1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::rwhandle::{RWHandle, ReadableHandle as _, WritableHandle as _};
use fuchsia_zircon::{self as zx, AsHandleRef};
use futures::ready;
use std::fmt;
use std::future::Future;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::pin::Pin;
use std::task::{Context, Poll};
use zerocopy::{AsBytes, FromBytes, NoCell};

/// Marker trait for types that can be read/written with a `Fifo`. Unsafe
/// because not all types may be represented by arbitrary bit patterns.
///
/// An implementation is provided for all types that implement
/// [`AsBytes`], [`FromBytes`], and [`NoCell`].
pub trait FifoEntry: AsBytes + FromBytes + NoCell {}

impl<O: AsBytes + FromBytes + NoCell> FifoEntry for O {}

/// A buffer used to write `T` into [`Fifo`] objects.
///
///
/// # Safety
///
/// This trait is unsafe because the compiler cannot verify a correct
/// implementation of `as_bytes_ptr`. See [`FifoWriteBuffer::as_bytes_ptr`] for
/// safety notes.
pub unsafe trait FifoWriteBuffer<T> {
    /// Returns the number of entries to be written.
    fn count(&self) -> usize;
    /// Returns a byte pointer representation to be written into the underlying
    /// FIFO.
    ///
    /// # Safety
    ///
    /// The returned memory *must* be initialized and at least `count() *
    /// sizeof<T>()` bytes long.
    fn as_bytes_ptr(&self) -> *const u8;
}

/// A buffer used to read `T` from [`Fifo`] objects.
///
/// # Safety
///
/// This trait is unsafe because the compiler cannot verify a correct
/// implementation of `as_bytes_ptr_mut`. See
/// [`FifoReadBuffer::as_bytes_ptr_mut`] for safety notes.
pub unsafe trait FifoReadBuffer<T> {
    /// Returns the number of slots available in the buffer to be rceived.
    fn count(&self) -> usize;
    /// Returns a mutable pointer to the buffer contents where FIFO entries must
    /// be written into.
    ///
    /// # Safety
    ///
    /// The returned memory *must* be at least `count() * sizeof<T>()` bytes
    /// long.
    fn as_bytes_ptr_mut(&mut self) -> *mut u8;
}

unsafe impl<T: FifoEntry> FifoWriteBuffer<T> for [T] {
    fn count(&self) -> usize {
        self.len()
    }

    fn as_bytes_ptr(&self) -> *const u8 {
        // SAFETY: Guaranteed by bounds on T.
        self.as_bytes().as_ptr()
    }
}

unsafe impl<T: FifoEntry> FifoReadBuffer<T> for [T] {
    fn count(&self) -> usize {
        self.len()
    }

    fn as_bytes_ptr_mut(&mut self) -> *mut u8 {
        // SAFETY: Guaranteed by bounds on T.
        self.as_bytes_mut().as_mut_ptr()
    }
}

unsafe impl<T: FifoEntry> FifoWriteBuffer<T> for T {
    fn count(&self) -> usize {
        1
    }

    fn as_bytes_ptr(&self) -> *const u8 {
        // SAFETY: Guaranteed by bounds on T.
        self.as_bytes().as_ptr()
    }
}

unsafe impl<T: FifoEntry> FifoReadBuffer<T> for T {
    fn count(&self) -> usize {
        1
    }

    fn as_bytes_ptr_mut(&mut self) -> *mut u8 {
        // SAFETY: Guaranteed by bounds on T.
        self.as_bytes_mut().as_mut_ptr()
    }
}

unsafe impl<T: FifoEntry> FifoReadBuffer<T> for MaybeUninit<T> {
    fn count(&self) -> usize {
        1
    }

    fn as_bytes_ptr_mut(&mut self) -> *mut u8 {
        // SAFETY: Guaranteed by bounds on T if initialized. If uninitialized,
        // contract is that the returned bytes can only be written into.
        self.as_mut_ptr() as _
    }
}

unsafe impl<T: FifoEntry> FifoReadBuffer<T> for [MaybeUninit<T>] {
    fn count(&self) -> usize {
        self.len()
    }

    fn as_bytes_ptr_mut(&mut self) -> *mut u8 {
        // TODO(https://github.com/rust-lang/rust/issues/63569): Use
        // `MaybeUninit::slice_as_mut_ptr` once stable.
        // SAFETY: Guaranteed by bounds on T if initialized. If uninitialized,
        // contract is that the returned bytes can only be written into.
        self.as_mut_ptr() as _
    }
}

/// A helper struct providing an implementation of [`FifoWriteBuffer`]
/// supporting [`WriteEntries`] to be able to write all entries in a buffer
/// instead of providing only partial writes.
struct OffsetWriteBuffer<'a, B: ?Sized, T> {
    buffer: &'a B,
    offset: usize,
    marker: PhantomData<T>,
}

impl<'a, B: ?Sized + FifoWriteBuffer<T>, T: FifoEntry> OffsetWriteBuffer<'a, B, T> {
    fn new(buffer: &'a B) -> Self {
        Self { buffer, offset: 0, marker: PhantomData }
    }

    fn advance(mut self, len: usize) -> Option<Self> {
        self.offset += len;
        if self.offset == self.buffer.count() {
            None
        } else {
            debug_assert!(self.offset < self.buffer.count());
            Some(self)
        }
    }
}

unsafe impl<'a, T: FifoEntry, B: ?Sized + FifoWriteBuffer<T>> FifoWriteBuffer<T>
    for OffsetWriteBuffer<'a, B, T>
{
    fn count(&self) -> usize {
        debug_assert!(self.offset <= self.buffer.count());
        self.buffer.count() - self.offset
    }

    fn as_bytes_ptr(&self) -> *const u8 {
        debug_assert!(self.offset <= self.buffer.count());

        let buffer_bytes = self.buffer.as_bytes_ptr();
        let count = self.offset * std::mem::size_of::<T>();
        // SAFETY: Protected by the debug assertion above and a correct
        // implementation of `FifoWriteBuffer` by `B`.
        unsafe { buffer_bytes.add(count) }
    }
}

/// Identifies that the object may be used to write entries into a FIFO.
pub trait FifoWritable<W: FifoEntry>
where
    Self: Sized,
{
    /// Creates a future that transmits entries to be written.
    ///
    /// The returned future will return after an entry has been received on this
    /// fifo. The future will resolve to the fifo once all elements have been
    /// transmitted.
    fn write_entries<'a, B: ?Sized + FifoWriteBuffer<W>>(
        &'a self,
        entries: &'a B,
    ) -> WriteEntries<'a, Self, B, W> {
        WriteEntries::new(self, entries)
    }

    /// Writes entries to the fifo and registers this `Fifo` as needing a write
    /// on receiving a `zx::Status::SHOULD_WAIT`.
    ///
    /// Returns the number of elements processed.
    fn write<B: ?Sized + FifoWriteBuffer<W>>(
        &self,
        cx: &mut Context<'_>,
        entries: &B,
    ) -> Poll<Result<usize, zx::Status>>;
}

/// Identifies that the object may be used to read entries from a FIFO.
pub trait FifoReadable<R: FifoEntry>
where
    Self: Sized,
{
    /// Creates a future that receives entries into `entries`.
    ///
    /// The returned future will return after the FIFO becomes readable and up
    /// to `entries.len()` has been received. The future will resolve to the
    /// number of elements written into `entries`.
    ///
    fn read_entries<'a, B: ?Sized + FifoReadBuffer<R>>(
        &'a self,
        entries: &'a mut B,
    ) -> ReadEntries<'a, Self, B, R> {
        ReadEntries::new(self, entries)
    }

    /// Creates a future that receives a single entry.
    ///
    /// The returned future will return after the FIFO becomes readable and a
    /// single entry is available.
    fn read_entry<'a>(&'a self) -> ReadOne<'a, Self, R> {
        ReadOne::new(self)
    }

    /// Reads entries from the fifo and registers this `Fifo` as needing a read
    /// on receiving a `zx::Status::SHOULD_WAIT`.
    fn read<B: ?Sized + FifoReadBuffer<R>>(
        &self,
        cx: &mut Context<'_>,
        entries: &mut B,
    ) -> Poll<Result<usize, zx::Status>>;

    /// Reads a single entry and registers this `Fifo` as needing a read on
    /// receiving a `zx::Status::SHOULD_WAIT`.
    fn read_one(&self, cx: &mut Context<'_>) -> Poll<Result<R, zx::Status>> {
        let mut entry = MaybeUninit::uninit();
        self.read(cx, &mut entry).map_ok(|count| {
            debug_assert_eq!(count, 1);
            // SAFETY: The entry was initialized by the fulfilled FIFO read.
            unsafe { entry.assume_init() }
        })
    }
}

/// An I/O object representing a `Fifo`.
pub struct Fifo<R, W = R> {
    handle: RWHandle<zx::Fifo>,
    read_marker: PhantomData<R>,
    write_marker: PhantomData<W>,
}

impl<R, W> AsRef<zx::Fifo> for Fifo<R, W> {
    fn as_ref(&self) -> &zx::Fifo {
        self.handle.get_ref()
    }
}

impl<R, W> AsHandleRef for Fifo<R, W> {
    fn as_handle_ref(&self) -> zx::HandleRef<'_> {
        self.handle.get_ref().as_handle_ref()
    }
}

impl<R, W> From<Fifo<R, W>> for zx::Fifo {
    fn from(fifo: Fifo<R, W>) -> zx::Fifo {
        fifo.handle.into_inner()
    }
}

impl<R: FifoEntry, W: FifoEntry> Fifo<R, W> {
    /// Creates a new `Fifo` from a previously-created `zx::Fifo`.
    ///
    /// # Panics
    ///
    /// If called on a thread that does not have a current async executor.
    pub fn from_fifo(fifo: zx::Fifo) -> Self {
        Fifo { handle: RWHandle::new(fifo), read_marker: PhantomData, write_marker: PhantomData }
    }

    /// Writes entries to the fifo and registers this `Fifo` as
    /// needing a write on receiving a `zx::Status::SHOULD_WAIT`.
    ///
    /// Returns the number of elements processed.
    pub fn try_write<B: ?Sized + FifoWriteBuffer<W>>(
        &self,
        cx: &mut Context<'_>,
        entries: &B,
    ) -> Poll<Result<usize, zx::Status>> {
        ready!(self.handle.poll_writable(cx)?);

        let elem_size = std::mem::size_of::<W>();
        let bytes = entries.as_bytes_ptr();
        let count = entries.count();
        let fifo = self.as_ref();
        // SAFETY: Safety relies on the pointer returned by `B` being valid,
        // which itself depends on a correct implementation of `FifoEntry` for
        // `W`.
        loop {
            let result = unsafe { fifo.write_ptr(elem_size, bytes, count) };
            match result {
                Err(zx::Status::SHOULD_WAIT) => ready!(self.handle.need_writable(cx)?),
                Err(e) => return Poll::Ready(Err(e)),
                Ok(count) => return Poll::Ready(Ok(count)),
            }
        }
    }

    /// Reads entries from the fifo into `entries` and registers this `Fifo` as
    /// needing a read on receiving a `zx::Status::SHOULD_WAIT`.
    pub fn try_read<B: ?Sized + FifoReadBuffer<R>>(
        &self,
        cx: &mut Context<'_>,
        entries: &mut B,
    ) -> Poll<Result<usize, zx::Status>> {
        ready!(self.handle.poll_readable(cx)?);

        let elem_size = std::mem::size_of::<R>();
        let bytes = entries.as_bytes_ptr_mut();
        let count = entries.count();
        let fifo = self.as_ref();

        loop {
            // SAFETY: Safety relies on the pointer returned by `B` being valid,
            // which itself depends on a correct implementation of `FifoEntry` for
            // `R`.
            let result = unsafe { fifo.read_ptr(elem_size, bytes, count) };

            match result {
                Err(zx::Status::SHOULD_WAIT) => ready!(self.handle.need_readable(cx)?),
                Err(e) => return Poll::Ready(Err(e)),
                Ok(count) => return Poll::Ready(Ok(count)),
            }
        }
    }
}

impl<R: FifoEntry, W: FifoEntry> FifoReadable<R> for Fifo<R, W> {
    fn read<B: ?Sized + FifoReadBuffer<R>>(
        &self,
        cx: &mut Context<'_>,
        entries: &mut B,
    ) -> Poll<Result<usize, zx::Status>> {
        self.try_read(cx, entries)
    }
}

impl<R: FifoEntry, W: FifoEntry> FifoWritable<W> for Fifo<R, W> {
    fn write<B: ?Sized + FifoWriteBuffer<W>>(
        &self,
        cx: &mut Context<'_>,
        entries: &B,
    ) -> Poll<Result<usize, zx::Status>> {
        self.try_write(cx, entries)
    }
}

impl<R, W> fmt::Debug for Fifo<R, W> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.handle.get_ref().fmt(f)
    }
}

/// WriteEntries represents the future of one or more writes.
pub struct WriteEntries<'a, F, B: ?Sized, T> {
    fifo: &'a F,
    entries: Option<OffsetWriteBuffer<'a, B, T>>,
    marker: PhantomData<T>,
}

impl<'a, F, B: ?Sized, T> Unpin for WriteEntries<'a, F, B, T> {}

impl<'a, T: FifoEntry, F: FifoWritable<T>, B: ?Sized + FifoWriteBuffer<T>>
    WriteEntries<'a, F, B, T>
{
    /// Create a new WriteEntries, which borrows the `FifoWritable` type
    /// until the future completes.
    pub fn new(fifo: &'a F, entries: &'a B) -> Self {
        WriteEntries { fifo, entries: Some(OffsetWriteBuffer::new(entries)), marker: PhantomData }
    }
}

impl<'a, T: FifoEntry, F: FifoWritable<T>, B: ?Sized + FifoWriteBuffer<T>> Future
    for WriteEntries<'a, F, B, T>
{
    type Output = Result<(), zx::Status>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = &mut *self;
        while let Some(entries) = this.entries.as_ref() {
            let advance = ready!(this.fifo.write(cx, entries)?);
            // Unwrap is okay because we know entries is `Some`. This is cleaner
            // than taking from entries and having to put it back on failed
            // poll.
            this.entries = this.entries.take().unwrap().advance(advance);
        }
        Poll::Ready(Ok(()))
    }
}

/// ReadEntries represents the future of a single read with multiple entries.
pub struct ReadEntries<'a, F, B: ?Sized, T> {
    fifo: &'a F,
    entries: &'a mut B,
    marker: PhantomData<T>,
}

impl<'a, F, B: ?Sized, T> Unpin for ReadEntries<'a, F, B, T> {}

impl<'a, T: FifoEntry, F: FifoReadable<T>, B: ?Sized + FifoReadBuffer<T>> ReadEntries<'a, F, B, T> {
    /// Create a new ReadEntries, which borrows the `FifoReadable` type
    /// until the future completes.
    pub fn new(fifo: &'a F, entries: &'a mut B) -> Self {
        ReadEntries { fifo, entries, marker: PhantomData }
    }
}

impl<'a, T: FifoEntry, F: FifoReadable<T>, B: ?Sized + FifoReadBuffer<T>> Future
    for ReadEntries<'a, F, B, T>
{
    type Output = Result<usize, zx::Status>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = &mut *self;
        this.fifo.read(cx, this.entries)
    }
}

/// ReadOne represents the future of a single read yielding a single entry.
pub struct ReadOne<'a, F, T> {
    fifo: &'a F,
    marker: PhantomData<T>,
}

impl<'a, F, T> Unpin for ReadOne<'a, F, T> {}

impl<'a, T: FifoEntry, F: FifoReadable<T>> ReadOne<'a, F, T> {
    /// Create a new ReadOne, which borrows the `FifoReadable` type
    /// until the future completes.
    pub fn new(fifo: &'a F) -> Self {
        ReadOne { fifo, marker: PhantomData }
    }
}

impl<'a, T: FifoEntry, F: FifoReadable<T>> Future for ReadOne<'a, F, T> {
    type Output = Result<T, zx::Status>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = &mut *self;
        this.fifo.read_one(cx)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{DurationExt, TestExecutor, TimeoutExt, Timer};
    use fuchsia_zircon::prelude::*;
    use futures::future::try_join;
    use futures::prelude::*;
    use zerocopy::{FromZeros, NoCell};

    #[derive(Copy, Clone, Debug, PartialEq, Eq, Default, AsBytes, FromZeros, FromBytes, NoCell)]
    #[repr(C)]
    struct entry {
        a: u32,
        b: u32,
    }

    #[derive(Clone, Debug, PartialEq, Eq, Default, AsBytes, FromZeros, FromBytes, NoCell)]
    #[repr(C)]
    struct wrong_entry {
        a: u16,
    }

    #[test]
    fn can_read_write() {
        let mut exec = TestExecutor::new();
        let element = entry { a: 10, b: 20 };

        let (tx, rx) =
            zx::Fifo::create(2, ::std::mem::size_of::<entry>()).expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let mut buffer = entry::default();
        let receive_future = rx.read_entries(&mut buffer).map_ok(|count| {
            assert_eq!(count, 1);
        });

        // add a timeout to receiver so if test is broken it doesn't take forever
        let receiver = receive_future.on_timeout(300.millis().after_now(), || panic!("timeout"));

        // Sends an entry after the timeout has passed
        let sender = Timer::new(10.millis().after_now()).then(|()| tx.write_entries(&element));

        let done = try_join(receiver, sender);
        exec.run_singlethreaded(done).expect("failed to run receive future on executor");
        assert_eq!(buffer, element);
    }

    #[test]
    fn read_wrong_size() {
        let mut exec = TestExecutor::new();
        let elements = &[entry { a: 10, b: 20 }][..];

        let (tx, rx) =
            zx::Fifo::create(2, ::std::mem::size_of::<entry>()).expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<wrong_entry>::from_fifo(rx));

        let mut buffer = wrong_entry::default();
        let receive_future = rx
            .read_entries(&mut buffer)
            .map_ok(|count| panic!("read should have failed, got {}", count));

        // add a timeout to receiver so if test is broken it doesn't take forever
        let receiver = receive_future.on_timeout(300.millis().after_now(), || panic!("timeout"));

        // Sends an entry after the timeout has passed
        let sender = Timer::new(10.millis().after_now()).then(|()| tx.write_entries(elements));

        let done = try_join(receiver, sender);
        let res = exec.run_singlethreaded(done);
        match res {
            Err(zx::Status::OUT_OF_RANGE) => (),
            _ => panic!("did not get out-of-range error"),
        }
    }

    #[test]
    fn write_wrong_size() {
        let mut exec = TestExecutor::new();
        let elements = &[wrong_entry { a: 10 }][..];

        let (tx, rx) =
            zx::Fifo::create(2, ::std::mem::size_of::<entry>()).expect("failed to create zx fifo");
        let (tx, _rx) = (Fifo::<wrong_entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let sender = Timer::new(10.millis().after_now()).then(|()| tx.write_entries(elements));

        let res = exec.run_singlethreaded(sender);
        match res {
            Err(zx::Status::OUT_OF_RANGE) => (),
            _ => panic!("did not get out-of-range error"),
        }
    }

    #[test]
    fn write_into_full() {
        use std::sync::atomic::{AtomicUsize, Ordering};

        let mut exec = TestExecutor::new();
        let elements =
            &[entry { a: 10, b: 20 }, entry { a: 30, b: 40 }, entry { a: 50, b: 60 }][..];

        let (tx, rx) =
            zx::Fifo::create(2, ::std::mem::size_of::<entry>()).expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        // Use `writes_completed` to verify that not all writes
        // are transmitted at once, and the last write is actually blocked.
        let writes_completed = AtomicUsize::new(0);
        let sender = async {
            tx.write_entries(&elements[..2]).await?;
            writes_completed.fetch_add(1, Ordering::SeqCst);
            tx.write_entries(&elements[2..]).await?;
            writes_completed.fetch_add(1, Ordering::SeqCst);
            Ok::<(), zx::Status>(())
        };

        // Wait 10 ms, then read the messages from the fifo.
        let receive_future = async {
            Timer::new(10.millis().after_now()).await;
            let mut buffer = entry::default();
            let count = rx.read_entries(&mut buffer).await?;
            assert_eq!(writes_completed.load(Ordering::SeqCst), 1);
            assert_eq!(count, 1);
            assert_eq!(buffer, elements[0]);
            let count = rx.read_entries(&mut buffer).await?;
            // At this point, the last write may or may not have
            // been written.
            assert_eq!(count, 1);
            assert_eq!(buffer, elements[1]);
            let count = rx.read_entries(&mut buffer).await?;
            assert_eq!(writes_completed.load(Ordering::SeqCst), 2);
            assert_eq!(count, 1);
            assert_eq!(buffer, elements[2]);
            Ok::<(), zx::Status>(())
        };

        // add a timeout to receiver so if test is broken it doesn't take forever
        let receiver = receive_future.on_timeout(300.millis().after_now(), || panic!("timeout"));

        let done = try_join(receiver, sender);

        exec.run_singlethreaded(done).expect("failed to run receive future on executor");
    }

    #[test]
    fn write_more_than_full() {
        let mut exec = TestExecutor::new();
        let elements =
            &[entry { a: 10, b: 20 }, entry { a: 30, b: 40 }, entry { a: 50, b: 60 }][..];

        let (tx, rx) =
            zx::Fifo::create(2, ::std::mem::size_of::<entry>()).expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let sender = tx.write_entries(elements);

        // Wait 10 ms, then read the messages from the fifo.
        let receive_future = async {
            Timer::new(10.millis().after_now()).await;
            for e in elements {
                let mut buffer = [entry::default(); 1];
                let count = rx.read_entries(&mut buffer[..]).await?;
                assert_eq!(count, 1);
                assert_eq!(&buffer[0], e);
            }
            Ok::<(), zx::Status>(())
        };

        // add a timeout to receiver so if test is broken it doesn't take forever
        let receiver = receive_future.on_timeout(300.millis().after_now(), || panic!("timeout"));

        let done = try_join(receiver, sender);

        exec.run_singlethreaded(done).expect("failed to run receive future on executor");
    }

    #[test]
    fn read_multiple() {
        let mut exec = TestExecutor::new();
        let elements =
            &[entry { a: 10, b: 20 }, entry { a: 30, b: 40 }, entry { a: 50, b: 60 }][..];
        let (tx, rx) = zx::Fifo::create(elements.len(), ::std::mem::size_of::<entry>())
            .expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let write_fut = async {
            tx.write_entries(&elements[..]).await.expect("failed write entries");
        };
        let read_fut = async {
            // Use a larger buffer to show partial reads.
            let mut buffer = [entry::default(); 5];
            let count = rx.read_entries(&mut buffer[..]).await.expect("failed to read entries");
            assert_eq!(count, elements.len());
            assert_eq!(&buffer[..count], &elements[..]);
        };
        let ((), ()) = exec.run_singlethreaded(futures::future::join(write_fut, read_fut));
    }

    #[test]
    fn read_one() {
        let mut exec = TestExecutor::new();
        let elements =
            &[entry { a: 10, b: 20 }, entry { a: 30, b: 40 }, entry { a: 50, b: 60 }][..];
        let (tx, rx) = zx::Fifo::create(elements.len(), ::std::mem::size_of::<entry>())
            .expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let write_fut = async {
            tx.write_entries(&elements[..]).await.expect("failed write entries");
        };
        let read_fut = async {
            for e in elements {
                let received = rx.read_entry().await.expect("failed to read entry");
                assert_eq!(&received, e);
            }
        };
        let ((), ()) = exec.run_singlethreaded(futures::future::join(write_fut, read_fut));
    }

    #[test]
    fn maybe_uninit_single() {
        let mut exec = TestExecutor::new();
        let element = entry { a: 10, b: 20 };
        let (tx, rx) =
            zx::Fifo::create(1, ::std::mem::size_of::<entry>()).expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let write_fut = async {
            tx.write_entries(&element).await.expect("failed write entries");
        };
        let read_fut = async {
            let mut buffer = MaybeUninit::<entry>::uninit();
            let count = rx.read_entries(&mut buffer).await.expect("failed to read entries");
            assert_eq!(count, 1);
            // SAFETY: We just read a new entry into the buffer.
            let read = unsafe { buffer.assume_init() };
            assert_eq!(read, element);
        };
        let ((), ()) = exec.run_singlethreaded(futures::future::join(write_fut, read_fut));
    }

    #[test]
    fn maybe_uninit_slice() {
        let mut exec = TestExecutor::new();
        let elements =
            &[entry { a: 10, b: 20 }, entry { a: 30, b: 40 }, entry { a: 50, b: 60 }][..];
        let (tx, rx) = zx::Fifo::create(elements.len(), ::std::mem::size_of::<entry>())
            .expect("failed to create zx fifo");
        let (tx, rx) = (Fifo::<entry>::from_fifo(tx), Fifo::<entry>::from_fifo(rx));

        let write_fut = async {
            tx.write_entries(&elements[..]).await.expect("failed write entries");
        };
        let read_fut = async {
            // Use a larger buffer to show partial reads.
            let mut buffer = [MaybeUninit::<entry>::uninit(); 15];
            let count = rx.read_entries(&mut buffer[..]).await.expect("failed to read entries");
            assert_eq!(count, elements.len());
            let read = &mut buffer[..count];
            for (i, v) in read.iter_mut().enumerate() {
                // SAFETY: This is the read region of the buffer, initialized by
                // reading from the FIFO.
                let read = unsafe { v.assume_init_ref() };
                assert_eq!(read, &elements[i]);
                // SAFETY: The buffer was partially initialized by reading from
                // the FIFO, the correct thing to do here is to manually drop
                // the elements that were initialized.
                unsafe {
                    v.assume_init_drop();
                }
            }
        };
        let ((), ()) = exec.run_singlethreaded(futures::future::join(write_fut, read_fut));
    }
}