fuchsia_async/runtime/fuchsia/executor/local.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use super::common::{EHandle, Executor, ExecutorTime, MAIN_TASK_ID};
use super::scope::ScopeHandle;
use super::time::{BootInstant, MonotonicInstant};
use crate::atomic_future::AtomicFuture;
use zx::BootDuration;
use futures::future::{self, Either};
use futures::task::AtomicWaker;
use std::fmt;
use std::future::{poll_fn, Future};
use std::pin::pin;
use std::sync::atomic::{AtomicBool, AtomicI64, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};
/// A single-threaded port-based executor for Fuchsia.
///
/// Having a `LocalExecutor` in scope allows the creation and polling of zircon objects, such as
/// [`fuchsia_async::Channel`].
///
/// # Panics
///
/// `LocalExecutor` will panic on drop if any zircon objects attached to it are still alive. In
/// other words, zircon objects backed by a `LocalExecutor` must be dropped before it.
pub struct LocalExecutor {
// LINT.IfChange
/// The inner executor state.
pub(crate) ehandle: EHandle,
// LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
}
impl fmt::Debug for LocalExecutor {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("LocalExecutor").field("port", &self.ehandle.inner().port).finish()
}
}
impl LocalExecutor {
/// Create a new single-threaded executor running with actual time.
pub fn new() -> Self {
let inner = Arc::new(Executor::new(
ExecutorTime::RealTime,
/* is_local */ true,
/* num_threads */ 1,
));
let root_scope = ScopeHandle::root(inner);
Executor::set_local(root_scope.clone());
Self { ehandle: EHandle { root_scope } }
}
/// Get a reference to the Fuchsia `zx::Port` being used to listen for events.
pub fn port(&self) -> &zx::Port {
self.ehandle.port()
}
/// Run a single future to completion on a single thread, also polling other active tasks.
pub fn run_singlethreaded<F>(&mut self, main_future: F) -> F::Output
where
F: Future,
{
assert!(
self.ehandle.inner().is_real_time(),
"Error: called `run_singlethreaded` on an executor using fake time"
);
let Poll::Ready(result) = self.run::</* UNTIL_STALLED: */ false, F::Output>(
// SAFETY: This is a singlethreaded executor, so the future will never be sent across
// threads.
unsafe { AtomicFuture::new_local(main_future, false) }
) else {
unreachable!()
};
result
}
fn run<const UNTIL_STALLED: bool, R>(&mut self, main_future: AtomicFuture<'_>) -> Poll<R> {
/// # Safety
///
/// See the comment below.
unsafe fn remove_lifetime(obj: AtomicFuture<'_>) -> AtomicFuture<'static> {
std::mem::transmute(obj)
}
// SAFETY: Erasing the lifetime is safe because we make sure to drop the main task within
// the required lifetime.
self.ehandle
.inner()
.spawn_main(&self.ehandle.root_scope, unsafe { remove_lifetime(main_future) });
struct DropMainTask<'a>(&'a EHandle);
impl Drop for DropMainTask<'_> {
fn drop(&mut self) {
// SAFETY: drop_main_tasks requires that the executor isn't running
// i.e. worker_lifecycle isn't running, which will be the case when this runs.
unsafe { self.0.inner().drop_main_task(&self.0.root_scope) };
}
}
let _drop_main_task = DropMainTask(&self.ehandle);
self.ehandle.inner().worker_lifecycle::<UNTIL_STALLED>();
// SAFETY: We spawned the task earlier, so `R` (the return type) will be the correct type
// here.
unsafe {
self.ehandle.global_scope().poll_join_result(
MAIN_TASK_ID,
&mut Context::from_waker(&futures::task::noop_waker()),
)
}
}
#[doc(hidden)]
/// Returns the root scope of the executor.
pub fn root_scope(&self) -> &ScopeHandle {
self.ehandle.global_scope()
}
}
impl Drop for LocalExecutor {
fn drop(&mut self) {
self.ehandle.inner().mark_done();
self.ehandle.inner().on_parent_drop(&self.ehandle.root_scope);
}
}
/// A single-threaded executor for testing. Exposes additional APIs for manipulating executor state
/// and validating behavior of executed tasks.
///
/// TODO(https://fxbug.dev/375631801): This is lack of BootInstant support.
pub struct TestExecutor {
/// LocalExecutor used under the hood, since most of the logic is shared.
local: LocalExecutor,
}
impl TestExecutor {
/// Create a new executor for testing.
pub fn new() -> Self {
Self { local: LocalExecutor::new() }
}
/// Get a reference to the Fuchsia `zx::Port` being used to listen for events.
pub fn port(&self) -> &zx::Port {
self.local.port()
}
/// Create a new single-threaded executor running with fake time.
pub fn new_with_fake_time() -> Self {
let inner = Arc::new(Executor::new(
ExecutorTime::FakeTime {
mono_reading_ns: AtomicI64::new(zx::MonotonicInstant::INFINITE_PAST.into_nanos()),
mono_to_boot_offset_ns: AtomicI64::new(0),
},
/* is_local */ true,
/* num_threads */ 1,
));
let root_scope = ScopeHandle::root(inner);
Executor::set_local(root_scope.clone());
Self { local: LocalExecutor { ehandle: EHandle { root_scope } } }
}
/// Return the current time according to the executor.
pub fn now(&self) -> MonotonicInstant {
self.local.ehandle.inner().now()
}
/// Return the current time on the boot timeline, according to the executor.
pub fn boot_now(&self) -> BootInstant {
self.local.ehandle.inner().boot_now()
}
/// Set the fake time to a given value.
///
/// # Panics
///
/// If the executor was not created with fake time.
pub fn set_fake_time(&self, t: MonotonicInstant) {
self.local.ehandle.inner().set_fake_time(t)
}
/// Set the offset between the reading of the monotonic and the boot
/// clocks.
///
/// This is useful to test the situations in which the boot and monotonic
/// offsets diverge. In realistic scenarios, the offset can only grow,
/// and testers should keep that in view when setting duration.
///
/// # Panics
///
/// If the executor was not created with fake time.
pub fn set_fake_boot_to_mono_offset(&self, d: BootDuration) {
self.local.ehandle.inner().set_fake_boot_to_mono_offset(d)
}
/// Get the global scope of the executor.
pub fn global_scope(&self) -> &ScopeHandle {
self.local.root_scope()
}
/// Run a single future to completion on a single thread, also polling other active tasks.
pub fn run_singlethreaded<F>(&mut self, main_future: F) -> F::Output
where
F: Future,
{
self.local.run_singlethreaded(main_future)
}
/// Poll the future. If it is not ready, dispatch available packets and possibly try
/// again. Timers will only fire if this executor uses fake time. Never blocks.
///
/// This function is for testing. DO NOT use this function in tests or applications that
/// involve any interaction with other threads or processes, as those interactions
/// may become stalled waiting for signals from "the outside world" which is beyond
/// the knowledge of the executor.
///
/// Unpin: this function requires all futures to be `Unpin`able, so any `!Unpin`
/// futures must first be pinned using the `pin!` macro.
pub fn run_until_stalled<F>(&mut self, main_future: &mut F) -> Poll<F::Output>
where
F: Future + Unpin,
{
let mut main_future = pin!(main_future);
// Set up an instance of UntilStalledData that works with `poll_until_stalled`.
struct Cleanup(Arc<Executor>);
impl Drop for Cleanup {
fn drop(&mut self) {
*self.0.owner_data.lock() = None;
}
}
let _cleanup = Cleanup(self.local.ehandle.inner().clone());
*self.local.ehandle.inner().owner_data.lock() =
Some(Box::new(UntilStalledData { watcher: None }));
loop {
let result = self.local.run::</* UNTIL_STALLED: */ true, F::Output>(
// SAFETY: We don't move the main future across threads.
unsafe { AtomicFuture::new_local(main_future.as_mut(), false) }
);
if result.is_ready() {
return result;
}
// If a waker was set by `poll_until_stalled`, disarm, wake, and loop.
if let Some(watcher) = with_data(|data| data.watcher.take()) {
watcher.waker.wake();
// Relaxed ordering is fine here because this atomic is only ever access from the
// main thread.
watcher.done.store(true, Ordering::Relaxed);
} else {
break;
}
}
Poll::Pending
}
/// Wake all tasks waiting for expired timers, and return `true` if any task was woken.
///
/// This is intended for use in test code in conjunction with fake time.
///
/// The wake will have effect on both the monotonic and the boot timers.
pub fn wake_expired_timers(&mut self) -> bool {
self.local.ehandle.inner().monotonic_timers().wake_timers()
|| self.local.ehandle.inner().boot_timers().wake_timers()
}
/// Wake up the next task waiting for a timer, if any, and return the time for which the
/// timer was scheduled.
///
/// This is intended for use in test code in conjunction with `run_until_stalled`.
/// For example, here is how one could test that the Timer future fires after the given
/// timeout:
///
/// let deadline = zx::MonotonicDuration::from_seconds(5).after_now();
/// let mut future = Timer::<Never>::new(deadline);
/// assert_eq!(Poll::Pending, exec.run_until_stalled(&mut future));
/// assert_eq!(Some(deadline), exec.wake_next_timer());
/// assert_eq!(Poll::Ready(()), exec.run_until_stalled(&mut future));
pub fn wake_next_timer(&mut self) -> Option<MonotonicInstant> {
self.local.ehandle.inner().monotonic_timers().wake_next_timer()
}
/// Similar to [wake_next_timer], but operates on the timers on the boot
/// timeline.
pub fn wake_next_boot_timer(&mut self) -> Option<BootInstant> {
self.local.ehandle.inner().boot_timers().wake_next_timer()
}
/// Returns the deadline for the next timer due to expire.
pub fn next_timer() -> Option<MonotonicInstant> {
EHandle::local().inner().monotonic_timers().next_timer()
}
/// Returns the deadline for the next boot timeline timer due to expire.
pub fn next_boot_timer() -> Option<BootInstant> {
EHandle::local().inner().boot_timers().next_timer()
}
/// Advances fake time to the specified time. This will only work if the executor is being run
/// via `TestExecutor::run_until_stalled` and can only be called by one task at a time. This
/// will make sure that repeating timers fire as expected.
///
/// # Panics
///
/// Panics if the executor was not created with fake time, and for the same reasons
/// `poll_until_stalled` can below.
pub async fn advance_to(time: MonotonicInstant) {
let ehandle = EHandle::local();
loop {
let _: Poll<_> = Self::poll_until_stalled(future::pending::<()>()).await;
if let Some(next_timer) = Self::next_timer() {
if next_timer <= time {
ehandle.inner().set_fake_time(next_timer);
continue;
}
}
ehandle.inner().set_fake_time(time);
break;
}
}
/// Runs the future until it is ready or the executor is stalled. Returns the state of the
/// future.
///
/// This will only work if the executor is being run via `TestExecutor::run_until_stalled` and
/// can only be called by one task at a time.
///
/// This can be used in tests to assert that a future should be pending:
/// ```
/// assert!(
/// TestExecutor::poll_until_stalled(my_fut).await.is_pending(),
/// "my_fut should not be ready!"
/// );
/// ```
///
/// If you just want to know when the executor is stalled, you can do:
/// ```
/// let _: Poll<()> = TestExecutor::poll_until_stalled(future::pending::<()>()).await;
/// ```
///
/// # Panics
///
/// Panics if another task is currently trying to use `run_until_stalled`, or the executor is
/// not using `TestExecutor::run_until_stalled`.
pub async fn poll_until_stalled<T>(fut: impl Future<Output = T> + Unpin) -> Poll<T> {
let watcher =
Arc::new(StalledWatcher { waker: AtomicWaker::new(), done: AtomicBool::new(false) });
assert!(
with_data(|data| data.watcher.replace(watcher.clone())).is_none(),
"Error: Another task has called `poll_until_stalled`."
);
struct Watcher(Arc<StalledWatcher>);
// Make sure we clean up if we're dropped.
impl Drop for Watcher {
fn drop(&mut self) {
if !self.0.done.swap(true, Ordering::Relaxed) {
with_data(|data| data.watcher = None);
}
}
}
let watcher = Watcher(watcher);
let poll_fn = poll_fn(|cx: &mut Context<'_>| {
if watcher.0.done.load(Ordering::Relaxed) {
Poll::Ready(())
} else {
watcher.0.waker.register(cx.waker());
Poll::Pending
}
});
match future::select(poll_fn, fut).await {
Either::Left(_) => Poll::Pending,
Either::Right((value, _)) => Poll::Ready(value),
}
}
}
struct StalledWatcher {
waker: AtomicWaker,
done: AtomicBool,
}
struct UntilStalledData {
watcher: Option<Arc<StalledWatcher>>,
}
/// Calls `f` with `&mut UntilStalledData` that is stored in `owner_data`.
///
/// # Panics
///
/// Panics if `owner_data` isn't an instance of `UntilStalledData`.
fn with_data<R>(f: impl Fn(&mut UntilStalledData) -> R) -> R {
const MESSAGE: &str = "poll_until_stalled only works if the executor is being run \
with TestExecutor::run_until_stalled";
f(&mut EHandle::local()
.inner()
.owner_data
.lock()
.as_mut()
.expect(MESSAGE)
.downcast_mut::<UntilStalledData>()
.expect(MESSAGE))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::handle::on_signals::OnSignals;
use crate::{Interval, Timer, WakeupTime};
use assert_matches::assert_matches;
use futures::StreamExt;
use std::cell::{Cell, RefCell};
use std::task::Waker;
use zx::{self as zx, AsHandleRef};
fn spawn(future: impl Future<Output = ()> + Send + 'static) {
crate::EHandle::local().spawn_detached(future);
}
// Runs a future that suspends and returns after being resumed.
#[test]
fn stepwise_two_steps() {
let fut_step = Arc::new(Cell::new(0));
let fut_waker: Arc<RefCell<Option<Waker>>> = Arc::new(RefCell::new(None));
let fut_waker_clone = fut_waker.clone();
let fut_step_clone = fut_step.clone();
let fut_fn = move |cx: &mut Context<'_>| {
fut_waker_clone.borrow_mut().replace(cx.waker().clone());
match fut_step_clone.get() {
0 => {
fut_step_clone.set(1);
Poll::Pending
}
1 => {
fut_step_clone.set(2);
Poll::Ready(())
}
_ => panic!("future called after done"),
}
};
let fut = Box::new(future::poll_fn(fut_fn));
let mut executor = TestExecutor::new_with_fake_time();
// Spawn the future rather than waking it the main task because run_until_stalled will wake
// the main future on every call, and we want to wake it ourselves using the waker.
executor.local.ehandle.spawn_local_detached(fut);
assert_eq!(fut_step.get(), 0);
assert_eq!(executor.run_until_stalled(&mut future::pending::<()>()), Poll::Pending);
assert_eq!(fut_step.get(), 1);
fut_waker.borrow_mut().take().unwrap().wake();
assert_eq!(executor.run_until_stalled(&mut future::pending::<()>()), Poll::Pending);
assert_eq!(fut_step.get(), 2);
}
#[test]
// Runs a future that waits on a timer.
fn stepwise_timer() {
let mut executor = TestExecutor::new_with_fake_time();
executor.set_fake_time(MonotonicInstant::from_nanos(0));
let mut fut =
pin!(Timer::new(MonotonicInstant::after(zx::MonotonicDuration::from_nanos(1000))));
let _ = executor.run_until_stalled(&mut fut);
assert_eq!(MonotonicInstant::now(), MonotonicInstant::from_nanos(0));
executor.set_fake_time(MonotonicInstant::from_nanos(1000));
assert_eq!(MonotonicInstant::now(), MonotonicInstant::from_nanos(1000));
assert!(executor.run_until_stalled(&mut fut).is_ready());
}
// Runs a future that waits on an event.
#[test]
fn stepwise_event() {
let mut executor = TestExecutor::new_with_fake_time();
let event = zx::Event::create();
let mut fut = pin!(OnSignals::new(&event, zx::Signals::USER_0));
let _ = executor.run_until_stalled(&mut fut);
event.signal_handle(zx::Signals::NONE, zx::Signals::USER_0).unwrap();
assert_matches!(executor.run_until_stalled(&mut fut), Poll::Ready(Ok(zx::Signals::USER_0)));
}
// Using `run_until_stalled` does not modify the order of events
// compared to normal execution.
#[test]
fn run_until_stalled_preserves_order() {
let mut executor = TestExecutor::new_with_fake_time();
let spawned_fut_completed = Arc::new(AtomicBool::new(false));
let spawned_fut_completed_writer = spawned_fut_completed.clone();
let spawned_fut = Box::pin(async move {
Timer::new(MonotonicInstant::after(zx::MonotonicDuration::from_seconds(5))).await;
spawned_fut_completed_writer.store(true, Ordering::SeqCst);
});
let mut main_fut = pin!(async {
Timer::new(MonotonicInstant::after(zx::MonotonicDuration::from_seconds(10))).await;
});
spawn(spawned_fut);
assert_eq!(executor.run_until_stalled(&mut main_fut), Poll::Pending);
executor.set_fake_time(MonotonicInstant::after(zx::MonotonicDuration::from_seconds(15)));
// The timer in `spawned_fut` should fire first, then the
// timer in `main_fut`.
assert_eq!(executor.run_until_stalled(&mut main_fut), Poll::Ready(()));
assert_eq!(spawned_fut_completed.load(Ordering::SeqCst), true);
}
#[test]
fn task_destruction() {
struct DropSpawner {
dropped: Arc<AtomicBool>,
}
impl Drop for DropSpawner {
fn drop(&mut self) {
self.dropped.store(true, Ordering::SeqCst);
let dropped_clone = self.dropped.clone();
spawn(async {
// Hold on to a reference here to verify that it, too, is destroyed later
let _dropped_clone = dropped_clone;
panic!("task spawned in drop shouldn't be polled");
});
}
}
let mut dropped = Arc::new(AtomicBool::new(false));
let drop_spawner = DropSpawner { dropped: dropped.clone() };
let mut executor = TestExecutor::new();
let mut main_fut = pin!(async move {
spawn(async move {
// Take ownership of the drop spawner
let _drop_spawner = drop_spawner;
future::pending::<()>().await;
});
});
assert!(executor.run_until_stalled(&mut main_fut).is_ready());
assert_eq!(
dropped.load(Ordering::SeqCst),
false,
"executor dropped pending task before destruction"
);
// Should drop the pending task and it's owned drop spawner,
// as well as gracefully drop the future spawned from the drop spawner.
drop(executor);
let dropped = Arc::get_mut(&mut dropped)
.expect("someone else is unexpectedly still holding on to a reference");
assert_eq!(
dropped.load(Ordering::SeqCst),
true,
"executor did not drop pending task during destruction"
);
}
#[test]
fn time_now_real_time() {
let _executor = LocalExecutor::new();
let t1 = zx::MonotonicInstant::after(zx::MonotonicDuration::from_seconds(0));
let t2 = MonotonicInstant::now().into_zx();
let t3 = zx::MonotonicInstant::after(zx::MonotonicDuration::from_seconds(0));
assert!(t1 <= t2);
assert!(t2 <= t3);
}
#[test]
fn time_now_fake_time() {
let executor = TestExecutor::new_with_fake_time();
let t1 = MonotonicInstant::from_zx(zx::MonotonicInstant::from_nanos(0));
executor.set_fake_time(t1);
assert_eq!(MonotonicInstant::now(), t1);
let t2 = MonotonicInstant::from_zx(zx::MonotonicInstant::from_nanos(1000));
executor.set_fake_time(t2);
assert_eq!(MonotonicInstant::now(), t2);
}
#[test]
fn time_now_fake_time_boot() {
let executor = TestExecutor::new_with_fake_time();
let t1 = MonotonicInstant::from_zx(zx::MonotonicInstant::from_nanos(0));
executor.set_fake_time(t1);
assert_eq!(MonotonicInstant::now(), t1);
assert_eq!(BootInstant::now().into_nanos(), t1.into_nanos());
let t2 = MonotonicInstant::from_zx(zx::MonotonicInstant::from_nanos(1000));
executor.set_fake_time(t2);
assert_eq!(MonotonicInstant::now(), t2);
assert_eq!(BootInstant::now().into_nanos(), t2.into_nanos());
const TEST_BOOT_OFFSET: i64 = 42;
executor.set_fake_boot_to_mono_offset(zx::BootDuration::from_nanos(TEST_BOOT_OFFSET));
assert_eq!(BootInstant::now().into_nanos(), t2.into_nanos() + TEST_BOOT_OFFSET);
}
#[test]
fn time_boot_now() {
let executor = TestExecutor::new_with_fake_time();
let t1 = MonotonicInstant::from_zx(zx::MonotonicInstant::from_nanos(0));
executor.set_fake_time(t1);
assert_eq!(MonotonicInstant::now(), t1);
assert_eq!(BootInstant::now().into_nanos(), t1.into_nanos());
let t2 = MonotonicInstant::from_zx(zx::MonotonicInstant::from_nanos(1000));
executor.set_fake_time(t2);
assert_eq!(MonotonicInstant::now(), t2);
assert_eq!(BootInstant::now().into_nanos(), t2.into_nanos());
const TEST_BOOT_OFFSET: i64 = 42;
executor.set_fake_boot_to_mono_offset(zx::BootDuration::from_nanos(TEST_BOOT_OFFSET));
assert_eq!(BootInstant::now().into_nanos(), t2.into_nanos() + TEST_BOOT_OFFSET);
}
#[test]
fn time_after_overflow() {
let executor = TestExecutor::new_with_fake_time();
executor.set_fake_time(MonotonicInstant::INFINITE - zx::MonotonicDuration::from_nanos(100));
assert_eq!(
MonotonicInstant::after(zx::MonotonicDuration::from_seconds(200)),
MonotonicInstant::INFINITE
);
executor.set_fake_time(
MonotonicInstant::INFINITE_PAST + zx::MonotonicDuration::from_nanos(100),
);
assert_eq!(
MonotonicInstant::after(zx::MonotonicDuration::from_seconds(-200)),
MonotonicInstant::INFINITE_PAST
);
}
// This future wakes itself up a number of times during the same cycle
async fn multi_wake(n: usize) {
let mut done = false;
futures::future::poll_fn(|cx| {
if done {
return Poll::Ready(());
}
for _ in 1..n {
cx.waker().wake_by_ref()
}
done = true;
Poll::Pending
})
.await;
}
#[test]
fn test_boot_time_tracks_mono_time() {
const FAKE_TIME: i64 = 42;
let executor = TestExecutor::new_with_fake_time();
executor.set_fake_time(MonotonicInstant::from_nanos(FAKE_TIME));
assert_eq!(
BootInstant::from_nanos(FAKE_TIME),
executor.boot_now(),
"boot time should have advanced"
);
// Now advance boot without mono.
executor.set_fake_boot_to_mono_offset(BootDuration::from_nanos(FAKE_TIME));
assert_eq!(
BootInstant::from_nanos(2 * FAKE_TIME),
executor.boot_now(),
"boot time should have advanced again"
);
}
// Ensure that a large amount of wakeups does not exhaust kernel resources,
// such as the zx port queue limit.
#[test]
fn many_wakeups() {
let mut executor = LocalExecutor::new();
executor.run_singlethreaded(multi_wake(4096 * 2));
}
fn advance_to_with(timer_duration: impl WakeupTime) {
let mut executor = TestExecutor::new_with_fake_time();
executor.set_fake_time(MonotonicInstant::from_nanos(0));
let mut fut = pin!(async {
let timer_fired = Arc::new(AtomicBool::new(false));
futures::join!(
async {
// Oneshot timer.
Timer::new(timer_duration).await;
timer_fired.store(true, Ordering::SeqCst);
},
async {
// Interval timer, fires periodically.
let mut fired = 0;
let mut interval = pin!(Interval::new(zx::MonotonicDuration::from_seconds(1)));
while let Some(_) = interval.next().await {
fired += 1;
if fired == 3 {
break;
}
}
assert_eq!(fired, 3, "interval timer should have fired multiple times.");
},
async {
assert!(
!timer_fired.load(Ordering::SeqCst),
"the oneshot timer shouldn't be fired"
);
TestExecutor::advance_to(MonotonicInstant::after(
zx::MonotonicDuration::from_millis(500),
))
.await;
// Timer still shouldn't be fired.
assert!(
!timer_fired.load(Ordering::SeqCst),
"the oneshot timer shouldn't be fired"
);
TestExecutor::advance_to(MonotonicInstant::after(
zx::MonotonicDuration::from_millis(500),
))
.await;
assert!(
timer_fired.load(Ordering::SeqCst),
"the oneshot timer should have fired"
);
// The interval timer should have fired once. Make it fire twice more.
TestExecutor::advance_to(MonotonicInstant::after(
zx::MonotonicDuration::from_seconds(2),
))
.await;
}
)
});
assert!(executor.run_until_stalled(&mut fut).is_ready());
}
#[test]
fn test_advance_to() {
advance_to_with(zx::MonotonicDuration::from_seconds(1));
}
#[test]
fn test_advance_to_boot() {
advance_to_with(zx::BootDuration::from_seconds(1));
}
}