for PweMethod::Loop
            *TEST_STA_B,
            *TEST_STA_A,
        )
        .unwrap();
        let mut handshake = TestHandshake { sta1, sta2 };

        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());

        let mut sink1 = vec![];
        handshake.sta1.handle_confirm(&mut sink1, &confirm2.to_rx().msg());
        let mut sink2 = vec![];
        handshake.sta2.handle_confirm(&mut sink2, &confirm1.to_rx().msg());
        // The confirm is dropped both ways.
        assert_eq!(sink1.len(), 0);
        assert_eq!(sink2.len(), 0);
    }

    #[test]
    fn retry_commit_on_unexpected_confirm() {
        let mut handshake = TestHandshake::new();

        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());
        let mut sink = vec![];
        handshake.sta1.handle_confirm(&mut sink, &confirm2.to_rx().msg());
        assert_eq!(sink.len(), 2);
        let commit1_retry = expect_commit(&mut sink);
        assert_variant!(sink.remove(0), SaeUpdate::ResetTimeout(Timeout::Retransmission));

        // We retransmit the same commit in response to a faulty confirm.
        assert_eq!(commit1, commit1_retry);
    }

    #[test]
    fn retry_commit_on_anti_clogging_token() {
        let mut handshake = TestHandshake::new();

        let commit1 = handshake.sta1_init();

        // Simulate an anti-clogging token sent to sta1.
        let mut sink = vec![];
        let anti_clogging_token = "anticloggingtokentext";
        let act_msg = AntiCloggingTokenMsg {
            group_id: 19,
            anti_clogging_token: anti_clogging_token.as_bytes(),
        };
        handshake.sta1.handle_anti_clogging_token(&mut sink, &act_msg);
        let commit1_retry = expect_commit(&mut sink);
        assert_eq!(
            commit1_retry.clone().to_rx().msg().anti_clogging_token,
            Some(anti_clogging_token.as_bytes())
        );

        // Finish the handshake.
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1_retry.to_rx());
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());
        let key1 = handshake.sta1_handle_confirm(confirm2.to_rx());
        let key2 = handshake.sta2_handle_confirm(confirm1.to_rx());
        assert_eq!(key1, key2);
    }

    #[test]
    fn ignore_wrong_confirm() {
        let mut handshake = TestHandshake::new();

        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());

        let mut sink = vec![];
        let confirm2_wrong = ConfirmTx(frame::write_confirm(1, &[1; 32][..]));
        handshake.sta1.handle_confirm(&mut sink, &confirm2_wrong.to_rx().msg());
        assert_eq!(sink.len(), 0); // Ignored.

        // STA1 should still be able to handle a subsequent correct confirm.
        handshake.sta1_handle_confirm(confirm2.to_rx());
    }

    #[test]
    fn handle_resent_commit() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());
        let (commit2_retry, confirm2_retry) = handshake.sta2_handle_commit(commit1.to_rx());

        // The resent commit message should be unchanged, but the resent confirm should increment
        // sc and produce a different value.
        assert_eq!(commit2, commit2_retry);
        assert_eq!(confirm2.to_rx().msg().send_confirm, 1);
        assert_eq!(confirm2_retry.to_rx().msg().send_confirm, 2);
        assert!(confirm2.to_rx().msg().confirm != confirm2_retry.to_rx().msg().confirm);

        // Now complete the handshake.
        let confirm1 = handshake.sta1_handle_commit(commit2_retry.to_rx());
        let key1 = handshake.sta1_handle_confirm(confirm2_retry.to_rx());
        let key2 = handshake.sta2_handle_confirm(confirm1.to_rx());
        assert_eq!(key1, key2);
    }

    #[test]
    fn completed_handshake_handles_resent_confirm() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());
        let (commit2_retry, confirm2_retry) = handshake.sta2_handle_commit(commit1.to_rx());
        // Send STA1 the second confirm message first.
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());
        let key1 = handshake.sta1_handle_confirm(confirm2.clone().to_rx());

        // STA1 should respond to the second confirm with its own confirm.
        let mut sink = vec![];
        handshake.sta1.handle_confirm(&mut sink, &confirm2_retry.to_rx().msg());
        assert_eq!(sink.len(), 1);
        let confirm1_retry = expect_confirm(&mut sink);
        assert!(confirm1.to_rx().msg().confirm != confirm1_retry.to_rx().msg().confirm);
        assert_eq!(confirm1_retry.to_rx().msg().send_confirm, u16::max_value());

        // STA2 should complete the handshake with the resent confirm.
        let key2 = handshake.sta2_handle_confirm(confirm1_retry.to_rx());
        assert_eq!(key1, key2);

        // STA1 should silently drop either of our confirm frames now.
        handshake.sta1.handle_confirm(&mut sink, &confirm2_retry.to_rx().msg());
        assert!(sink.is_empty());
        handshake.sta1.handle_confirm(&mut sink, &confirm2.to_rx().msg());
        assert!(sink.is_empty());

        // STA1 should also silently drop an incorrect confirm, even if send_confirm is incremented.
        let confirm2_wrong = ConfirmMsg { send_confirm: 10, confirm: &[0xab; 32][..] };
        handshake.sta1.handle_confirm(&mut sink, &confirm2_wrong);
        assert!(sink.is_empty());
    }

    #[test]
    fn completed_handshake_ignores_commit() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        handshake.sta1_handle_commit(commit2.to_rx());
        handshake.sta1_handle_confirm(confirm2.clone().to_rx());

        // STA1 has completed it's side of the handshake.
        let mut sink = vec![];
        handshake.sta1.handle_confirm(&mut sink, &confirm2.to_rx().msg());
        assert!(sink.is_empty());
    }

    #[test]
    fn bad_first_commit_rejects_auth() {
        let mut handshake = TestHandshake::new();
        let commit1_wrong = CommitMsg {
            group_id: 19,
            scalar: &[0xab; 32][..],
            element: &[0xcd; 64][..],
            anti_clogging_token: None,
        };

        let mut sink = vec![];
        handshake.sta1.handle_commit(&mut sink, &commit1_wrong);
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::AuthFailed));
    }

    #[test]
    fn bad_second_commit_ignored() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (_commit1, _confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        let commit2_wrong = CommitMsg {
            group_id: 19,
            scalar: &[0xab; 32][..],
            element: &[0xcd; 64][..],
            anti_clogging_token: None,
        };
        let mut sink = vec![];
        handshake.sta1.handle_commit(&mut sink, &commit2_wrong);
        assert_eq!(sink.len(), 0);
    }

    #[test]
    fn reflected_commit_discarded() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();

        let mut sink = vec![];
        handshake.sta1.handle_commit(&mut sink, &commit1.to_rx().msg());
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::ResetTimeout(Timeout::Retransmission));
    }

    #[test]
    fn maximum_commit_retries() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());

        // STA2 should allow MAX_RETRIES_PER_EXCHANGE retry operations before giving up.
        for i in 0..MAX_RETRIES_PER_EXCHANGE {
            let (commit2_retry, confirm2_retry) =
                handshake.sta2_handle_commit(commit1.clone().to_rx());
            assert_eq!(commit2, commit2_retry);
            assert_eq!(confirm2_retry.to_rx().msg().send_confirm, i + 2);
        }

        // The last straw!
        let mut sink = vec![];
        handshake.sta2.handle_commit(&mut sink, &commit1.to_rx().msg());
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::TooManyRetries));
    }

    #[test]
    fn completed_exchange_fails_after_retries() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());

        // STA2 should allow MAX_RETRIES_PER_EXCHANGE retry operations before giving up. We subtract 1
        // here for the reason explained in the note below.
        for i in 0..(MAX_RETRIES_PER_EXCHANGE - 1) {
            let (commit2_retry, confirm2_retry) =
                handshake.sta2_handle_commit(commit1.clone().to_rx());
            assert_eq!(commit2, commit2_retry);
            assert_eq!(confirm2_retry.to_rx().msg().send_confirm, i + 2);
        }

        let mut sink = vec![];

        // Generate 3 different confirm messages for our testing...
        let confirm1_sc1 = handshake.sta1_handle_commit(commit2.clone().to_rx());
        handshake.sta1.handle_commit(&mut sink, &commit2.to_rx().msg());
        assert_eq!(sink.len(), 3);
        sink.remove(0);
        let confirm1_sc2 = expect_confirm(&mut sink);
        sink.clear();
        let confirm1_invalid = ConfirmMsg { send_confirm: 3, confirm: &[0xab; 32][..] };

        // STA2 completes the handshake. However, one more indication that STA1 is misbehaving will
        // immediately kill the authentication.
        handshake.sta2_handle_confirm(confirm1_sc1.clone().to_rx());

        // NOTE: We run all of the operations here two times. This is because of a quirk in the SAE
        // state machine: while only certain operations *increment* sync, all invalid operations
        // will *check* sync. We can test whether sync is being incremented by running twice to see
        // if this pushes us over the MAX_RETRIES_PER_EXCHANGE threshold.

        // STA2 ignores commits.
        handshake.sta2.handle_commit(&mut sink, &commit1.to_rx().msg());
        handshake.sta2.handle_commit(&mut sink, &commit1.to_rx().msg());
        assert_eq!(sink.len(), 0);

        // STA2 ignores invalid confirm.
        handshake.sta2.handle_confirm(&mut sink, &confirm1_invalid);
        handshake.sta2.handle_confirm(&mut sink, &confirm1_invalid);
        assert_eq!(sink.len(), 0);

        // STA2 ignores old confirm.
        handshake.sta2.handle_confirm(&mut sink, &confirm1_sc1.to_rx().msg());
        handshake.sta2.handle_confirm(&mut sink, &confirm1_sc1.to_rx().msg());
        assert_eq!(sink.len(), 0);

        // But another valid confirm increments sync!
        handshake.sta2.handle_confirm(&mut sink, &confirm1_sc2.to_rx().msg());
        assert_eq!(sink.len(), 1);
        expect_confirm(&mut sink);
        handshake.sta2.handle_confirm(&mut sink, &confirm1_sc2.to_rx().msg());
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::TooManyRetries));
    }

    #[test]
    fn resend_commit_after_retransmission_timeout() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();

        let mut sink = vec![];
        handshake.sta1.handle_timeout(&mut sink, Timeout::Retransmission);
        let commit1_retry = expect_commit(&mut sink);
        expect_reset_timeout(&mut sink, Timeout::Retransmission);
        assert_eq!(commit1, commit1_retry);
    }

    #[test]
    fn resend_confirm_after_retransmission_timeout() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());

        let mut sink = vec![];
        handshake.sta2.handle_timeout(&mut sink, Timeout::Retransmission);
        // On timeout we should only send commit and confirm.
        let confirm2_retry = expect_confirm(&mut sink);
        expect_reset_timeout(&mut sink, Timeout::Retransmission);
        assert_eq!(
            confirm2.to_rx().msg().send_confirm + 1,
            confirm2_retry.to_rx().msg().send_confirm
        );
    }

    #[test]
    fn abort_commit_after_too_many_timeouts() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();

        let mut sink = vec![];
        for i in 0..MAX_RETRIES_PER_EXCHANGE {
            handshake.sta1.handle_timeout(&mut sink, Timeout::Retransmission);
            let commit1_retry = expect_commit(&mut sink);
            expect_reset_timeout(&mut sink, Timeout::Retransmission);
            assert_eq!(commit1, commit1_retry);
        }

        // This camel can't hold another straw!
        handshake.sta1.handle_timeout(&mut sink, Timeout::Retransmission);
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::TooManyRetries));
    }

    #[test]
    fn abort_confirm_after_too_many_timeouts() {
        let mut handshake = TestHandshake::new();
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.clone().to_rx());

        let mut sink = vec![];
        for i in 0..MAX_RETRIES_PER_EXCHANGE {
            handshake.sta2.handle_timeout(&mut sink, Timeout::Retransmission);
            // On timeout we should only send commit and confirm.
            let confirm2_retry = expect_confirm(&mut sink);
            expect_reset_timeout(&mut sink, Timeout::Retransmission);
            assert_eq!(
                confirm2.to_rx().msg().send_confirm + i + 1,
                confirm2_retry.to_rx().msg().send_confirm
            );
        }

        handshake.sta2.handle_timeout(&mut sink, Timeout::Retransmission);
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::TooManyRetries));
    }

    #[test]
    fn ignore_unexpected_retransmit_timeout() {
        let mut handshake = TestHandshake::new();
        let mut sink = vec![];
        // Timeout::Retransmission is ignored while in New state.
        handshake.sta1.handle_timeout(&mut sink, Timeout::Retransmission);
        assert!(sink.is_empty());

        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());
        let key1 = handshake.sta1_handle_confirm(confirm2.to_rx());

        // Timeout::Retransmission is ignored while in Accepted state.
        handshake.sta1.handle_timeout(&mut sink, Timeout::Retransmission);
        assert!(sink.is_empty());
    }

    #[test]
    fn fail_on_early_key_expiration() {
        let mut handshake = TestHandshake::new();
        handshake.sta1_init();

        // Early key expiration indicates that something has gone very wrong, so we abort.
        let mut sink = vec![];
        handshake.sta1.handle_timeout(&mut sink, Timeout::KeyExpiration);
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::InternalError(_)));
    }

    #[test]
    fn key_expiration_timeout() {
        let mut handshake = TestHandshake::new();
        // Timeout::KeyExpiration is only expected once our handshake has completed.
        let commit1 = handshake.sta1_init();
        let (commit2, confirm2) = handshake.sta2_handle_commit(commit1.to_rx());
        let confirm1 = handshake.sta1_handle_commit(commit2.to_rx());
        let key1 = handshake.sta1_handle_confirm(confirm2.to_rx());

        let mut sink = vec![];
        handshake.sta1.handle_timeout(&mut sink, Timeout::KeyExpiration);
        assert_eq!(sink.len(), 1);
        assert_variant!(sink.remove(0), SaeUpdate::Reject(RejectReason::KeyExpiration));
    }
}