crossbeam_utils/sync/
sharded_lock.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
use std::cell::UnsafeCell;
use std::collections::HashMap;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::sync::{LockResult, PoisonError, TryLockError, TryLockResult};
use std::sync::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::thread::{self, ThreadId};

use crate::sync::once_lock::OnceLock;
use crate::CachePadded;

/// The number of shards per sharded lock. Must be a power of two.
const NUM_SHARDS: usize = 8;

/// A shard containing a single reader-writer lock.
struct Shard {
    /// The inner reader-writer lock.
    lock: RwLock<()>,

    /// The write-guard keeping this shard locked.
    ///
    /// Write operations will lock each shard and store the guard here. These guards get dropped at
    /// the same time the big guard is dropped.
    write_guard: UnsafeCell<Option<RwLockWriteGuard<'static, ()>>>,
}

/// A sharded reader-writer lock.
///
/// This lock is equivalent to [`RwLock`], except read operations are faster and write operations
/// are slower.
///
/// A `ShardedLock` is internally made of a list of *shards*, each being a [`RwLock`] occupying a
/// single cache line. Read operations will pick one of the shards depending on the current thread
/// and lock it. Write operations need to lock all shards in succession.
///
/// By splitting the lock into shards, concurrent read operations will in most cases choose
/// different shards and thus update different cache lines, which is good for scalability. However,
/// write operations need to do more work and are therefore slower than usual.
///
/// The priority policy of the lock is dependent on the underlying operating system's
/// implementation, and this type does not guarantee that any particular policy will be used.
///
/// # Poisoning
///
/// A `ShardedLock`, like [`RwLock`], will become poisoned on a panic. Note that it may only be
/// poisoned if a panic occurs while a write operation is in progress. If a panic occurs in any
/// read operation, the lock will not be poisoned.
///
/// # Examples
///
/// ```
/// use crossbeam_utils::sync::ShardedLock;
///
/// let lock = ShardedLock::new(5);
///
/// // Any number of read locks can be held at once.
/// {
///     let r1 = lock.read().unwrap();
///     let r2 = lock.read().unwrap();
///     assert_eq!(*r1, 5);
///     assert_eq!(*r2, 5);
/// } // Read locks are dropped at this point.
///
/// // However, only one write lock may be held.
/// {
///     let mut w = lock.write().unwrap();
///     *w += 1;
///     assert_eq!(*w, 6);
/// } // Write lock is dropped here.
/// ```
///
/// [`RwLock`]: std::sync::RwLock
pub struct ShardedLock<T: ?Sized> {
    /// A list of locks protecting the internal data.
    shards: Box<[CachePadded<Shard>]>,

    /// The internal data.
    value: UnsafeCell<T>,
}

unsafe impl<T: ?Sized + Send> Send for ShardedLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for ShardedLock<T> {}

impl<T: ?Sized> UnwindSafe for ShardedLock<T> {}
impl<T: ?Sized> RefUnwindSafe for ShardedLock<T> {}

impl<T> ShardedLock<T> {
    /// Creates a new sharded reader-writer lock.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    ///
    /// let lock = ShardedLock::new(5);
    /// ```
    pub fn new(value: T) -> ShardedLock<T> {
        ShardedLock {
            shards: (0..NUM_SHARDS)
                .map(|_| {
                    CachePadded::new(Shard {
                        lock: RwLock::new(()),
                        write_guard: UnsafeCell::new(None),
                    })
                })
                .collect::<Box<[_]>>(),
            value: UnsafeCell::new(value),
        }
    }

    /// Consumes this lock, returning the underlying data.
    ///
    /// # Errors
    ///
    /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
    /// operation panics.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    ///
    /// let lock = ShardedLock::new(String::new());
    /// {
    ///     let mut s = lock.write().unwrap();
    ///     *s = "modified".to_owned();
    /// }
    /// assert_eq!(lock.into_inner().unwrap(), "modified");
    /// ```
    pub fn into_inner(self) -> LockResult<T> {
        let is_poisoned = self.is_poisoned();
        let inner = self.value.into_inner();

        if is_poisoned {
            Err(PoisonError::new(inner))
        } else {
            Ok(inner)
        }
    }
}

impl<T: ?Sized> ShardedLock<T> {
    /// Returns `true` if the lock is poisoned.
    ///
    /// If another thread can still access the lock, it may become poisoned at any time. A `false`
    /// result should not be trusted without additional synchronization.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// let lock = Arc::new(ShardedLock::new(0));
    /// let c_lock = lock.clone();
    ///
    /// let _ = thread::spawn(move || {
    ///     let _lock = c_lock.write().unwrap();
    ///     panic!(); // the lock gets poisoned
    /// }).join();
    /// assert_eq!(lock.is_poisoned(), true);
    /// ```
    pub fn is_poisoned(&self) -> bool {
        self.shards[0].lock.is_poisoned()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the lock mutably, no actual locking needs to take place.
    ///
    /// # Errors
    ///
    /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
    /// operation panics.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    ///
    /// let mut lock = ShardedLock::new(0);
    /// *lock.get_mut().unwrap() = 10;
    /// assert_eq!(*lock.read().unwrap(), 10);
    /// ```
    pub fn get_mut(&mut self) -> LockResult<&mut T> {
        let is_poisoned = self.is_poisoned();
        let inner = unsafe { &mut *self.value.get() };

        if is_poisoned {
            Err(PoisonError::new(inner))
        } else {
            Ok(inner)
        }
    }

    /// Attempts to acquire this lock with shared read access.
    ///
    /// If the access could not be granted at this time, an error is returned. Otherwise, a guard
    /// is returned which will release the shared access when it is dropped. This method does not
    /// provide any guarantees with respect to the ordering of whether contentious readers or
    /// writers will acquire the lock first.
    ///
    /// # Errors
    ///
    /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
    /// operation panics.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    ///
    /// let lock = ShardedLock::new(1);
    ///
    /// match lock.try_read() {
    ///     Ok(n) => assert_eq!(*n, 1),
    ///     Err(_) => unreachable!(),
    /// };
    /// ```
    pub fn try_read(&self) -> TryLockResult<ShardedLockReadGuard<'_, T>> {
        // Take the current thread index and map it to a shard index. Thread indices will tend to
        // distribute shards among threads equally, thus reducing contention due to read-locking.
        let current_index = current_index().unwrap_or(0);
        let shard_index = current_index & (self.shards.len() - 1);

        match self.shards[shard_index].lock.try_read() {
            Ok(guard) => Ok(ShardedLockReadGuard {
                lock: self,
                _guard: guard,
                _marker: PhantomData,
            }),
            Err(TryLockError::Poisoned(err)) => {
                let guard = ShardedLockReadGuard {
                    lock: self,
                    _guard: err.into_inner(),
                    _marker: PhantomData,
                };
                Err(TryLockError::Poisoned(PoisonError::new(guard)))
            }
            Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock),
        }
    }

    /// Locks with shared read access, blocking the current thread until it can be acquired.
    ///
    /// The calling thread will be blocked until there are no more writers which hold the lock.
    /// There may be other readers currently inside the lock when this method returns. This method
    /// does not provide any guarantees with respect to the ordering of whether contentious readers
    /// or writers will acquire the lock first.
    ///
    /// Returns a guard which will release the shared access when dropped.
    ///
    /// # Errors
    ///
    /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
    /// operation panics.
    ///
    /// # Panics
    ///
    /// This method might panic when called if the lock is already held by the current thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// let lock = Arc::new(ShardedLock::new(1));
    /// let c_lock = lock.clone();
    ///
    /// let n = lock.read().unwrap();
    /// assert_eq!(*n, 1);
    ///
    /// thread::spawn(move || {
    ///     let r = c_lock.read();
    ///     assert!(r.is_ok());
    /// }).join().unwrap();
    /// ```
    pub fn read(&self) -> LockResult<ShardedLockReadGuard<'_, T>> {
        // Take the current thread index and map it to a shard index. Thread indices will tend to
        // distribute shards among threads equally, thus reducing contention due to read-locking.
        let current_index = current_index().unwrap_or(0);
        let shard_index = current_index & (self.shards.len() - 1);

        match self.shards[shard_index].lock.read() {
            Ok(guard) => Ok(ShardedLockReadGuard {
                lock: self,
                _guard: guard,
                _marker: PhantomData,
            }),
            Err(err) => Err(PoisonError::new(ShardedLockReadGuard {
                lock: self,
                _guard: err.into_inner(),
                _marker: PhantomData,
            })),
        }
    }

    /// Attempts to acquire this lock with exclusive write access.
    ///
    /// If the access could not be granted at this time, an error is returned. Otherwise, a guard
    /// is returned which will release the exclusive access when it is dropped. This method does
    /// not provide any guarantees with respect to the ordering of whether contentious readers or
    /// writers will acquire the lock first.
    ///
    /// # Errors
    ///
    /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
    /// operation panics.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    ///
    /// let lock = ShardedLock::new(1);
    ///
    /// let n = lock.read().unwrap();
    /// assert_eq!(*n, 1);
    ///
    /// assert!(lock.try_write().is_err());
    /// ```
    pub fn try_write(&self) -> TryLockResult<ShardedLockWriteGuard<'_, T>> {
        let mut poisoned = false;
        let mut blocked = None;

        // Write-lock each shard in succession.
        for (i, shard) in self.shards.iter().enumerate() {
            let guard = match shard.lock.try_write() {
                Ok(guard) => guard,
                Err(TryLockError::Poisoned(err)) => {
                    poisoned = true;
                    err.into_inner()
                }
                Err(TryLockError::WouldBlock) => {
                    blocked = Some(i);
                    break;
                }
            };

            // Store the guard into the shard.
            unsafe {
                let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard);
                let dest: *mut _ = shard.write_guard.get();
                *dest = Some(guard);
            }
        }

        if let Some(i) = blocked {
            // Unlock the shards in reverse order of locking.
            for shard in self.shards[0..i].iter().rev() {
                unsafe {
                    let dest: *mut _ = shard.write_guard.get();
                    let guard = mem::replace(&mut *dest, None);
                    drop(guard);
                }
            }
            Err(TryLockError::WouldBlock)
        } else if poisoned {
            let guard = ShardedLockWriteGuard {
                lock: self,
                _marker: PhantomData,
            };
            Err(TryLockError::Poisoned(PoisonError::new(guard)))
        } else {
            Ok(ShardedLockWriteGuard {
                lock: self,
                _marker: PhantomData,
            })
        }
    }

    /// Locks with exclusive write access, blocking the current thread until it can be acquired.
    ///
    /// The calling thread will be blocked until there are no more writers which hold the lock.
    /// There may be other readers currently inside the lock when this method returns. This method
    /// does not provide any guarantees with respect to the ordering of whether contentious readers
    /// or writers will acquire the lock first.
    ///
    /// Returns a guard which will release the exclusive access when dropped.
    ///
    /// # Errors
    ///
    /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
    /// operation panics.
    ///
    /// # Panics
    ///
    /// This method might panic when called if the lock is already held by the current thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::ShardedLock;
    ///
    /// let lock = ShardedLock::new(1);
    ///
    /// let mut n = lock.write().unwrap();
    /// *n = 2;
    ///
    /// assert!(lock.try_read().is_err());
    /// ```
    pub fn write(&self) -> LockResult<ShardedLockWriteGuard<'_, T>> {
        let mut poisoned = false;

        // Write-lock each shard in succession.
        for shard in self.shards.iter() {
            let guard = match shard.lock.write() {
                Ok(guard) => guard,
                Err(err) => {
                    poisoned = true;
                    err.into_inner()
                }
            };

            // Store the guard into the shard.
            unsafe {
                let guard: RwLockWriteGuard<'_, ()> = guard;
                let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard);
                let dest: *mut _ = shard.write_guard.get();
                *dest = Some(guard);
            }
        }

        if poisoned {
            Err(PoisonError::new(ShardedLockWriteGuard {
                lock: self,
                _marker: PhantomData,
            }))
        } else {
            Ok(ShardedLockWriteGuard {
                lock: self,
                _marker: PhantomData,
            })
        }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for ShardedLock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.try_read() {
            Ok(guard) => f
                .debug_struct("ShardedLock")
                .field("data", &&*guard)
                .finish(),
            Err(TryLockError::Poisoned(err)) => f
                .debug_struct("ShardedLock")
                .field("data", &&**err.get_ref())
                .finish(),
            Err(TryLockError::WouldBlock) => {
                struct LockedPlaceholder;
                impl fmt::Debug for LockedPlaceholder {
                    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                        f.write_str("<locked>")
                    }
                }
                f.debug_struct("ShardedLock")
                    .field("data", &LockedPlaceholder)
                    .finish()
            }
        }
    }
}

impl<T: Default> Default for ShardedLock<T> {
    fn default() -> ShardedLock<T> {
        ShardedLock::new(Default::default())
    }
}

impl<T> From<T> for ShardedLock<T> {
    fn from(t: T) -> Self {
        ShardedLock::new(t)
    }
}

/// A guard used to release the shared read access of a [`ShardedLock`] when dropped.
pub struct ShardedLockReadGuard<'a, T: ?Sized> {
    lock: &'a ShardedLock<T>,
    _guard: RwLockReadGuard<'a, ()>,
    _marker: PhantomData<RwLockReadGuard<'a, T>>,
}

unsafe impl<T: ?Sized + Sync> Sync for ShardedLockReadGuard<'_, T> {}

impl<T: ?Sized> Deref for ShardedLockReadGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.lock.value.get() }
    }
}

impl<T: fmt::Debug> fmt::Debug for ShardedLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ShardedLockReadGuard")
            .field("lock", &self.lock)
            .finish()
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

/// A guard used to release the exclusive write access of a [`ShardedLock`] when dropped.
pub struct ShardedLockWriteGuard<'a, T: ?Sized> {
    lock: &'a ShardedLock<T>,
    _marker: PhantomData<RwLockWriteGuard<'a, T>>,
}

unsafe impl<T: ?Sized + Sync> Sync for ShardedLockWriteGuard<'_, T> {}

impl<T: ?Sized> Drop for ShardedLockWriteGuard<'_, T> {
    fn drop(&mut self) {
        // Unlock the shards in reverse order of locking.
        for shard in self.lock.shards.iter().rev() {
            unsafe {
                let dest: *mut _ = shard.write_guard.get();
                let guard = mem::replace(&mut *dest, None);
                drop(guard);
            }
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for ShardedLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ShardedLockWriteGuard")
            .field("lock", &self.lock)
            .finish()
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized> Deref for ShardedLockWriteGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.lock.value.get() }
    }
}

impl<T: ?Sized> DerefMut for ShardedLockWriteGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.lock.value.get() }
    }
}

/// Returns a `usize` that identifies the current thread.
///
/// Each thread is associated with an 'index'. While there are no particular guarantees, indices
/// usually tend to be consecutive numbers between 0 and the number of running threads.
///
/// Since this function accesses TLS, `None` might be returned if the current thread's TLS is
/// tearing down.
#[inline]
fn current_index() -> Option<usize> {
    REGISTRATION.try_with(|reg| reg.index).ok()
}

/// The global registry keeping track of registered threads and indices.
struct ThreadIndices {
    /// Mapping from `ThreadId` to thread index.
    mapping: HashMap<ThreadId, usize>,

    /// A list of free indices.
    free_list: Vec<usize>,

    /// The next index to allocate if the free list is empty.
    next_index: usize,
}

fn thread_indices() -> &'static Mutex<ThreadIndices> {
    static THREAD_INDICES: OnceLock<Mutex<ThreadIndices>> = OnceLock::new();
    fn init() -> Mutex<ThreadIndices> {
        Mutex::new(ThreadIndices {
            mapping: HashMap::new(),
            free_list: Vec::new(),
            next_index: 0,
        })
    }
    THREAD_INDICES.get_or_init(init)
}

/// A registration of a thread with an index.
///
/// When dropped, unregisters the thread and frees the reserved index.
struct Registration {
    index: usize,
    thread_id: ThreadId,
}

impl Drop for Registration {
    fn drop(&mut self) {
        let mut indices = thread_indices().lock().unwrap();
        indices.mapping.remove(&self.thread_id);
        indices.free_list.push(self.index);
    }
}

thread_local! {
    static REGISTRATION: Registration = {
        let thread_id = thread::current().id();
        let mut indices = thread_indices().lock().unwrap();

        let index = match indices.free_list.pop() {
            Some(i) => i,
            None => {
                let i = indices.next_index;
                indices.next_index += 1;
                i
            }
        };
        indices.mapping.insert(thread_id, index);

        Registration {
            index,
            thread_id,
        }
    };
}