api_impl/storage.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
// Copyright 2024 The Fuchsia Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(https://fxbug.dev/360942417): Remove.
#![allow(unused_variables)]
use fuchsia_sync::{MappedRwLockReadGuard, Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
use std::cmp::min;
use std::collections::btree_map::Entry as BTreeMapEntry;
use std::collections::hash_map::Entry as HashMapEntry;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::ops::Bound;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
use tee_internal::{
Attribute, AttributeId, BufferOrValue, Error, HandleFlags, MemRef, ObjectEnumHandle,
ObjectHandle, ObjectInfo, Result as TeeResult, Storage, Type, Usage, ValueFields, Whence,
DATA_MAX_POSITION, OBJECT_ID_MAX_LEN,
};
static PERSISTENT_OBJECTS: Mutex<Option<Arc<PersistentObjects>>> = Mutex::new(None);
pub(crate) fn on_entrypoint_creation() {
let mut objects = PERSISTENT_OBJECTS.lock();
if objects.is_none() {
*objects = Some(Arc::new(PersistentObjects::new()));
}
}
pub(crate) fn on_entrypoint_destruction() {
// TODO(https://fxbug.dev/360942417): Object-related teardown (e.g., transient object
// destruction).
}
fn persistent_objects() -> Arc<PersistentObjects> {
PERSISTENT_OBJECTS
.lock()
.as_ref()
.expect("on_entrypoint_creation() should have been called")
.clone()
}
//
// We establish the private convention that all persistent object handles are
// odd in value, while all transient object handles are even.
//
fn is_persistent_handle(object: ObjectHandle) -> bool {
*object % 2 == 1
}
// We define the inverse of is_persistent_handle() for readability at callsites
// where we want to more directly check for transience.
fn is_transient_handle(object: ObjectHandle) -> bool {
!is_persistent_handle(object)
}
// The "key" type that carries no information.
#[derive(Clone)]
struct NoKey {}
// Represents supported key types, in principle parameterized by
// tee_internal::Type.
//
// TODO(https://fxbug.dev/360942417): More entries and properly implement me!
#[derive(Clone)]
enum Key {
Data(NoKey),
}
impl Key {
fn get_type(&self) -> Type {
match self {
Self::Data(_) => Type::Data,
}
}
fn size(&self) -> u32 {
0
}
fn max_size(&self) -> u32 {
0
}
fn buffer_attribute(&self, _id: AttributeId) -> Option<&Vec<u8>> {
None
}
fn value_attribute(&self, _id: AttributeId) -> Option<&ValueFields> {
None
}
}
// The common object abstraction implemented by transient and persistent
// storage objects.
trait Object {
fn key(&self) -> &Key;
fn usage(&self) -> &Usage;
fn usage_mut(&mut self) -> &mut Usage;
fn flags(&self) -> &HandleFlags;
fn restrict_usage(&mut self, restriction: Usage) {
let usage = self.usage_mut();
*usage = usage.intersection(restriction)
}
fn get_info(&self, data_size: usize, data_position: usize) -> ObjectInfo {
let all_info_flags = HandleFlags::PERSISTENT
| HandleFlags::INITIALIZED
| HandleFlags::DATA_ACCESS_READ
| HandleFlags::DATA_ACCESS_WRITE
| HandleFlags::DATA_ACCESS_WRITE_META
| HandleFlags::DATA_SHARE_READ
| HandleFlags::DATA_SHARE_WRITE;
let flags = self.flags().intersection(all_info_flags);
let key_size = self.key().size();
let object_size = if key_size > 0 { key_size } else { data_size.try_into().unwrap() };
ObjectInfo {
object_type: self.key().get_type(),
max_object_size: self.key().max_size(),
object_size,
object_usage: *self.usage(),
data_position: data_position,
data_size: data_size,
handle_flags: flags,
}
}
}
struct PersistentObject {
key: Key,
usage: Usage,
base_flags: HandleFlags,
data: zx::Vmo,
data_size: usize,
id: Vec<u8>,
// The open handles to this object. Tracking these in this way conveniently
// enables their invalidation in the case of object overwriting.
handles: HashSet<ObjectHandle>,
}
impl Object for PersistentObject {
fn key(&self) -> &Key {
&self.key
}
fn usage(&self) -> &Usage {
&self.usage
}
fn usage_mut(&mut self) -> &mut Usage {
&mut self.usage
}
fn flags(&self) -> &HandleFlags {
&self.base_flags
}
}
// A handle's view into a persistent object.
struct PersistentObjectView {
object: Arc<Mutex<PersistentObject>>,
flags: HandleFlags,
data_position: usize,
}
impl PersistentObjectView {
fn get_info(&self) -> ObjectInfo {
let obj = self.object.lock();
obj.get_info(obj.data_size, self.data_position)
}
// See read_object_data().
fn read_data<'a>(&mut self, buffer: &'a mut [u8]) -> TeeResult<&'a [u8]> {
let obj = self.object.lock();
let read_size = min(obj.data_size - self.data_position, buffer.len());
let written = &mut buffer[..read_size];
if read_size > 0 {
obj.data.read(written, self.data_position as u64).unwrap();
}
self.data_position += read_size;
Ok(written)
}
// See write_object_data().
fn write_data(&mut self, data: &[u8]) -> TeeResult {
if data.is_empty() {
return Ok(());
}
let mut obj = self.object.lock();
let write_end = self.data_position + data.len();
if write_end > DATA_MAX_POSITION {
return Err(Error::Overflow);
}
if write_end > obj.data_size {
obj.data.set_size(write_end as u64).unwrap();
obj.data_size = write_end;
}
obj.data.write(data, self.data_position as u64).unwrap();
self.data_position = write_end;
Ok(())
}
// See truncate_object_data().
fn truncate_data(&self, size: usize) -> TeeResult {
let mut obj = self.object.lock();
// It's okay to set the size past the position in either direction.
// However, the spec does not actually cover the case where the
// provided size is is larger than DATA_MAX_POSITION. Since any
// part of the data stream past that would be inaccessible; it
// should be sensible and harmless to not exceed that in resizing.
let size = min(size, DATA_MAX_POSITION);
obj.data.set_size(size as u64).unwrap();
obj.data_size = size;
Ok(())
}
// See seek_object_data().
fn seek_data(&mut self, offset: isize, whence: Whence) -> TeeResult {
let start = match whence {
Whence::DataSeekCur => self.data_position,
Whence::DataSeekEnd => self.object.lock().data_size,
Whence::DataSeekSet => 0,
};
let new_position = start.saturating_add_signed(offset);
if new_position > DATA_MAX_POSITION {
Err(Error::Overflow)
} else {
self.data_position = new_position;
Ok(())
}
}
}
// The state of an object enum handle.
struct EnumState {
// None if in the allocated/unstarted state.
id: Option<Vec<u8>>,
}
// A B-tree since enumeration needs to deal in key (i.e., ID) ordering.
//
// Further, the key represents a separately owned copy of the ID; we do this
// instead of representing the key as an Arc<Vec<u8>> as then we would no
// longer be able to perform look-up with slices - since Borrow is not
// implemented for Arc - and would instead have to dynamically allocate a new
// key for the look-up. Better to not touch the heap when bad inputs are
// provided.
type PersistentIdMap = BTreeMap<Vec<u8>, Arc<Mutex<PersistentObject>>>;
type PersistentHandleMap = HashMap<ObjectHandle, Mutex<PersistentObjectView>>;
type PersistentEnumHandleMap = HashMap<ObjectEnumHandle, Mutex<EnumState>>;
// A class abstraction implementing the persistent storage interface.
struct PersistentObjects {
by_id: RwLock<PersistentIdMap>,
by_handle: RwLock<PersistentHandleMap>,
enum_handles: RwLock<PersistentEnumHandleMap>,
next_handle_value: AtomicU64,
next_enum_handle_value: AtomicU64,
}
impl PersistentObjects {
fn new() -> Self {
Self {
by_id: RwLock::new(PersistentIdMap::new()),
by_handle: RwLock::new(PersistentHandleMap::new()),
enum_handles: RwLock::new(HashMap::new()),
next_handle_value: AtomicU64::new(1), // Always odd, per the described convention above
next_enum_handle_value: AtomicU64::new(1),
}
}
fn create(
&self,
key: Key,
usage: Usage,
flags: HandleFlags,
id: &[u8],
initial_data: &[u8],
) -> TeeResult<ObjectHandle> {
assert!(id.len() <= OBJECT_ID_MAX_LEN);
let data = zx::Vmo::create_with_opts(zx::VmoOptions::RESIZABLE, initial_data.len() as u64)
.unwrap();
if !initial_data.is_empty() {
data.write(initial_data, 0).unwrap();
}
let flags = flags.union(HandleFlags::PERSISTENT | HandleFlags::INITIALIZED);
let obj = PersistentObject {
key,
usage,
base_flags: flags,
data,
data_size: initial_data.len(),
id: Vec::from(id),
handles: HashSet::new(),
};
let (mut by_handle, mut by_id) = self.lock_for_handle_and_id_writes();
let obj_ref = match by_id.get(id) {
// If there's already an object with that ID, then
// DATA_FLAG_OVERWRITE permits overwriting. This results in
// existing handles being invalidated.
Some(obj_ref) => {
if !flags.contains(HandleFlags::DATA_FLAG_OVERWRITE) {
return Err(Error::AccessConflict);
}
{
let mut obj_old = obj_ref.lock();
for handle in obj_old.handles.iter() {
let removed = by_handle.remove(&handle).is_some();
debug_assert!(removed);
}
*obj_old = obj;
}
obj_ref.clone()
}
None => {
let id = obj.id.clone();
let obj_ref = Arc::new(Mutex::new(obj));
let inserted = by_id.insert(id, obj_ref.clone());
debug_assert!(inserted.is_none());
obj_ref
}
};
Ok(self.open_locked(by_handle, obj_ref, flags))
}
// See open_persistent_object().
fn open(&self, id: &[u8], flags: HandleFlags) -> TeeResult<ObjectHandle> {
assert!(id.len() <= OBJECT_ID_MAX_LEN);
let (by_handle, by_id) = self.lock_for_handle_writes_and_id_reads();
let obj_ref = match by_id.get(id) {
Some(obj_ref) => Ok(obj_ref),
None => Err(Error::ItemNotFound),
}?;
{
let mut obj = obj_ref.lock();
// At any given time, the number of object references should be
// greater than or equal to the number of handle map values + the
// number of object ID map values, which should be equal to the #
// of open handles to that object + 1.
debug_assert!(Arc::strong_count(obj_ref) >= obj.handles.len() + 1);
// If we previously closed the last handle to the object and are
// now reopening its first active handle, overwrite the base flags
// with the handle's. The spec doesn't dictate this, but it's hard
// to imagine what else an implementation could or should do in
// this case.
if obj.handles.is_empty() {
obj.base_flags = flags.union(HandleFlags::PERSISTENT | HandleFlags::INITIALIZED);
} else {
let combined = flags.union(obj.base_flags);
let intersection = flags.intersection(obj.base_flags);
// Check for shared read permissions.
if flags.contains(HandleFlags::DATA_ACCESS_READ)
&& !(intersection.contains(HandleFlags::DATA_SHARE_READ))
{
return Err(Error::AccessConflict);
}
// Check for shared read permission consistency.
if combined.contains(HandleFlags::DATA_SHARE_READ)
== intersection.contains(HandleFlags::DATA_SHARE_READ)
{
return Err(Error::AccessConflict);
}
// Check for shared write permissions.
if flags.contains(HandleFlags::DATA_ACCESS_WRITE)
&& !(intersection.contains(HandleFlags::DATA_SHARE_WRITE))
{
return Err(Error::AccessConflict);
}
// Check for shared write permission consistency.
if combined.contains(HandleFlags::DATA_SHARE_WRITE)
== intersection.contains(HandleFlags::DATA_SHARE_WRITE)
{
return Err(Error::AccessConflict);
}
}
}
Ok(self.open_locked(by_handle, obj_ref.clone(), flags))
}
// The common handle opening subroutine of create() and open(), which
// expects the handle map to already be locked for insertion.
fn open_locked(
&self,
mut by_handle: RwLockWriteGuard<'_, PersistentHandleMap>,
object: Arc<Mutex<PersistentObject>>,
flags: HandleFlags,
) -> ObjectHandle {
let handle = self.mint_handle();
let inserted = object.lock().handles.insert(handle);
debug_assert!(inserted);
let view = PersistentObjectView { object, flags, data_position: 0 };
let inserted = by_handle.insert(handle, Mutex::new(view)).is_none();
debug_assert!(inserted);
handle
}
fn close(&self, handle: ObjectHandle) {
let mut by_handle = self.by_handle.write();
// Note that even if all handle map entries associated with the object
// are removed, the reference to the object in the ID map remains,
// keeping it alive for future open() calls.
match by_handle.entry(handle) {
HashMapEntry::Occupied(entry) => {
{
let view = &entry.get().lock();
let mut obj = view.object.lock();
let removed = obj.handles.remove(&handle);
debug_assert!(removed);
}
let _ = entry.remove();
}
HashMapEntry::Vacant(_) => panic!("{handle:?} is not a valid handle"),
}
}
// See close_and_delete_persistent_object(). Although unlike that function,
// this one returns Error::AccessDenied if `handle` was not opened with
// DATA_ACCESS_WRITE_META.
fn close_and_delete(&self, handle: ObjectHandle) -> TeeResult {
let (mut by_handle, mut by_id) = self.lock_for_handle_and_id_writes();
// With both maps locked, removal of all entries with the associated
// object handle should amount to dropping that object.
match by_handle.entry(handle) {
HashMapEntry::Occupied(entry) => {
{
let state = &entry.get().lock();
if !state.flags.contains(HandleFlags::DATA_ACCESS_WRITE_META) {
return Err(Error::AccessDenied);
}
let obj = state.object.lock();
debug_assert_eq!(obj.handles.len(), 1);
let removed = by_id.remove(&obj.id).is_some();
debug_assert!(removed);
}
let _ = entry.remove();
Ok(())
}
HashMapEntry::Vacant(_) => panic!("{handle:?} is not a valid handle"),
}
}
// See rename_persistent_object(). Although unlike that function, this one
// returns Error::AccessDenied if `handle` was not opened with
// DATA_ACCESS_WRITE_META.
fn rename(&self, handle: ObjectHandle, new_id: &[u8]) -> TeeResult {
let (mut by_handle, mut by_id) = self.lock_for_handle_and_id_writes();
match by_handle.entry(handle) {
HashMapEntry::Occupied(handle_entry) => {
let state = handle_entry.get().lock();
if !state.flags.contains(HandleFlags::DATA_ACCESS_WRITE_META) {
return Err(Error::AccessDenied);
}
let new_id = Vec::from(new_id);
match by_id.entry(new_id.clone()) {
BTreeMapEntry::Occupied(_) => return Err(Error::AccessConflict),
BTreeMapEntry::Vacant(id_entry) => {
let _ = id_entry.insert(state.object.clone());
}
};
let mut obj = state.object.lock();
let removed = by_id.remove(&obj.id);
debug_assert!(removed.is_some());
obj.id = new_id;
Ok(())
}
HashMapEntry::Vacant(_) => panic!("{handle:?} is not a valid handle"),
}
}
// Returns a read guard to the associated object view, if `handle` is
// valid; panics otherwise.
fn get(&self, handle: ObjectHandle) -> MappedRwLockReadGuard<'_, Mutex<PersistentObjectView>> {
RwLockReadGuard::map(self.by_handle.read(), |by_handle| {
by_handle.get(&handle).unwrap_or_else(|| panic!("{handle:?} is not a valid handle"))
})
}
// See allocate_persistent_object_enumerator().
fn allocate_enumerator(&self) -> ObjectEnumHandle {
let enumerator = self.mint_enumerator_handle();
let previous = self
.enum_handles
.write()
.insert(enumerator.clone(), Mutex::new(EnumState { id: None }));
debug_assert!(previous.is_none());
enumerator
}
// See free_persistent_object_enumerator().
fn free_enumerator(&self, enumerator: ObjectEnumHandle) -> () {
let mut enum_handles = self.enum_handles.write();
match enum_handles.entry(enumerator) {
HashMapEntry::Occupied(entry) => {
let _ = entry.remove();
}
HashMapEntry::Vacant(_) => panic!("{enumerator:?} is not a valid enumerator handle"),
}
}
// See reset_persistent_object_enumerator().
fn reset_enumerator(&self, enumerator: ObjectEnumHandle) -> () {
let enum_handles = self.enum_handles.read();
match enum_handles.get(&enumerator) {
Some(state) => {
state.lock().id = None;
}
None => panic!("{enumerator:?} is not a valid enumerator handle"),
}
}
// See get_next_persistent_object().
fn get_next_object<'a>(
&self,
enumerator: ObjectEnumHandle,
id_buffer: &'a mut [u8],
) -> TeeResult<(ObjectInfo, &'a [u8])> {
let enum_handles = self.enum_handles.read();
match enum_handles.get(&enumerator) {
Some(state) => {
let by_id = self.by_id.read();
let mut state = state.lock();
let next = if state.id.is_none() {
by_id.first_key_value()
} else {
// Since we're dealing with an ID-keyed B-tree, we can
// straightforwardly get the first entry with an ID larger
// than the current.
let curr_id = state.id.as_ref().unwrap();
by_id.range((Bound::Excluded(curr_id.clone()), Bound::Unbounded)).next()
};
if let Some((id, obj)) = next {
assert!(id_buffer.len() >= id.len());
let written = &mut id_buffer[..id.len()];
written.copy_from_slice(id);
state.id = Some(id.clone());
Ok((obj.lock().get_info(/*data_size=*/ 0, /*data_position=*/ 0), written))
} else {
Err(Error::ItemNotFound)
}
}
None => panic!("{enumerator:?} is not a valid enumerator handle"),
}
}
fn mint_handle(&self) -> ObjectHandle {
// Per the described convention above, always odd. (Initial value is 1.)
ObjectHandle::from_value(self.next_handle_value.fetch_add(2, Ordering::Relaxed))
}
fn mint_enumerator_handle(&self) -> ObjectEnumHandle {
ObjectEnumHandle::from_value(self.next_enum_handle_value.fetch_add(1, Ordering::Relaxed))
}
//
// To avoid deadlock, the following two methods establish a locking
// discipline to be followed when needing to lock both the handle and ID
// maps: always have ID map locking follow handle map locking. Mixing that
// ordering with the inverse would cause deadlock, and gaining exclusive
// access to global handle state before object consultation by ID seems
// better hygienically.
//
fn lock_for_handle_and_id_writes(
&self,
) -> (RwLockWriteGuard<'_, PersistentHandleMap>, RwLockWriteGuard<'_, PersistentIdMap>) {
let by_handle = self.by_handle.write();
let by_id = self.by_id.write();
(by_handle, by_id)
}
fn lock_for_handle_writes_and_id_reads(
&self,
) -> (RwLockWriteGuard<'_, PersistentHandleMap>, RwLockReadGuard<'_, PersistentIdMap>) {
let by_handle = self.by_handle.write();
let by_id = self.by_id.read();
(by_handle, by_id)
}
}
//
// Implementation
//
/// Returns info about an open object as well of the state of its handle.
///
/// Panics if `object` is not a valid handle.
pub fn get_object_info(object: ObjectHandle) -> ObjectInfo {
if is_transient_handle(object) {
unimplemented!();
}
persistent_objects().get(object).lock().get_info()
}
/// Restricts the usage of an open object handle.
///
/// Panics if `object` is not a valid handle.
pub fn restrict_object_usage(object: ObjectHandle, usage: Usage) {
if is_transient_handle(object) {
unimplemented!();
}
persistent_objects().get(object).lock().object.lock().restrict_usage(usage)
}
/// Encapsulates an error of get_object_buffer_attribute(), which includes the
/// actual length of the desired buffer attribute in the case where the
/// caller-provided was too small.
pub struct GetObjectBufferAttributeError {
pub error: Error,
pub actual_size: usize,
}
/// Returns the requested buffer-type attribute associated with the given
/// object, if any. It is written to the provided buffer and it is this
/// written subslice that is returned.
///
/// Returns a wrapped value of Error::ItemNotFound if the object does not have
/// such an attribute.
///
/// Returns a wrapped value of Error::ShortBuffer if the buffer was too small
/// to read the attribute value into, along with the length of the attribute.
///
/// Panics if `object` is not a valid handle or if `attribute_id` is not of
/// buffer type.
pub fn get_object_buffer_attribute<'a>(
object: ObjectHandle,
attribute_id: AttributeId,
buffer: &'a mut [u8],
) -> Result<&'a [u8], GetObjectBufferAttributeError> {
assert!(!attribute_id.value());
let copy_from_key =
|key: &Key, buffer: &'a mut [u8]| -> Result<&'a [u8], GetObjectBufferAttributeError> {
if let Some(bytes) = key.buffer_attribute(attribute_id) {
if buffer.len() < bytes.len() {
Err(GetObjectBufferAttributeError {
error: Error::ShortBuffer,
actual_size: bytes.len(),
})
} else {
let written = &mut buffer[..bytes.len()];
written.copy_from_slice(bytes);
Ok(written)
}
} else {
Err(GetObjectBufferAttributeError { error: Error::ItemNotFound, actual_size: 0 })
}
};
if is_transient_handle(object) {
unimplemented!();
} else {
copy_from_key(&persistent_objects().get(object).lock().object.lock().key, buffer)
}
}
/// Returns the requested value-type attribute associated with the given
/// object, if any.
///
/// Returns Error::ItemNotFound if the object does not have such an attribute.
///
/// Panics if `object` is not a valid handle or if `attribute_id` is not of
/// value type.
pub fn get_object_value_attribute(
object: ObjectHandle,
attribute_id: AttributeId,
) -> TeeResult<ValueFields> {
assert!(!attribute_id.value());
let copy_from_key = |key: &Key| {
if let Some(value) = key.value_attribute(attribute_id) {
Ok(value.clone())
} else {
Err(Error::ItemNotFound)
}
};
if is_transient_handle(object) {
unimplemented!();
} else {
copy_from_key(&persistent_objects().get(object).lock().object.lock().key)
}
}
/// Closes the given object handle.
///
/// Panics if `object` is neither null or a valid handle.
pub fn close_object(object: ObjectHandle) {
if object.is_null() {
return;
}
if is_transient_handle(object) {
unimplemented!();
}
persistent_objects().close(object)
}
pub fn allocate_transient_object(object_type: Type, max_size: u32) -> TeeResult<ObjectHandle> {
unimplemented!()
}
pub fn free_transient_object(object: ObjectHandle) {
assert!(is_transient_handle(object));
unimplemented!()
}
pub fn reset_transient_object(object: ObjectHandle) {
assert!(is_transient_handle(object));
unimplemented!()
}
pub fn populate_transient_object(object: ObjectHandle, attrs: &[Attribute]) -> TeeResult {
assert!(is_transient_handle(object));
unimplemented!()
}
pub fn init_ref_attribute(id: AttributeId, buffer: &mut [u8]) -> Attribute {
assert!(id.memory_reference(), "Attribute ID {id:?} does not represent a memory reference");
Attribute { id, content: BufferOrValue { memref: MemRef::from_mut_slice(buffer) } }
}
pub fn init_value_attribute(id: AttributeId, value: ValueFields) -> Attribute {
assert!(id.value(), "Attribute ID {id:?} does not represent value fields");
Attribute { id, content: BufferOrValue { value } }
}
pub fn copy_object_attributes(src: ObjectHandle, dest: ObjectHandle) -> TeeResult {
assert!(is_transient_handle(dest));
unimplemented!()
}
pub fn generate_key(object: ObjectHandle, key_size: u32, params: &[Attribute]) -> TeeResult {
unimplemented!()
}
/// Opens a new handle to an existing persistent object.
///
/// Returns Error::ItemNotFound: if `storage` does not correspond to a valid
/// storage space, or if no object with `id` is found.
///
/// Returns Error::AccessConflict if any of the following hold:
/// - The object is currently open with DATA_ACCESS_WRITE_META;
/// - The object is currently open and `flags` contains
/// DATA_ACCESS_WRITE_META
/// - The object is currently open without DATA_ACCESS_READ_SHARE
/// and `flags` contains DATA_ACCESS_READ or DATA_ACCESS_READ_SHARE;
/// - The object is currently open with DATA_ACCESS_READ_SHARE, but `flags`
/// does not;
/// - The object is currently open without DATA_ACCESS_WRITE_SHARE and
/// `flags` contains DATA_ACCESS_WRITE or DATA_ACCESS_WRITE_SHARE;
/// - The object is currently open with DATA_ACCESS_WRITE_SHARE, but `flags`
/// does not.
pub fn open_persistent_object(
storage: Storage,
id: &[u8],
flags: HandleFlags,
) -> TeeResult<ObjectHandle> {
if storage == Storage::Private {
persistent_objects().open(id, flags)
} else {
Err(Error::ItemNotFound)
}
}
/// Creates a persistent object and returns a handle to it. The conferred type,
/// usage, and attributes are given indirectly by `attribute_src`; if
/// `attribute_src` is null then the conferred type is Data.
///
/// Returns Error::ItemNotFound: if `storage` does not correspond to a valid
/// storage spac
///
/// Returns Error::AccessConflict if the provided ID already exists but
/// `flags` does not contain DATA_FLAG_OVERWRITE.
pub fn create_persistent_object(
storage: Storage,
id: &[u8],
flags: HandleFlags,
attribute_src: ObjectHandle,
initial_data: &[u8],
) -> TeeResult<ObjectHandle> {
if storage != Storage::Private {
return Err(Error::ItemNotFound);
}
let objects = persistent_objects();
let (key, usage, base_flags) = if attribute_src.is_null() {
(Key::Data(NoKey {}), Usage::default(), HandleFlags::empty())
} else if is_persistent_handle(attribute_src) {
let view_guard = objects.get(attribute_src);
let view = view_guard.lock();
let obj = view.object.lock();
(obj.key.clone(), obj.usage, obj.base_flags)
} else {
unimplemented!();
};
let flags = base_flags.union(flags);
objects.create(key, usage, flags, id, initial_data)
}
/// Closes the given handle to a persistent object and deletes the object.
///
/// Panics if `object` is invalid or was not opened with
/// DATA_ACCESS_WRITE_META.
pub fn close_and_delete_persistent_object(object: ObjectHandle) -> TeeResult {
assert!(is_persistent_handle(object));
persistent_objects().close_and_delete(object)
}
/// Renames the object's, associating it with a new identifier.
///
/// Returns Error::AccessConflict if `new_id` is the ID of an existing
/// object.
///
/// Panics if `object` is invalid or was not opened with
/// DATA_ACCESS_WRITE_META.
pub fn rename_persistent_object(object: ObjectHandle, new_id: &[u8]) -> TeeResult {
assert!(is_persistent_handle(object));
persistent_objects().rename(object, new_id)
}
/// Allocates a new object enumerator and returns a handle to it.
pub fn allocate_persistent_object_enumerator() -> ObjectEnumHandle {
persistent_objects().allocate_enumerator()
}
/// Deallocates an object enumerator.
///
/// Panics if `enumerator` is not a valid handle.
pub fn free_persistent_object_enumerator(enumerator: ObjectEnumHandle) {
persistent_objects().free_enumerator(enumerator)
}
/// Resets an object enumerator.
///
/// Panics if `enumerator` is not a valid handle.
pub fn reset_persistent_object_enumerator(enumerator: ObjectEnumHandle) {
persistent_objects().reset_enumerator(enumerator)
}
/// Starts an object enumerator's enumeration, or resets it if already started.
///
/// Returns Error::ItemNotFound if `storage` is unsupported or it there are no
/// objects yet created in that storage space.
///
/// Panics if `enumerator` is not a valid handle.
pub fn start_persistent_object_enumerator(
enumerator: ObjectEnumHandle,
storage: Storage,
) -> TeeResult {
if storage == Storage::Private {
reset_persistent_object_enumerator(enumerator);
Ok(())
} else {
Err(Error::ItemNotFound)
}
}
/// Returns the info and ID associated with the next object in the enumeration,
/// advancing it in the process. The returns object ID is backed by the
/// provided buffer.
///
/// Returns Error::ItemNotFound if there are no more objects left to enumerate.
///
/// Panics if `enumerator` is not a valid handle.
pub fn get_next_persistent_object<'a>(
enumerator: ObjectEnumHandle,
id_buffer: &'a mut [u8],
) -> TeeResult<(ObjectInfo, &'a [u8])> {
persistent_objects().get_next_object(enumerator, id_buffer)
}
/// Tries to read as much of the object's data stream from the handle's current
/// data position as can fill the provided buffer.
///
/// Panics if `object` is invalid or does not have read access.
pub fn read_object_data<'a>(object: ObjectHandle, buffer: &'a mut [u8]) -> TeeResult<&'a [u8]> {
assert!(is_persistent_handle(object));
persistent_objects().get(object).lock().read_data(buffer)
}
/// Writes the provided data to the object's data stream at the handle's
/// data position, advancing that position to the end of the written data.
///
/// Returns Error::AccessConflict if the object does not have write
/// access.
///
/// Returns Error::Overflow if writing the data would advance the data
/// position past DATA_MAX_POSITION.
///
/// Panics if `object` is invalid or does not have write access.
pub fn write_object_data(object: ObjectHandle, buffer: &[u8]) -> TeeResult {
assert!(is_persistent_handle(object));
persistent_objects().get(object).lock().write_data(buffer)
}
/// Truncates or zero-extends the object's data stream to provided size.
/// This does not affect any handle's data position.
///
/// Returns Error::Overflow if `size` is larger than DATA_MAX_POSITION.
///
/// Panics if `object` is invalid or does not have write access.
pub fn truncate_object_data(object: ObjectHandle, size: usize) -> TeeResult {
assert!(is_persistent_handle(object));
persistent_objects().get(object).lock().truncate_data(size)
}
/// Updates the handle's data positition, seeking at an offset from a
/// position given by a whence value. The new position saturates at 0.
///
/// Returns Error::Overflow if the would-be position exceeds
/// DATA_MAX_POSITION.
///
/// Panics if `object` is invalid.
pub fn seek_data_object(object: ObjectHandle, offset: isize, whence: Whence) -> TeeResult {
assert!(is_persistent_handle(object));
persistent_objects().get(object).lock().seek_data(offset, whence)
}
// TODO(https://fxbug.dev/376093162): Add PersistentObjects testing.