async_lock/
semaphore.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use std::future::Future;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

use event_listener::Event;

/// A counter for limiting the number of concurrent operations.
#[derive(Debug)]
pub struct Semaphore {
    count: AtomicUsize,
    event: Event,
}

impl Semaphore {
    /// Creates a new semaphore with a limit of `n` concurrent operations.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Semaphore;
    ///
    /// let s = Semaphore::new(5);
    /// ```
    pub const fn new(n: usize) -> Semaphore {
        Semaphore {
            count: AtomicUsize::new(n),
            event: Event::new(),
        }
    }

    /// Attempts to get a permit for a concurrent operation.
    ///
    /// If the permit could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the mutex when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Semaphore;
    ///
    /// let s = Semaphore::new(2);
    ///
    /// let g1 = s.try_acquire().unwrap();
    /// let g2 = s.try_acquire().unwrap();
    ///
    /// assert!(s.try_acquire().is_none());
    /// drop(g2);
    /// assert!(s.try_acquire().is_some());
    /// ```
    pub fn try_acquire(&self) -> Option<SemaphoreGuard<'_>> {
        let mut count = self.count.load(Ordering::Acquire);
        loop {
            if count == 0 {
                return None;
            }

            match self.count.compare_exchange_weak(
                count,
                count - 1,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => return Some(SemaphoreGuard(self)),
                Err(c) => count = c,
            }
        }
    }

    /// Waits for a permit for a concurrent operation.
    ///
    /// Returns a guard that releases the permit when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::Semaphore;
    ///
    /// let s = Semaphore::new(2);
    /// let guard = s.acquire().await;
    /// # });
    /// ```
    pub async fn acquire(&self) -> SemaphoreGuard<'_> {
        let mut listener = None;

        loop {
            if let Some(guard) = self.try_acquire() {
                return guard;
            }

            match listener.take() {
                None => listener = Some(self.event.listen()),
                Some(l) => l.await,
            }
        }
    }
}

impl Semaphore {
    /// Attempts to get an owned permit for a concurrent operation.
    ///
    /// If the permit could not be acquired at this time, then [`None`] is returned. Otherwise, an
    /// owned guard is returned that releases the mutex when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Semaphore;
    /// use std::sync::Arc;
    ///
    /// let s = Arc::new(Semaphore::new(2));
    ///
    /// let g1 = s.try_acquire_arc().unwrap();
    /// let g2 = s.try_acquire_arc().unwrap();
    ///
    /// assert!(s.try_acquire_arc().is_none());
    /// drop(g2);
    /// assert!(s.try_acquire_arc().is_some());
    /// ```
    pub fn try_acquire_arc(self: &Arc<Self>) -> Option<SemaphoreGuardArc> {
        let mut count = self.count.load(Ordering::Acquire);
        loop {
            if count == 0 {
                return None;
            }

            match self.count.compare_exchange_weak(
                count,
                count - 1,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => return Some(SemaphoreGuardArc(self.clone())),
                Err(c) => count = c,
            }
        }
    }

    async fn acquire_arc_impl(self: Arc<Self>) -> SemaphoreGuardArc {
        let mut listener = None;

        loop {
            if let Some(guard) = self.try_acquire_arc() {
                return guard;
            }

            match listener.take() {
                None => listener = Some(self.event.listen()),
                Some(l) => l.await,
            }
        }
    }

    /// Waits for an owned permit for a concurrent operation.
    ///
    /// Returns a guard that releases the permit when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::Semaphore;
    /// use std::sync::Arc;
    ///
    /// let s = Arc::new(Semaphore::new(2));
    /// let guard = s.acquire_arc().await;
    /// # });
    /// ```
    pub fn acquire_arc(self: &Arc<Self>) -> impl Future<Output = SemaphoreGuardArc> {
        self.clone().acquire_arc_impl()
    }
}

/// A guard that releases the acquired permit.
#[derive(Debug)]
pub struct SemaphoreGuard<'a>(&'a Semaphore);

impl Drop for SemaphoreGuard<'_> {
    fn drop(&mut self) {
        self.0.count.fetch_add(1, Ordering::AcqRel);
        self.0.event.notify(1);
    }
}

/// An owned guard that releases the acquired permit.
#[derive(Debug)]
pub struct SemaphoreGuardArc(Arc<Semaphore>);

impl Drop for SemaphoreGuardArc {
    fn drop(&mut self) {
        self.0.count.fetch_add(1, Ordering::AcqRel);
        self.0.event.notify(1);
    }
}