smallvec/
lib.rs

1// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
2// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
3// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
4// option. This file may not be copied, modified, or distributed
5// except according to those terms.
6
7//! Small vectors in various sizes. These store a certain number of elements inline, and fall back
8//! to the heap for larger allocations.  This can be a useful optimization for improving cache
9//! locality and reducing allocator traffic for workloads that fit within the inline buffer.
10//!
11//! ## `no_std` support
12//!
13//! By default, `smallvec` does not depend on `std`.  However, the optional
14//! `write` feature implements the `std::io::Write` trait for vectors of `u8`.
15//! When this feature is enabled, `smallvec` depends on `std`.
16//!
17//! ## Optional features
18//!
19//! ### `serde`
20//!
21//! When this optional dependency is enabled, `SmallVec` implements the `serde::Serialize` and
22//! `serde::Deserialize` traits.
23//!
24//! ### `write`
25//!
26//! When this feature is enabled, `SmallVec<[u8; _]>` implements the `std::io::Write` trait.
27//! This feature is not compatible with `#![no_std]` programs.
28//!
29//! ### `union`
30//!
31//! **This feature requires Rust 1.49.**
32//!
33//! When the `union` feature is enabled `smallvec` will track its state (inline or spilled)
34//! without the use of an enum tag, reducing the size of the `smallvec` by one machine word.
35//! This means that there is potentially no space overhead compared to `Vec`.
36//! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two
37//! machine words.
38//!
39//! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml.
40//! Note that this feature requires Rust 1.49.
41//!
42//! Tracking issue: [rust-lang/rust#55149](https://github.com/rust-lang/rust/issues/55149)
43//!
44//! ### `const_generics`
45//!
46//! **This feature requires Rust 1.51.**
47//!
48//! When this feature is enabled, `SmallVec` works with any arrays of any size, not just a fixed
49//! list of sizes.
50//!
51//! ### `const_new`
52//!
53//! **This feature requires Rust 1.51.**
54//!
55//! This feature exposes the functions [`SmallVec::new_const`], [`SmallVec::from_const`], and [`smallvec_inline`] which enables the `SmallVec` to be initialized from a const context.
56//! For details, see the
57//! [Rust Reference](https://doc.rust-lang.org/reference/const_eval.html#const-functions).
58//!
59//! ### `drain_filter`
60//!
61//! **This feature is unstable.** It may change to match the unstable `drain_filter` method in libstd.
62//!
63//! Enables the `drain_filter` method, which produces an iterator that calls a user-provided
64//! closure to determine which elements of the vector to remove and yield from the iterator.
65//!
66//! ### `drain_keep_rest`
67//!
68//! **This feature is unstable.** It may change to match the unstable `drain_keep_rest` method in libstd.
69//!
70//! Enables the `DrainFilter::keep_rest` method.
71//!
72//! ### `specialization`
73//!
74//! **This feature is unstable and requires a nightly build of the Rust toolchain.**
75//!
76//! When this feature is enabled, `SmallVec::from(slice)` has improved performance for slices
77//! of `Copy` types.  (Without this feature, you can use `SmallVec::from_slice` to get optimal
78//! performance for `Copy` types.)
79//!
80//! Tracking issue: [rust-lang/rust#31844](https://github.com/rust-lang/rust/issues/31844)
81//!
82//! ### `may_dangle`
83//!
84//! **This feature is unstable and requires a nightly build of the Rust toolchain.**
85//!
86//! This feature makes the Rust compiler less strict about use of vectors that contain borrowed
87//! references. For details, see the
88//! [Rustonomicon](https://doc.rust-lang.org/1.42.0/nomicon/dropck.html#an-escape-hatch).
89//!
90//! Tracking issue: [rust-lang/rust#34761](https://github.com/rust-lang/rust/issues/34761)
91
92#![no_std]
93#![cfg_attr(docsrs, feature(doc_cfg))]
94#![cfg_attr(feature = "specialization", allow(incomplete_features))]
95#![cfg_attr(feature = "specialization", feature(specialization))]
96#![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))]
97#![cfg_attr(
98    feature = "debugger_visualizer",
99    feature(debugger_visualizer),
100    debugger_visualizer(natvis_file = "../debug_metadata/smallvec.natvis")
101)]
102#![deny(missing_docs)]
103
104#[doc(hidden)]
105pub extern crate alloc;
106
107#[cfg(any(test, feature = "write"))]
108extern crate std;
109
110#[cfg(test)]
111mod tests;
112
113#[allow(deprecated)]
114use alloc::alloc::{Layout, LayoutErr};
115use alloc::boxed::Box;
116use alloc::{vec, vec::Vec};
117use core::borrow::{Borrow, BorrowMut};
118use core::cmp;
119use core::fmt;
120use core::hash::{Hash, Hasher};
121use core::hint::unreachable_unchecked;
122use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator};
123use core::mem;
124use core::mem::MaybeUninit;
125use core::ops::{self, Range, RangeBounds};
126use core::ptr::{self, NonNull};
127use core::slice::{self, SliceIndex};
128
129#[cfg(feature = "serde")]
130use serde::{
131    de::{Deserialize, Deserializer, SeqAccess, Visitor},
132    ser::{Serialize, SerializeSeq, Serializer},
133};
134
135#[cfg(feature = "serde")]
136use core::marker::PhantomData;
137
138#[cfg(feature = "write")]
139use std::io;
140
141#[cfg(feature = "drain_keep_rest")]
142use core::mem::ManuallyDrop;
143
144/// Creates a [`SmallVec`] containing the arguments.
145///
146/// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions.
147/// There are two forms of this macro:
148///
149/// - Create a [`SmallVec`] containing a given list of elements:
150///
151/// ```
152/// # use smallvec::{smallvec, SmallVec};
153/// # fn main() {
154/// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3];
155/// assert_eq!(v[0], 1);
156/// assert_eq!(v[1], 2);
157/// assert_eq!(v[2], 3);
158/// # }
159/// ```
160///
161/// - Create a [`SmallVec`] from a given element and size:
162///
163/// ```
164/// # use smallvec::{smallvec, SmallVec};
165/// # fn main() {
166/// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3];
167/// assert_eq!(v, SmallVec::from_buf([1, 1, 1]));
168/// # }
169/// ```
170///
171/// Note that unlike array expressions this syntax supports all elements
172/// which implement [`Clone`] and the number of elements doesn't have to be
173/// a constant.
174///
175/// This will use `clone` to duplicate an expression, so one should be careful
176/// using this with types having a nonstandard `Clone` implementation. For
177/// example, `smallvec![Rc::new(1); 5]` will create a vector of five references
178/// to the same boxed integer value, not five references pointing to independently
179/// boxed integers.
180
181#[macro_export]
182macro_rules! smallvec {
183    // count helper: transform any expression into 1
184    (@one $x:expr) => (1usize);
185    ($elem:expr; $n:expr) => ({
186        $crate::SmallVec::from_elem($elem, $n)
187    });
188    ($($x:expr),*$(,)*) => ({
189        let count = 0usize $(+ $crate::smallvec!(@one $x))*;
190        #[allow(unused_mut)]
191        let mut vec = $crate::SmallVec::new();
192        if count <= vec.inline_size() {
193            $(vec.push($x);)*
194            vec
195        } else {
196            $crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*])
197        }
198    });
199}
200
201/// Creates an inline [`SmallVec`] containing the arguments. This macro is enabled by the feature `const_new`.
202///
203/// `smallvec_inline!` allows `SmallVec`s to be defined with the same syntax as array expressions in `const` contexts.
204/// The inline storage `A` will always be an array of the size specified by the arguments.
205/// There are two forms of this macro:
206///
207/// - Create a [`SmallVec`] containing a given list of elements:
208///
209/// ```
210/// # use smallvec::{smallvec_inline, SmallVec};
211/// # fn main() {
212/// const V: SmallVec<[i32; 3]> = smallvec_inline![1, 2, 3];
213/// assert_eq!(V[0], 1);
214/// assert_eq!(V[1], 2);
215/// assert_eq!(V[2], 3);
216/// # }
217/// ```
218///
219/// - Create a [`SmallVec`] from a given element and size:
220///
221/// ```
222/// # use smallvec::{smallvec_inline, SmallVec};
223/// # fn main() {
224/// const V: SmallVec<[i32; 3]> = smallvec_inline![1; 3];
225/// assert_eq!(V, SmallVec::from_buf([1, 1, 1]));
226/// # }
227/// ```
228///
229/// Note that the behavior mimics that of array expressions, in contrast to [`smallvec`].
230#[cfg(feature = "const_new")]
231#[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
232#[macro_export]
233macro_rules! smallvec_inline {
234    // count helper: transform any expression into 1
235    (@one $x:expr) => (1usize);
236    ($elem:expr; $n:expr) => ({
237        $crate::SmallVec::<[_; $n]>::from_const([$elem; $n])
238    });
239    ($($x:expr),+ $(,)?) => ({
240        const N: usize = 0usize $(+ $crate::smallvec_inline!(@one $x))*;
241        $crate::SmallVec::<[_; N]>::from_const([$($x,)*])
242    });
243}
244
245/// `panic!()` in debug builds, optimization hint in release.
246#[cfg(not(feature = "union"))]
247macro_rules! debug_unreachable {
248    () => {
249        debug_unreachable!("entered unreachable code")
250    };
251    ($e:expr) => {
252        if cfg!(debug_assertions) {
253            panic!($e);
254        } else {
255            unreachable_unchecked();
256        }
257    };
258}
259
260/// Trait to be implemented by a collection that can be extended from a slice
261///
262/// ## Example
263///
264/// ```rust
265/// use smallvec::{ExtendFromSlice, SmallVec};
266///
267/// fn initialize<V: ExtendFromSlice<u8>>(v: &mut V) {
268///     v.extend_from_slice(b"Test!");
269/// }
270///
271/// let mut vec = Vec::new();
272/// initialize(&mut vec);
273/// assert_eq!(&vec, b"Test!");
274///
275/// let mut small_vec = SmallVec::<[u8; 8]>::new();
276/// initialize(&mut small_vec);
277/// assert_eq!(&small_vec as &[_], b"Test!");
278/// ```
279#[doc(hidden)]
280#[deprecated]
281pub trait ExtendFromSlice<T> {
282    /// Extends a collection from a slice of its element type
283    fn extend_from_slice(&mut self, other: &[T]);
284}
285
286#[allow(deprecated)]
287impl<T: Clone> ExtendFromSlice<T> for Vec<T> {
288    fn extend_from_slice(&mut self, other: &[T]) {
289        Vec::extend_from_slice(self, other)
290    }
291}
292
293/// Error type for APIs with fallible heap allocation
294#[derive(Debug)]
295pub enum CollectionAllocErr {
296    /// Overflow `usize::MAX` or other error during size computation
297    CapacityOverflow,
298    /// The allocator return an error
299    AllocErr {
300        /// The layout that was passed to the allocator
301        layout: Layout,
302    },
303}
304
305impl fmt::Display for CollectionAllocErr {
306    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
307        write!(f, "Allocation error: {:?}", self)
308    }
309}
310
311#[allow(deprecated)]
312impl From<LayoutErr> for CollectionAllocErr {
313    fn from(_: LayoutErr) -> Self {
314        CollectionAllocErr::CapacityOverflow
315    }
316}
317
318fn infallible<T>(result: Result<T, CollectionAllocErr>) -> T {
319    match result {
320        Ok(x) => x,
321        Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"),
322        Err(CollectionAllocErr::AllocErr { layout }) => alloc::alloc::handle_alloc_error(layout),
323    }
324}
325
326/// FIXME: use `Layout::array` when we require a Rust version where it’s stable
327/// <https://github.com/rust-lang/rust/issues/55724>
328fn layout_array<T>(n: usize) -> Result<Layout, CollectionAllocErr> {
329    let size = mem::size_of::<T>()
330        .checked_mul(n)
331        .ok_or(CollectionAllocErr::CapacityOverflow)?;
332    let align = mem::align_of::<T>();
333    Layout::from_size_align(size, align).map_err(|_| CollectionAllocErr::CapacityOverflow)
334}
335
336unsafe fn deallocate<T>(ptr: NonNull<T>, capacity: usize) {
337    // This unwrap should succeed since the same did when allocating.
338    let layout = layout_array::<T>(capacity).unwrap();
339    alloc::alloc::dealloc(ptr.as_ptr() as *mut u8, layout)
340}
341
342/// An iterator that removes the items from a `SmallVec` and yields them by value.
343///
344/// Returned from [`SmallVec::drain`][1].
345///
346/// [1]: struct.SmallVec.html#method.drain
347pub struct Drain<'a, T: 'a + Array> {
348    tail_start: usize,
349    tail_len: usize,
350    iter: slice::Iter<'a, T::Item>,
351    vec: NonNull<SmallVec<T>>,
352}
353
354impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T>
355where
356    T::Item: fmt::Debug,
357{
358    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
359        f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
360    }
361}
362
363unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {}
364unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {}
365
366impl<'a, T: 'a + Array> Iterator for Drain<'a, T> {
367    type Item = T::Item;
368
369    #[inline]
370    fn next(&mut self) -> Option<T::Item> {
371        self.iter
372            .next()
373            .map(|reference| unsafe { ptr::read(reference) })
374    }
375
376    #[inline]
377    fn size_hint(&self) -> (usize, Option<usize>) {
378        self.iter.size_hint()
379    }
380}
381
382impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> {
383    #[inline]
384    fn next_back(&mut self) -> Option<T::Item> {
385        self.iter
386            .next_back()
387            .map(|reference| unsafe { ptr::read(reference) })
388    }
389}
390
391impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> {
392    #[inline]
393    fn len(&self) -> usize {
394        self.iter.len()
395    }
396}
397
398impl<'a, T: Array> FusedIterator for Drain<'a, T> {}
399
400impl<'a, T: 'a + Array> Drop for Drain<'a, T> {
401    fn drop(&mut self) {
402        self.for_each(drop);
403
404        if self.tail_len > 0 {
405            unsafe {
406                let source_vec = self.vec.as_mut();
407
408                // memmove back untouched tail, update to new length
409                let start = source_vec.len();
410                let tail = self.tail_start;
411                if tail != start {
412                    // as_mut_ptr creates a &mut, invalidating other pointers.
413                    // This pattern avoids calling it with a pointer already present.
414                    let ptr = source_vec.as_mut_ptr();
415                    let src = ptr.add(tail);
416                    let dst = ptr.add(start);
417                    ptr::copy(src, dst, self.tail_len);
418                }
419                source_vec.set_len(start + self.tail_len);
420            }
421        }
422    }
423}
424
425#[cfg(feature = "drain_filter")]
426/// An iterator which uses a closure to determine if an element should be removed.
427///
428/// Returned from [`SmallVec::drain_filter`][1].
429///
430/// [1]: struct.SmallVec.html#method.drain_filter
431pub struct DrainFilter<'a, T, F>
432where
433    F: FnMut(&mut T::Item) -> bool,
434    T: Array,
435{
436    vec: &'a mut SmallVec<T>,
437    /// The index of the item that will be inspected by the next call to `next`.
438    idx: usize,
439    /// The number of items that have been drained (removed) thus far.
440    del: usize,
441    /// The original length of `vec` prior to draining.
442    old_len: usize,
443    /// The filter test predicate.
444    pred: F,
445    /// A flag that indicates a panic has occurred in the filter test predicate.
446    /// This is used as a hint in the drop implementation to prevent consumption
447    /// of the remainder of the `DrainFilter`. Any unprocessed items will be
448    /// backshifted in the `vec`, but no further items will be dropped or
449    /// tested by the filter predicate.
450    panic_flag: bool,
451}
452
453#[cfg(feature = "drain_filter")]
454impl <T, F> fmt::Debug for DrainFilter<'_, T, F>
455where
456    F: FnMut(&mut T::Item) -> bool,
457    T: Array,
458    T::Item: fmt::Debug,
459{
460    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
461        f.debug_tuple("DrainFilter").field(&self.vec.as_slice()).finish()
462    }
463}
464
465#[cfg(feature = "drain_filter")]
466impl <T, F> Iterator for DrainFilter<'_, T, F>
467where
468    F: FnMut(&mut T::Item) -> bool,
469    T: Array,
470{
471    type Item = T::Item;
472
473    fn next(&mut self) -> Option<T::Item>
474    {
475        unsafe {
476            while self.idx < self.old_len {
477                let i = self.idx;
478                let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
479                self.panic_flag = true;
480                let drained = (self.pred)(&mut v[i]);
481                self.panic_flag = false;
482                // Update the index *after* the predicate is called. If the index
483                // is updated prior and the predicate panics, the element at this
484                // index would be leaked.
485                self.idx += 1;
486                if drained {
487                    self.del += 1;
488                    return Some(ptr::read(&v[i]));
489                } else if self.del > 0 {
490                    let del = self.del;
491                    let src: *const Self::Item = &v[i];
492                    let dst: *mut Self::Item = &mut v[i - del];
493                    ptr::copy_nonoverlapping(src, dst, 1);
494                }
495            }
496            None
497        }
498    }
499
500    fn size_hint(&self) -> (usize, Option<usize>) {
501        (0, Some(self.old_len - self.idx))
502    }
503}
504
505#[cfg(feature = "drain_filter")]
506impl <T, F> Drop for DrainFilter<'_, T, F>
507where
508    F: FnMut(&mut T::Item) -> bool,
509    T: Array,
510{
511    fn drop(&mut self) {
512        struct BackshiftOnDrop<'a, 'b, T, F>
513        where
514            F: FnMut(&mut T::Item) -> bool,
515            T: Array
516        {
517            drain: &'b mut DrainFilter<'a, T, F>,
518        }
519
520        impl<'a, 'b, T, F> Drop for BackshiftOnDrop<'a, 'b, T, F>
521        where
522            F: FnMut(&mut T::Item) -> bool,
523            T: Array
524        {
525            fn drop(&mut self) {
526                unsafe {
527                    if self.drain.idx < self.drain.old_len && self.drain.del > 0 {
528                        // This is a pretty messed up state, and there isn't really an
529                        // obviously right thing to do. We don't want to keep trying
530                        // to execute `pred`, so we just backshift all the unprocessed
531                        // elements and tell the vec that they still exist. The backshift
532                        // is required to prevent a double-drop of the last successfully
533                        // drained item prior to a panic in the predicate.
534                        let ptr = self.drain.vec.as_mut_ptr();
535                        let src = ptr.add(self.drain.idx);
536                        let dst = src.sub(self.drain.del);
537                        let tail_len = self.drain.old_len - self.drain.idx;
538                        src.copy_to(dst, tail_len);
539                    }
540                    self.drain.vec.set_len(self.drain.old_len - self.drain.del);
541                }
542            }
543        }
544
545        let backshift = BackshiftOnDrop { drain: self };
546
547        // Attempt to consume any remaining elements if the filter predicate
548        // has not yet panicked. We'll backshift any remaining elements
549        // whether we've already panicked or if the consumption here panics.
550        if !backshift.drain.panic_flag {
551            backshift.drain.for_each(drop);
552        }
553    }
554}
555
556#[cfg(feature = "drain_keep_rest")]
557impl <T, F> DrainFilter<'_, T, F>
558where
559    F: FnMut(&mut T::Item) -> bool,
560    T: Array
561{
562    /// Keep unyielded elements in the source `Vec`.
563    ///
564    /// # Examples
565    ///
566    /// ```
567    /// # use smallvec::{smallvec, SmallVec};
568    ///
569    /// let mut vec: SmallVec<[char; 2]> = smallvec!['a', 'b', 'c'];
570    /// let mut drain = vec.drain_filter(|_| true);
571    ///
572    /// assert_eq!(drain.next().unwrap(), 'a');
573    ///
574    /// // This call keeps 'b' and 'c' in the vec.
575    /// drain.keep_rest();
576    ///
577    /// // If we wouldn't call `keep_rest()`,
578    /// // `vec` would be empty.
579    /// assert_eq!(vec, SmallVec::<[char; 2]>::from_slice(&['b', 'c']));
580    /// ```
581    pub fn keep_rest(self)
582    {
583        // At this moment layout looks like this:
584        //
585        //  _____________________/-- old_len
586        // /                     \
587        // [kept] [yielded] [tail]
588        //        \_______/ ^-- idx
589        //                \-- del
590        //
591        // Normally `Drop` impl would drop [tail] (via .for_each(drop), ie still calling `pred`)
592        //
593        // 1. Move [tail] after [kept]
594        // 2. Update length of the original vec to `old_len - del`
595        //    a. In case of ZST, this is the only thing we want to do
596        // 3. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do
597        let mut this = ManuallyDrop::new(self);
598
599        unsafe {
600            // ZSTs have no identity, so we don't need to move them around.
601            let needs_move = mem::size_of::<T>() != 0;
602
603            if needs_move && this.idx < this.old_len && this.del > 0 {
604                let ptr = this.vec.as_mut_ptr();
605                let src = ptr.add(this.idx);
606                let dst = src.sub(this.del);
607                let tail_len = this.old_len - this.idx;
608                src.copy_to(dst, tail_len);
609            }
610
611            let new_len = this.old_len - this.del;
612            this.vec.set_len(new_len);
613        }
614    }
615}
616
617#[cfg(feature = "union")]
618union SmallVecData<A: Array> {
619    inline: core::mem::ManuallyDrop<MaybeUninit<A>>,
620    heap: (NonNull<A::Item>, usize),
621}
622
623#[cfg(all(feature = "union", feature = "const_new"))]
624impl<T, const N: usize> SmallVecData<[T; N]> {
625    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
626    #[inline]
627    const fn from_const(inline: MaybeUninit<[T; N]>) -> Self {
628        SmallVecData {
629            inline: core::mem::ManuallyDrop::new(inline),
630        }
631    }
632}
633
634#[cfg(feature = "union")]
635impl<A: Array> SmallVecData<A> {
636    #[inline]
637    unsafe fn inline(&self) -> ConstNonNull<A::Item> {
638        ConstNonNull::new(self.inline.as_ptr() as *const A::Item).unwrap()
639    }
640    #[inline]
641    unsafe fn inline_mut(&mut self) -> NonNull<A::Item> {
642        NonNull::new(self.inline.as_mut_ptr() as *mut A::Item).unwrap()
643    }
644    #[inline]
645    fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
646        SmallVecData {
647            inline: core::mem::ManuallyDrop::new(inline),
648        }
649    }
650    #[inline]
651    unsafe fn into_inline(self) -> MaybeUninit<A> {
652        core::mem::ManuallyDrop::into_inner(self.inline)
653    }
654    #[inline]
655    unsafe fn heap(&self) -> (ConstNonNull<A::Item>, usize) {
656        (ConstNonNull(self.heap.0), self.heap.1)
657    }
658    #[inline]
659    unsafe fn heap_mut(&mut self) -> (NonNull<A::Item>, &mut usize) {
660        let h = &mut self.heap;
661        (h.0, &mut h.1)
662    }
663    #[inline]
664    fn from_heap(ptr: NonNull<A::Item>, len: usize) -> SmallVecData<A> {
665        SmallVecData { heap: (ptr, len) }
666    }
667}
668
669#[cfg(not(feature = "union"))]
670enum SmallVecData<A: Array> {
671    Inline(MaybeUninit<A>),
672    // Using NonNull and NonZero here allows to reduce size of `SmallVec`.
673    Heap {
674        // Since we never allocate on heap
675        // unless our capacity is bigger than inline capacity
676        // heap capacity cannot be less than 1.
677        // Therefore, pointer cannot be null too.
678        ptr: NonNull<A::Item>,
679        len: usize,
680    },
681}
682
683#[cfg(all(not(feature = "union"), feature = "const_new"))]
684impl<T, const N: usize> SmallVecData<[T; N]> {
685    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
686    #[inline]
687    const fn from_const(inline: MaybeUninit<[T; N]>) -> Self {
688        SmallVecData::Inline(inline)
689    }
690}
691
692#[cfg(not(feature = "union"))]
693impl<A: Array> SmallVecData<A> {
694    #[inline]
695    unsafe fn inline(&self) -> ConstNonNull<A::Item> {
696        match self {
697            SmallVecData::Inline(a) => ConstNonNull::new(a.as_ptr() as *const A::Item).unwrap(),
698            _ => debug_unreachable!(),
699        }
700    }
701    #[inline]
702    unsafe fn inline_mut(&mut self) -> NonNull<A::Item> {
703        match self {
704            SmallVecData::Inline(a) => NonNull::new(a.as_mut_ptr() as *mut A::Item).unwrap(),
705            _ => debug_unreachable!(),
706        }
707    }
708    #[inline]
709    fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
710        SmallVecData::Inline(inline)
711    }
712    #[inline]
713    unsafe fn into_inline(self) -> MaybeUninit<A> {
714        match self {
715            SmallVecData::Inline(a) => a,
716            _ => debug_unreachable!(),
717        }
718    }
719    #[inline]
720    unsafe fn heap(&self) -> (ConstNonNull<A::Item>, usize) {
721        match self {
722            SmallVecData::Heap { ptr, len } => (ConstNonNull(*ptr), *len),
723            _ => debug_unreachable!(),
724        }
725    }
726    #[inline]
727    unsafe fn heap_mut(&mut self) -> (NonNull<A::Item>, &mut usize) {
728        match self {
729            SmallVecData::Heap { ptr, len } => (*ptr, len),
730            _ => debug_unreachable!(),
731        }
732    }
733    #[inline]
734    fn from_heap(ptr: NonNull<A::Item>, len: usize) -> SmallVecData<A> {
735        SmallVecData::Heap { ptr, len }
736    }
737}
738
739unsafe impl<A: Array + Send> Send for SmallVecData<A> {}
740unsafe impl<A: Array + Sync> Sync for SmallVecData<A> {}
741
742/// A `Vec`-like container that can store a small number of elements inline.
743///
744/// `SmallVec` acts like a vector, but can store a limited amount of data inline within the
745/// `SmallVec` struct rather than in a separate allocation.  If the data exceeds this limit, the
746/// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it.
747///
748/// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing
749/// store can be any type that implements the `Array` trait; usually it is a small fixed-sized
750/// array.  For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline.
751///
752/// ## Example
753///
754/// ```rust
755/// use smallvec::SmallVec;
756/// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector
757///
758/// // The vector can hold up to 4 items without spilling onto the heap.
759/// v.extend(0..4);
760/// assert_eq!(v.len(), 4);
761/// assert!(!v.spilled());
762///
763/// // Pushing another element will force the buffer to spill:
764/// v.push(4);
765/// assert_eq!(v.len(), 5);
766/// assert!(v.spilled());
767/// ```
768pub struct SmallVec<A: Array> {
769    // The capacity field is used to determine which of the storage variants is active:
770    // If capacity <= Self::inline_capacity() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use).
771    // If capacity > Self::inline_capacity() then the heap variant is used and capacity holds the size of the memory allocation.
772    capacity: usize,
773    data: SmallVecData<A>,
774}
775
776impl<A: Array> SmallVec<A> {
777    /// Construct an empty vector
778    #[inline]
779    pub fn new() -> SmallVec<A> {
780        // Try to detect invalid custom implementations of `Array`. Hopefully,
781        // this check should be optimized away entirely for valid ones.
782        assert!(
783            mem::size_of::<A>() == A::size() * mem::size_of::<A::Item>()
784                && mem::align_of::<A>() >= mem::align_of::<A::Item>()
785        );
786        SmallVec {
787            capacity: 0,
788            data: SmallVecData::from_inline(MaybeUninit::uninit()),
789        }
790    }
791
792    /// Construct an empty vector with enough capacity pre-allocated to store at least `n`
793    /// elements.
794    ///
795    /// Will create a heap allocation only if `n` is larger than the inline capacity.
796    ///
797    /// ```
798    /// # use smallvec::SmallVec;
799    ///
800    /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100);
801    ///
802    /// assert!(v.is_empty());
803    /// assert!(v.capacity() >= 100);
804    /// ```
805    #[inline]
806    pub fn with_capacity(n: usize) -> Self {
807        let mut v = SmallVec::new();
808        v.reserve_exact(n);
809        v
810    }
811
812    /// Construct a new `SmallVec` from a `Vec<A::Item>`.
813    ///
814    /// Elements will be copied to the inline buffer if `vec.capacity() <= Self::inline_capacity()`.
815    ///
816    /// ```rust
817    /// use smallvec::SmallVec;
818    ///
819    /// let vec = vec![1, 2, 3, 4, 5];
820    /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec);
821    ///
822    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
823    /// ```
824    #[inline]
825    pub fn from_vec(mut vec: Vec<A::Item>) -> SmallVec<A> {
826        if vec.capacity() <= Self::inline_capacity() {
827            // Cannot use Vec with smaller capacity
828            // because we use value of `Self::capacity` field as indicator.
829            unsafe {
830                let mut data = SmallVecData::<A>::from_inline(MaybeUninit::uninit());
831                let len = vec.len();
832                vec.set_len(0);
833                ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut().as_ptr(), len);
834
835                SmallVec {
836                    capacity: len,
837                    data,
838                }
839            }
840        } else {
841            let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len());
842            mem::forget(vec);
843            let ptr = NonNull::new(ptr)
844                // See docs: https://doc.rust-lang.org/std/vec/struct.Vec.html#method.as_mut_ptr
845                .expect("Cannot be null by `Vec` invariant");
846
847            SmallVec {
848                capacity: cap,
849                data: SmallVecData::from_heap(ptr, len),
850            }
851        }
852    }
853
854    /// Constructs a new `SmallVec` on the stack from an `A` without
855    /// copying elements.
856    ///
857    /// ```rust
858    /// use smallvec::SmallVec;
859    ///
860    /// let buf = [1, 2, 3, 4, 5];
861    /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf);
862    ///
863    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
864    /// ```
865    #[inline]
866    pub fn from_buf(buf: A) -> SmallVec<A> {
867        SmallVec {
868            capacity: A::size(),
869            data: SmallVecData::from_inline(MaybeUninit::new(buf)),
870        }
871    }
872
873    /// Constructs a new `SmallVec` on the stack from an `A` without
874    /// copying elements. Also sets the length, which must be less or
875    /// equal to the size of `buf`.
876    ///
877    /// ```rust
878    /// use smallvec::SmallVec;
879    ///
880    /// let buf = [1, 2, 3, 4, 5, 0, 0, 0];
881    /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5);
882    ///
883    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
884    /// ```
885    #[inline]
886    pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A> {
887        assert!(len <= A::size());
888        unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) }
889    }
890
891    /// Constructs a new `SmallVec` on the stack from an `A` without
892    /// copying elements. Also sets the length. The user is responsible
893    /// for ensuring that `len <= A::size()`.
894    ///
895    /// ```rust
896    /// use smallvec::SmallVec;
897    /// use std::mem::MaybeUninit;
898    ///
899    /// let buf = [1, 2, 3, 4, 5, 0, 0, 0];
900    /// let small_vec: SmallVec<_> = unsafe {
901    ///     SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), 5)
902    /// };
903    ///
904    /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
905    /// ```
906    #[inline]
907    pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit<A>, len: usize) -> SmallVec<A> {
908        SmallVec {
909            capacity: len,
910            data: SmallVecData::from_inline(buf),
911        }
912    }
913
914    /// Sets the length of a vector.
915    ///
916    /// This will explicitly set the size of the vector, without actually
917    /// modifying its buffers, so it is up to the caller to ensure that the
918    /// vector is actually the specified size.
919    pub unsafe fn set_len(&mut self, new_len: usize) {
920        let (_, len_ptr, _) = self.triple_mut();
921        *len_ptr = new_len;
922    }
923
924    /// The maximum number of elements this vector can hold inline
925    #[inline]
926    fn inline_capacity() -> usize {
927        if mem::size_of::<A::Item>() > 0 {
928            A::size()
929        } else {
930            // For zero-size items code like `ptr.add(offset)` always returns the same pointer.
931            // Therefore all items are at the same address,
932            // and any array size has capacity for infinitely many items.
933            // The capacity is limited by the bit width of the length field.
934            //
935            // `Vec` also does this:
936            // https://github.com/rust-lang/rust/blob/1.44.0/src/liballoc/raw_vec.rs#L186
937            //
938            // In our case, this also ensures that a smallvec of zero-size items never spills,
939            // and we never try to allocate zero bytes which `std::alloc::alloc` disallows.
940            core::usize::MAX
941        }
942    }
943
944    /// The maximum number of elements this vector can hold inline
945    #[inline]
946    pub fn inline_size(&self) -> usize {
947        Self::inline_capacity()
948    }
949
950    /// The number of elements stored in the vector
951    #[inline]
952    pub fn len(&self) -> usize {
953        self.triple().1
954    }
955
956    /// Returns `true` if the vector is empty
957    #[inline]
958    pub fn is_empty(&self) -> bool {
959        self.len() == 0
960    }
961
962    /// The number of items the vector can hold without reallocating
963    #[inline]
964    pub fn capacity(&self) -> usize {
965        self.triple().2
966    }
967
968    /// Returns a tuple with (data ptr, len, capacity)
969    /// Useful to get all `SmallVec` properties with a single check of the current storage variant.
970    #[inline]
971    fn triple(&self) -> (ConstNonNull<A::Item>, usize, usize) {
972        unsafe {
973            if self.spilled() {
974                let (ptr, len) = self.data.heap();
975                (ptr, len, self.capacity)
976            } else {
977                (self.data.inline(), self.capacity, Self::inline_capacity())
978            }
979        }
980    }
981
982    /// Returns a tuple with (data ptr, len ptr, capacity)
983    #[inline]
984    fn triple_mut(&mut self) -> (NonNull<A::Item>, &mut usize, usize) {
985        unsafe {
986            if self.spilled() {
987                let (ptr, len_ptr) = self.data.heap_mut();
988                (ptr, len_ptr, self.capacity)
989            } else {
990                (
991                    self.data.inline_mut(),
992                    &mut self.capacity,
993                    Self::inline_capacity(),
994                )
995            }
996        }
997    }
998
999    /// Returns `true` if the data has spilled into a separate heap-allocated buffer.
1000    #[inline]
1001    pub fn spilled(&self) -> bool {
1002        self.capacity > Self::inline_capacity()
1003    }
1004
1005    /// Creates a draining iterator that removes the specified range in the vector
1006    /// and yields the removed items.
1007    ///
1008    /// Note 1: The element range is removed even if the iterator is only
1009    /// partially consumed or not consumed at all.
1010    ///
1011    /// Note 2: It is unspecified how many elements are removed from the vector
1012    /// if the `Drain` value is leaked.
1013    ///
1014    /// # Panics
1015    ///
1016    /// Panics if the starting point is greater than the end point or if
1017    /// the end point is greater than the length of the vector.
1018    pub fn drain<R>(&mut self, range: R) -> Drain<'_, A>
1019    where
1020        R: RangeBounds<usize>,
1021    {
1022        use core::ops::Bound::*;
1023
1024        let len = self.len();
1025        let start = match range.start_bound() {
1026            Included(&n) => n,
1027            Excluded(&n) => n.checked_add(1).expect("Range start out of bounds"),
1028            Unbounded => 0,
1029        };
1030        let end = match range.end_bound() {
1031            Included(&n) => n.checked_add(1).expect("Range end out of bounds"),
1032            Excluded(&n) => n,
1033            Unbounded => len,
1034        };
1035
1036        assert!(start <= end);
1037        assert!(end <= len);
1038
1039        unsafe {
1040            self.set_len(start);
1041
1042            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
1043
1044            Drain {
1045                tail_start: end,
1046                tail_len: len - end,
1047                iter: range_slice.iter(),
1048                // Since self is a &mut, passing it to a function would invalidate the slice iterator.
1049                vec: NonNull::new_unchecked(self as *mut _),
1050            }
1051        }
1052    }
1053
1054    #[cfg(feature = "drain_filter")]
1055    /// Creates an iterator which uses a closure to determine if an element should be removed.
1056    ///
1057    /// If the closure returns true, the element is removed and yielded. If the closure returns
1058    /// false, the element will remain in the vector and will not be yielded by the iterator.
1059    ///
1060    /// Using this method is equivalent to the following code:
1061    /// ```
1062    /// # use smallvec::SmallVec;
1063    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
1064    /// # let mut vec: SmallVec<[i32; 8]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6]);
1065    /// let mut i = 0;
1066    /// while i < vec.len() {
1067    ///     if some_predicate(&mut vec[i]) {
1068    ///         let val = vec.remove(i);
1069    ///         // your code here
1070    ///     } else {
1071    ///         i += 1;
1072    ///     }
1073    /// }
1074    ///
1075    /// # assert_eq!(vec, SmallVec::<[i32; 8]>::from_slice(&[1i32, 4, 5]));
1076    /// ```
1077    /// ///
1078    /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
1079    /// because it can backshift the elements of the array in bulk.
1080    ///
1081    /// Note that `drain_filter` also lets you mutate every element in the filter closure,
1082    /// regardless of whether you choose to keep or remove it.
1083    ///
1084    /// # Examples
1085    ///
1086    /// Splitting an array into evens and odds, reusing the original allocation:
1087    ///
1088    /// ```
1089    /// # use smallvec::SmallVec;
1090    /// let mut numbers: SmallVec<[i32; 16]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
1091    ///
1092    /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<SmallVec<[i32; 16]>>();
1093    /// let odds = numbers;
1094    ///
1095    /// assert_eq!(evens, SmallVec::<[i32; 16]>::from_slice(&[2i32, 4, 6, 8, 14]));
1096    /// assert_eq!(odds, SmallVec::<[i32; 16]>::from_slice(&[1i32, 3, 5, 9, 11, 13, 15]));
1097    /// ```
1098    pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, A, F,>
1099    where
1100        F: FnMut(&mut A::Item) -> bool,
1101    {
1102        let old_len = self.len();
1103
1104        // Guard against us getting leaked (leak amplification)
1105        unsafe {
1106            self.set_len(0);
1107        }
1108
1109        DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
1110    }
1111
1112    /// Append an item to the vector.
1113    #[inline]
1114    pub fn push(&mut self, value: A::Item) {
1115        unsafe {
1116            let (mut ptr, mut len, cap) = self.triple_mut();
1117            if *len == cap {
1118                self.reserve_one_unchecked();
1119                let (heap_ptr, heap_len) = self.data.heap_mut();
1120                ptr = heap_ptr;
1121                len = heap_len;
1122            }
1123            ptr::write(ptr.as_ptr().add(*len), value);
1124            *len += 1;
1125        }
1126    }
1127
1128    /// Remove an item from the end of the vector and return it, or None if empty.
1129    #[inline]
1130    pub fn pop(&mut self) -> Option<A::Item> {
1131        unsafe {
1132            let (ptr, len_ptr, _) = self.triple_mut();
1133            let ptr: *const _ = ptr.as_ptr();
1134            if *len_ptr == 0 {
1135                return None;
1136            }
1137            let last_index = *len_ptr - 1;
1138            *len_ptr = last_index;
1139            Some(ptr::read(ptr.add(last_index)))
1140        }
1141    }
1142
1143    /// Moves all the elements of `other` into `self`, leaving `other` empty.
1144    ///
1145    /// # Example
1146    ///
1147    /// ```
1148    /// # use smallvec::{SmallVec, smallvec};
1149    /// let mut v0: SmallVec<[u8; 16]> = smallvec![1, 2, 3];
1150    /// let mut v1: SmallVec<[u8; 32]> = smallvec![4, 5, 6];
1151    /// v0.append(&mut v1);
1152    /// assert_eq!(*v0, [1, 2, 3, 4, 5, 6]);
1153    /// assert_eq!(*v1, []);
1154    /// ```
1155    pub fn append<B>(&mut self, other: &mut SmallVec<B>)
1156    where
1157        B: Array<Item = A::Item>,
1158    {
1159        self.extend(other.drain(..))
1160    }
1161
1162    /// Re-allocate to set the capacity to `max(new_cap, inline_size())`.
1163    ///
1164    /// Panics if `new_cap` is less than the vector's length
1165    /// or if the capacity computation overflows `usize`.
1166    pub fn grow(&mut self, new_cap: usize) {
1167        infallible(self.try_grow(new_cap))
1168    }
1169
1170    /// Re-allocate to set the capacity to `max(new_cap, inline_size())`.
1171    ///
1172    /// Panics if `new_cap` is less than the vector's length
1173    pub fn try_grow(&mut self, new_cap: usize) -> Result<(), CollectionAllocErr> {
1174        unsafe {
1175            let unspilled = !self.spilled();
1176            let (ptr, &mut len, cap) = self.triple_mut();
1177            assert!(new_cap >= len);
1178            if new_cap <= Self::inline_capacity() {
1179                if unspilled {
1180                    return Ok(());
1181                }
1182                self.data = SmallVecData::from_inline(MaybeUninit::uninit());
1183                ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len);
1184                self.capacity = len;
1185                deallocate(ptr, cap);
1186            } else if new_cap != cap {
1187                let layout = layout_array::<A::Item>(new_cap)?;
1188                debug_assert!(layout.size() > 0);
1189                let new_alloc;
1190                if unspilled {
1191                    new_alloc = NonNull::new(alloc::alloc::alloc(layout))
1192                        .ok_or(CollectionAllocErr::AllocErr { layout })?
1193                        .cast();
1194                    ptr::copy_nonoverlapping(ptr.as_ptr(), new_alloc.as_ptr(), len);
1195                } else {
1196                    // This should never fail since the same succeeded
1197                    // when previously allocating `ptr`.
1198                    let old_layout = layout_array::<A::Item>(cap)?;
1199
1200                    let new_ptr =
1201                        alloc::alloc::realloc(ptr.as_ptr() as *mut u8, old_layout, layout.size());
1202                    new_alloc = NonNull::new(new_ptr)
1203                        .ok_or(CollectionAllocErr::AllocErr { layout })?
1204                        .cast();
1205                }
1206                self.data = SmallVecData::from_heap(new_alloc, len);
1207                self.capacity = new_cap;
1208            }
1209            Ok(())
1210        }
1211    }
1212
1213    /// Reserve capacity for `additional` more elements to be inserted.
1214    ///
1215    /// May reserve more space to avoid frequent reallocations.
1216    ///
1217    /// Panics if the capacity computation overflows `usize`.
1218    #[inline]
1219    pub fn reserve(&mut self, additional: usize) {
1220        infallible(self.try_reserve(additional))
1221    }
1222
1223    /// Internal method used to grow in push() and insert(), where we know already we have to grow.
1224    #[cold]
1225    fn reserve_one_unchecked(&mut self) {
1226        debug_assert_eq!(self.len(), self.capacity());
1227        let new_cap = self.len()
1228            .checked_add(1)
1229            .and_then(usize::checked_next_power_of_two)
1230            .expect("capacity overflow");
1231        infallible(self.try_grow(new_cap))
1232    }
1233
1234    /// Reserve capacity for `additional` more elements to be inserted.
1235    ///
1236    /// May reserve more space to avoid frequent reallocations.
1237    pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
1238        // prefer triple_mut() even if triple() would work so that the optimizer removes duplicated
1239        // calls to it from callers.
1240        let (_, &mut len, cap) = self.triple_mut();
1241        if cap - len >= additional {
1242            return Ok(());
1243        }
1244        let new_cap = len
1245            .checked_add(additional)
1246            .and_then(usize::checked_next_power_of_two)
1247            .ok_or(CollectionAllocErr::CapacityOverflow)?;
1248        self.try_grow(new_cap)
1249    }
1250
1251    /// Reserve the minimum capacity for `additional` more elements to be inserted.
1252    ///
1253    /// Panics if the new capacity overflows `usize`.
1254    pub fn reserve_exact(&mut self, additional: usize) {
1255        infallible(self.try_reserve_exact(additional))
1256    }
1257
1258    /// Reserve the minimum capacity for `additional` more elements to be inserted.
1259    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
1260        let (_, &mut len, cap) = self.triple_mut();
1261        if cap - len >= additional {
1262            return Ok(());
1263        }
1264        let new_cap = len
1265            .checked_add(additional)
1266            .ok_or(CollectionAllocErr::CapacityOverflow)?;
1267        self.try_grow(new_cap)
1268    }
1269
1270    /// Shrink the capacity of the vector as much as possible.
1271    ///
1272    /// When possible, this will move data from an external heap buffer to the vector's inline
1273    /// storage.
1274    pub fn shrink_to_fit(&mut self) {
1275        if !self.spilled() {
1276            return;
1277        }
1278        let len = self.len();
1279        if self.inline_size() >= len {
1280            unsafe {
1281                let (ptr, len) = self.data.heap();
1282                self.data = SmallVecData::from_inline(MaybeUninit::uninit());
1283                ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len);
1284                deallocate(ptr.0, self.capacity);
1285                self.capacity = len;
1286            }
1287        } else if self.capacity() > len {
1288            self.grow(len);
1289        }
1290    }
1291
1292    /// Shorten the vector, keeping the first `len` elements and dropping the rest.
1293    ///
1294    /// If `len` is greater than or equal to the vector's current length, this has no
1295    /// effect.
1296    ///
1297    /// This does not re-allocate.  If you want the vector's capacity to shrink, call
1298    /// `shrink_to_fit` after truncating.
1299    pub fn truncate(&mut self, len: usize) {
1300        unsafe {
1301            let (ptr, len_ptr, _) = self.triple_mut();
1302            let ptr = ptr.as_ptr();
1303            while len < *len_ptr {
1304                let last_index = *len_ptr - 1;
1305                *len_ptr = last_index;
1306                ptr::drop_in_place(ptr.add(last_index));
1307            }
1308        }
1309    }
1310
1311    /// Extracts a slice containing the entire vector.
1312    ///
1313    /// Equivalent to `&s[..]`.
1314    pub fn as_slice(&self) -> &[A::Item] {
1315        self
1316    }
1317
1318    /// Extracts a mutable slice of the entire vector.
1319    ///
1320    /// Equivalent to `&mut s[..]`.
1321    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
1322        self
1323    }
1324
1325    /// Remove the element at position `index`, replacing it with the last element.
1326    ///
1327    /// This does not preserve ordering, but is O(1).
1328    ///
1329    /// Panics if `index` is out of bounds.
1330    #[inline]
1331    pub fn swap_remove(&mut self, index: usize) -> A::Item {
1332        let len = self.len();
1333        self.swap(len - 1, index);
1334        self.pop()
1335            .unwrap_or_else(|| unsafe { unreachable_unchecked() })
1336    }
1337
1338    /// Remove all elements from the vector.
1339    #[inline]
1340    pub fn clear(&mut self) {
1341        self.truncate(0);
1342    }
1343
1344    /// Remove and return the element at position `index`, shifting all elements after it to the
1345    /// left.
1346    ///
1347    /// Panics if `index` is out of bounds.
1348    pub fn remove(&mut self, index: usize) -> A::Item {
1349        unsafe {
1350            let (ptr, len_ptr, _) = self.triple_mut();
1351            let len = *len_ptr;
1352            assert!(index < len);
1353            *len_ptr = len - 1;
1354            let ptr = ptr.as_ptr().add(index);
1355            let item = ptr::read(ptr);
1356            ptr::copy(ptr.add(1), ptr, len - index - 1);
1357            item
1358        }
1359    }
1360
1361    /// Insert an element at position `index`, shifting all elements after it to the right.
1362    ///
1363    /// Panics if `index > len`.
1364    pub fn insert(&mut self, index: usize, element: A::Item) {
1365        unsafe {
1366            let (mut ptr, mut len_ptr, cap) = self.triple_mut();
1367            if *len_ptr == cap {
1368                self.reserve_one_unchecked();
1369                let (heap_ptr, heap_len_ptr) = self.data.heap_mut();
1370                ptr = heap_ptr;
1371                len_ptr = heap_len_ptr;
1372            }
1373            let mut ptr = ptr.as_ptr();
1374            let len = *len_ptr;
1375            ptr = ptr.add(index);
1376            if index < len {
1377                ptr::copy(ptr, ptr.add(1), len - index);
1378            } else if index == len {
1379                // No elements need shifting.
1380            } else {
1381                panic!("index exceeds length");
1382            }
1383            *len_ptr = len + 1;
1384            ptr::write(ptr, element);
1385        }
1386    }
1387
1388    /// Insert multiple elements at position `index`, shifting all following elements toward the
1389    /// back.
1390    pub fn insert_many<I: IntoIterator<Item = A::Item>>(&mut self, index: usize, iterable: I) {
1391        let mut iter = iterable.into_iter();
1392        if index == self.len() {
1393            return self.extend(iter);
1394        }
1395
1396        let (lower_size_bound, _) = iter.size_hint();
1397        assert!(lower_size_bound <= core::isize::MAX as usize); // Ensure offset is indexable
1398        assert!(index + lower_size_bound >= index); // Protect against overflow
1399
1400        let mut num_added = 0;
1401        let old_len = self.len();
1402        assert!(index <= old_len);
1403
1404        unsafe {
1405            // Reserve space for `lower_size_bound` elements.
1406            self.reserve(lower_size_bound);
1407            let start = self.as_mut_ptr();
1408            let ptr = start.add(index);
1409
1410            // Move the trailing elements.
1411            ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index);
1412
1413            // In case the iterator panics, don't double-drop the items we just copied above.
1414            self.set_len(0);
1415            let mut guard = DropOnPanic {
1416                start,
1417                skip: index..(index + lower_size_bound),
1418                len: old_len + lower_size_bound,
1419            };
1420
1421            // The set_len above invalidates the previous pointers, so we must re-create them.
1422            let start = self.as_mut_ptr();
1423            let ptr = start.add(index);
1424
1425            while num_added < lower_size_bound {
1426                let element = match iter.next() {
1427                    Some(x) => x,
1428                    None => break,
1429                };
1430                let cur = ptr.add(num_added);
1431                ptr::write(cur, element);
1432                guard.skip.start += 1;
1433                num_added += 1;
1434            }
1435
1436            if num_added < lower_size_bound {
1437                // Iterator provided fewer elements than the hint. Move the tail backward.
1438                ptr::copy(
1439                    ptr.add(lower_size_bound),
1440                    ptr.add(num_added),
1441                    old_len - index,
1442                );
1443            }
1444            // There are no more duplicate or uninitialized slots, so the guard is not needed.
1445            self.set_len(old_len + num_added);
1446            mem::forget(guard);
1447        }
1448
1449        // Insert any remaining elements one-by-one.
1450        for element in iter {
1451            self.insert(index + num_added, element);
1452            num_added += 1;
1453        }
1454
1455        struct DropOnPanic<T> {
1456            start: *mut T,
1457            skip: Range<usize>, // Space we copied-out-of, but haven't written-to yet.
1458            len: usize,
1459        }
1460
1461        impl<T> Drop for DropOnPanic<T> {
1462            fn drop(&mut self) {
1463                for i in 0..self.len {
1464                    if !self.skip.contains(&i) {
1465                        unsafe {
1466                            ptr::drop_in_place(self.start.add(i));
1467                        }
1468                    }
1469                }
1470            }
1471        }
1472    }
1473
1474    /// Convert a `SmallVec` to a `Vec`, without reallocating if the `SmallVec` has already spilled onto
1475    /// the heap.
1476    pub fn into_vec(mut self) -> Vec<A::Item> {
1477        if self.spilled() {
1478            unsafe {
1479                let (ptr, &mut len) = self.data.heap_mut();
1480                let v = Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity);
1481                mem::forget(self);
1482                v
1483            }
1484        } else {
1485            self.into_iter().collect()
1486        }
1487    }
1488
1489    /// Converts a `SmallVec` into a `Box<[T]>` without reallocating if the `SmallVec` has already spilled
1490    /// onto the heap.
1491    ///
1492    /// Note that this will drop any excess capacity.
1493    pub fn into_boxed_slice(self) -> Box<[A::Item]> {
1494        self.into_vec().into_boxed_slice()
1495    }
1496
1497    /// Convert the `SmallVec` into an `A` if possible. Otherwise return `Err(Self)`.
1498    ///
1499    /// This method returns `Err(Self)` if the `SmallVec` is too short (and the `A` contains uninitialized elements),
1500    /// or if the `SmallVec` is too long (and all the elements were spilled to the heap).
1501    pub fn into_inner(self) -> Result<A, Self> {
1502        if self.spilled() || self.len() != A::size() {
1503            // Note: A::size, not Self::inline_capacity
1504            Err(self)
1505        } else {
1506            unsafe {
1507                let data = ptr::read(&self.data);
1508                mem::forget(self);
1509                Ok(data.into_inline().assume_init())
1510            }
1511        }
1512    }
1513
1514    /// Retains only the elements specified by the predicate.
1515    ///
1516    /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
1517    /// This method operates in place and preserves the order of the retained
1518    /// elements.
1519    pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, mut f: F) {
1520        let mut del = 0;
1521        let len = self.len();
1522        for i in 0..len {
1523            if !f(&mut self[i]) {
1524                del += 1;
1525            } else if del > 0 {
1526                self.swap(i - del, i);
1527            }
1528        }
1529        self.truncate(len - del);
1530    }
1531
1532    /// Retains only the elements specified by the predicate.
1533    ///
1534    /// This method is identical in behaviour to [`retain`]; it is included only
1535    /// to maintain api-compatability with `std::Vec`, where the methods are
1536    /// separate for historical reasons.
1537    pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, f: F) {
1538        self.retain(f)
1539    }
1540
1541    /// Removes consecutive duplicate elements.
1542    pub fn dedup(&mut self)
1543    where
1544        A::Item: PartialEq<A::Item>,
1545    {
1546        self.dedup_by(|a, b| a == b);
1547    }
1548
1549    /// Removes consecutive duplicate elements using the given equality relation.
1550    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1551    where
1552        F: FnMut(&mut A::Item, &mut A::Item) -> bool,
1553    {
1554        // See the implementation of Vec::dedup_by in the
1555        // standard library for an explanation of this algorithm.
1556        let len = self.len();
1557        if len <= 1 {
1558            return;
1559        }
1560
1561        let ptr = self.as_mut_ptr();
1562        let mut w: usize = 1;
1563
1564        unsafe {
1565            for r in 1..len {
1566                let p_r = ptr.add(r);
1567                let p_wm1 = ptr.add(w - 1);
1568                if !same_bucket(&mut *p_r, &mut *p_wm1) {
1569                    if r != w {
1570                        let p_w = p_wm1.add(1);
1571                        mem::swap(&mut *p_r, &mut *p_w);
1572                    }
1573                    w += 1;
1574                }
1575            }
1576        }
1577
1578        self.truncate(w);
1579    }
1580
1581    /// Removes consecutive elements that map to the same key.
1582    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1583    where
1584        F: FnMut(&mut A::Item) -> K,
1585        K: PartialEq<K>,
1586    {
1587        self.dedup_by(|a, b| key(a) == key(b));
1588    }
1589
1590    /// Resizes the `SmallVec` in-place so that `len` is equal to `new_len`.
1591    ///
1592    /// If `new_len` is greater than `len`, the `SmallVec` is extended by the difference, with each
1593    /// additional slot filled with the result of calling the closure `f`. The return values from `f`
1594    /// will end up in the `SmallVec` in the order they have been generated.
1595    ///
1596    /// If `new_len` is less than `len`, the `SmallVec` is simply truncated.
1597    ///
1598    /// This method uses a closure to create new values on every push. If you'd rather `Clone` a given
1599    /// value, use `resize`. If you want to use the `Default` trait to generate values, you can pass
1600    /// `Default::default()` as the second argument.
1601    ///
1602    /// Added for `std::vec::Vec` compatibility (added in Rust 1.33.0)
1603    ///
1604    /// ```
1605    /// # use smallvec::{smallvec, SmallVec};
1606    /// let mut vec : SmallVec<[_; 4]> = smallvec![1, 2, 3];
1607    /// vec.resize_with(5, Default::default);
1608    /// assert_eq!(&*vec, &[1, 2, 3, 0, 0]);
1609    ///
1610    /// let mut vec : SmallVec<[_; 4]> = smallvec![];
1611    /// let mut p = 1;
1612    /// vec.resize_with(4, || { p *= 2; p });
1613    /// assert_eq!(&*vec, &[2, 4, 8, 16]);
1614    /// ```
1615    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
1616    where
1617        F: FnMut() -> A::Item,
1618    {
1619        let old_len = self.len();
1620        if old_len < new_len {
1621            let mut f = f;
1622            let additional = new_len - old_len;
1623            self.reserve(additional);
1624            for _ in 0..additional {
1625                self.push(f());
1626            }
1627        } else if old_len > new_len {
1628            self.truncate(new_len);
1629        }
1630    }
1631
1632    /// Creates a `SmallVec` directly from the raw components of another
1633    /// `SmallVec`.
1634    ///
1635    /// # Safety
1636    ///
1637    /// This is highly unsafe, due to the number of invariants that aren't
1638    /// checked:
1639    ///
1640    /// * `ptr` needs to have been previously allocated via `SmallVec` for its
1641    ///   spilled storage (at least, it's highly likely to be incorrect if it
1642    ///   wasn't).
1643    /// * `ptr`'s `A::Item` type needs to be the same size and alignment that
1644    ///   it was allocated with
1645    /// * `length` needs to be less than or equal to `capacity`.
1646    /// * `capacity` needs to be the capacity that the pointer was allocated
1647    ///   with.
1648    ///
1649    /// Violating these may cause problems like corrupting the allocator's
1650    /// internal data structures.
1651    ///
1652    /// Additionally, `capacity` must be greater than the amount of inline
1653    /// storage `A` has; that is, the new `SmallVec` must need to spill over
1654    /// into heap allocated storage. This condition is asserted against.
1655    ///
1656    /// The ownership of `ptr` is effectively transferred to the
1657    /// `SmallVec` which may then deallocate, reallocate or change the
1658    /// contents of memory pointed to by the pointer at will. Ensure
1659    /// that nothing else uses the pointer after calling this
1660    /// function.
1661    ///
1662    /// # Examples
1663    ///
1664    /// ```
1665    /// # use smallvec::{smallvec, SmallVec};
1666    /// use std::mem;
1667    /// use std::ptr;
1668    ///
1669    /// fn main() {
1670    ///     let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3];
1671    ///
1672    ///     // Pull out the important parts of `v`.
1673    ///     let p = v.as_mut_ptr();
1674    ///     let len = v.len();
1675    ///     let cap = v.capacity();
1676    ///     let spilled = v.spilled();
1677    ///
1678    ///     unsafe {
1679    ///         // Forget all about `v`. The heap allocation that stored the
1680    ///         // three values won't be deallocated.
1681    ///         mem::forget(v);
1682    ///
1683    ///         // Overwrite memory with [4, 5, 6].
1684    ///         //
1685    ///         // This is only safe if `spilled` is true! Otherwise, we are
1686    ///         // writing into the old `SmallVec`'s inline storage on the
1687    ///         // stack.
1688    ///         assert!(spilled);
1689    ///         for i in 0..len {
1690    ///             ptr::write(p.add(i), 4 + i);
1691    ///         }
1692    ///
1693    ///         // Put everything back together into a SmallVec with a different
1694    ///         // amount of inline storage, but which is still less than `cap`.
1695    ///         let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap);
1696    ///         assert_eq!(&*rebuilt, &[4, 5, 6]);
1697    ///     }
1698    /// }
1699    #[inline]
1700    pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec<A> {
1701        // SAFETY: We require caller to provide same ptr as we alloc
1702        // and we never alloc null pointer.
1703        let ptr = unsafe {
1704            debug_assert!(!ptr.is_null(), "Called `from_raw_parts` with null pointer.");
1705            NonNull::new_unchecked(ptr)
1706        };
1707        assert!(capacity > Self::inline_capacity());
1708        SmallVec {
1709            capacity,
1710            data: SmallVecData::from_heap(ptr, length),
1711        }
1712    }
1713
1714    /// Returns a raw pointer to the vector's buffer.
1715    pub fn as_ptr(&self) -> *const A::Item {
1716        // We shadow the slice method of the same name to avoid going through
1717        // `deref`, which creates an intermediate reference that may place
1718        // additional safety constraints on the contents of the slice.
1719        self.triple().0.as_ptr()
1720    }
1721
1722    /// Returns a raw mutable pointer to the vector's buffer.
1723    pub fn as_mut_ptr(&mut self) -> *mut A::Item {
1724        // We shadow the slice method of the same name to avoid going through
1725        // `deref_mut`, which creates an intermediate reference that may place
1726        // additional safety constraints on the contents of the slice.
1727        self.triple_mut().0.as_ptr()
1728    }
1729}
1730
1731impl<A: Array> SmallVec<A>
1732where
1733    A::Item: Copy,
1734{
1735    /// Copy the elements from a slice into a new `SmallVec`.
1736    ///
1737    /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`.
1738    pub fn from_slice(slice: &[A::Item]) -> Self {
1739        let len = slice.len();
1740        if len <= Self::inline_capacity() {
1741            SmallVec {
1742                capacity: len,
1743                data: SmallVecData::from_inline(unsafe {
1744                    let mut data: MaybeUninit<A> = MaybeUninit::uninit();
1745                    ptr::copy_nonoverlapping(
1746                        slice.as_ptr(),
1747                        data.as_mut_ptr() as *mut A::Item,
1748                        len,
1749                    );
1750                    data
1751                }),
1752            }
1753        } else {
1754            let mut b = slice.to_vec();
1755            let cap = b.capacity();
1756            let ptr = NonNull::new(b.as_mut_ptr()).expect("Vec always contain non null pointers.");
1757            mem::forget(b);
1758            SmallVec {
1759                capacity: cap,
1760                data: SmallVecData::from_heap(ptr, len),
1761            }
1762        }
1763    }
1764
1765    /// Copy elements from a slice into the vector at position `index`, shifting any following
1766    /// elements toward the back.
1767    ///
1768    /// For slices of `Copy` types, this is more efficient than `insert`.
1769    #[inline]
1770    pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) {
1771        self.reserve(slice.len());
1772
1773        let len = self.len();
1774        assert!(index <= len);
1775
1776        unsafe {
1777            let slice_ptr = slice.as_ptr();
1778            let ptr = self.as_mut_ptr().add(index);
1779            ptr::copy(ptr, ptr.add(slice.len()), len - index);
1780            ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len());
1781            self.set_len(len + slice.len());
1782        }
1783    }
1784
1785    /// Copy elements from a slice and append them to the vector.
1786    ///
1787    /// For slices of `Copy` types, this is more efficient than `extend`.
1788    #[inline]
1789    pub fn extend_from_slice(&mut self, slice: &[A::Item]) {
1790        let len = self.len();
1791        self.insert_from_slice(len, slice);
1792    }
1793}
1794
1795impl<A: Array> SmallVec<A>
1796where
1797    A::Item: Clone,
1798{
1799    /// Resizes the vector so that its length is equal to `len`.
1800    ///
1801    /// If `len` is less than the current length, the vector simply truncated.
1802    ///
1803    /// If `len` is greater than the current length, `value` is appended to the
1804    /// vector until its length equals `len`.
1805    pub fn resize(&mut self, len: usize, value: A::Item) {
1806        let old_len = self.len();
1807
1808        if len > old_len {
1809            self.extend(repeat(value).take(len - old_len));
1810        } else {
1811            self.truncate(len);
1812        }
1813    }
1814
1815    /// Creates a `SmallVec` with `n` copies of `elem`.
1816    /// ```
1817    /// use smallvec::SmallVec;
1818    ///
1819    /// let v = SmallVec::<[char; 128]>::from_elem('d', 2);
1820    /// assert_eq!(v, SmallVec::from_buf(['d', 'd']));
1821    /// ```
1822    pub fn from_elem(elem: A::Item, n: usize) -> Self {
1823        if n > Self::inline_capacity() {
1824            vec![elem; n].into()
1825        } else {
1826            let mut v = SmallVec::<A>::new();
1827            unsafe {
1828                let (ptr, len_ptr, _) = v.triple_mut();
1829                let ptr = ptr.as_ptr();
1830                let mut local_len = SetLenOnDrop::new(len_ptr);
1831
1832                for i in 0..n {
1833                    ::core::ptr::write(ptr.add(i), elem.clone());
1834                    local_len.increment_len(1);
1835                }
1836            }
1837            v
1838        }
1839    }
1840}
1841
1842impl<A: Array> ops::Deref for SmallVec<A> {
1843    type Target = [A::Item];
1844    #[inline]
1845    fn deref(&self) -> &[A::Item] {
1846        unsafe {
1847            let (ptr, len, _) = self.triple();
1848            slice::from_raw_parts(ptr.as_ptr(), len)
1849        }
1850    }
1851}
1852
1853impl<A: Array> ops::DerefMut for SmallVec<A> {
1854    #[inline]
1855    fn deref_mut(&mut self) -> &mut [A::Item] {
1856        unsafe {
1857            let (ptr, &mut len, _) = self.triple_mut();
1858            slice::from_raw_parts_mut(ptr.as_ptr(), len)
1859        }
1860    }
1861}
1862
1863impl<A: Array> AsRef<[A::Item]> for SmallVec<A> {
1864    #[inline]
1865    fn as_ref(&self) -> &[A::Item] {
1866        self
1867    }
1868}
1869
1870impl<A: Array> AsMut<[A::Item]> for SmallVec<A> {
1871    #[inline]
1872    fn as_mut(&mut self) -> &mut [A::Item] {
1873        self
1874    }
1875}
1876
1877impl<A: Array> Borrow<[A::Item]> for SmallVec<A> {
1878    #[inline]
1879    fn borrow(&self) -> &[A::Item] {
1880        self
1881    }
1882}
1883
1884impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A> {
1885    #[inline]
1886    fn borrow_mut(&mut self) -> &mut [A::Item] {
1887        self
1888    }
1889}
1890
1891#[cfg(feature = "write")]
1892#[cfg_attr(docsrs, doc(cfg(feature = "write")))]
1893impl<A: Array<Item = u8>> io::Write for SmallVec<A> {
1894    #[inline]
1895    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
1896        self.extend_from_slice(buf);
1897        Ok(buf.len())
1898    }
1899
1900    #[inline]
1901    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
1902        self.extend_from_slice(buf);
1903        Ok(())
1904    }
1905
1906    #[inline]
1907    fn flush(&mut self) -> io::Result<()> {
1908        Ok(())
1909    }
1910}
1911
1912#[cfg(feature = "serde")]
1913#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
1914impl<A: Array> Serialize for SmallVec<A>
1915where
1916    A::Item: Serialize,
1917{
1918    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
1919        let mut state = serializer.serialize_seq(Some(self.len()))?;
1920        for item in self {
1921            state.serialize_element(&item)?;
1922        }
1923        state.end()
1924    }
1925}
1926
1927#[cfg(feature = "serde")]
1928#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
1929impl<'de, A: Array> Deserialize<'de> for SmallVec<A>
1930where
1931    A::Item: Deserialize<'de>,
1932{
1933    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
1934        deserializer.deserialize_seq(SmallVecVisitor {
1935            phantom: PhantomData,
1936        })
1937    }
1938}
1939
1940#[cfg(feature = "serde")]
1941struct SmallVecVisitor<A> {
1942    phantom: PhantomData<A>,
1943}
1944
1945#[cfg(feature = "serde")]
1946impl<'de, A: Array> Visitor<'de> for SmallVecVisitor<A>
1947where
1948    A::Item: Deserialize<'de>,
1949{
1950    type Value = SmallVec<A>;
1951
1952    fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1953        formatter.write_str("a sequence")
1954    }
1955
1956    fn visit_seq<B>(self, mut seq: B) -> Result<Self::Value, B::Error>
1957    where
1958        B: SeqAccess<'de>,
1959    {
1960        use serde::de::Error;
1961        let len = seq.size_hint().unwrap_or(0);
1962        let mut values = SmallVec::new();
1963        values.try_reserve(len).map_err(B::Error::custom)?;
1964
1965        while let Some(value) = seq.next_element()? {
1966            values.push(value);
1967        }
1968
1969        Ok(values)
1970    }
1971}
1972
1973#[cfg(feature = "specialization")]
1974trait SpecFrom<A: Array, S> {
1975    fn spec_from(slice: S) -> SmallVec<A>;
1976}
1977
1978#[cfg(feature = "specialization")]
1979mod specialization;
1980
1981#[cfg(feature = "arbitrary")]
1982mod arbitrary;
1983
1984#[cfg(feature = "specialization")]
1985impl<'a, A: Array> SpecFrom<A, &'a [A::Item]> for SmallVec<A>
1986where
1987    A::Item: Copy,
1988{
1989    #[inline]
1990    fn spec_from(slice: &'a [A::Item]) -> SmallVec<A> {
1991        SmallVec::from_slice(slice)
1992    }
1993}
1994
1995impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A>
1996where
1997    A::Item: Clone,
1998{
1999    #[cfg(not(feature = "specialization"))]
2000    #[inline]
2001    fn from(slice: &'a [A::Item]) -> SmallVec<A> {
2002        slice.iter().cloned().collect()
2003    }
2004
2005    #[cfg(feature = "specialization")]
2006    #[inline]
2007    fn from(slice: &'a [A::Item]) -> SmallVec<A> {
2008        SmallVec::spec_from(slice)
2009    }
2010}
2011
2012impl<A: Array> From<Vec<A::Item>> for SmallVec<A> {
2013    #[inline]
2014    fn from(vec: Vec<A::Item>) -> SmallVec<A> {
2015        SmallVec::from_vec(vec)
2016    }
2017}
2018
2019impl<A: Array> From<A> for SmallVec<A> {
2020    #[inline]
2021    fn from(array: A) -> SmallVec<A> {
2022        SmallVec::from_buf(array)
2023    }
2024}
2025
2026impl<A: Array, I: SliceIndex<[A::Item]>> ops::Index<I> for SmallVec<A> {
2027    type Output = I::Output;
2028
2029    fn index(&self, index: I) -> &I::Output {
2030        &(**self)[index]
2031    }
2032}
2033
2034impl<A: Array, I: SliceIndex<[A::Item]>> ops::IndexMut<I> for SmallVec<A> {
2035    fn index_mut(&mut self, index: I) -> &mut I::Output {
2036        &mut (&mut **self)[index]
2037    }
2038}
2039
2040#[allow(deprecated)]
2041impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A>
2042where
2043    A::Item: Copy,
2044{
2045    fn extend_from_slice(&mut self, other: &[A::Item]) {
2046        SmallVec::extend_from_slice(self, other)
2047    }
2048}
2049
2050impl<A: Array> FromIterator<A::Item> for SmallVec<A> {
2051    #[inline]
2052    fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A> {
2053        let mut v = SmallVec::new();
2054        v.extend(iterable);
2055        v
2056    }
2057}
2058
2059impl<A: Array> Extend<A::Item> for SmallVec<A> {
2060    fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I) {
2061        let mut iter = iterable.into_iter();
2062        let (lower_size_bound, _) = iter.size_hint();
2063        self.reserve(lower_size_bound);
2064
2065        unsafe {
2066            let (ptr, len_ptr, cap) = self.triple_mut();
2067            let ptr = ptr.as_ptr();
2068            let mut len = SetLenOnDrop::new(len_ptr);
2069            while len.get() < cap {
2070                if let Some(out) = iter.next() {
2071                    ptr::write(ptr.add(len.get()), out);
2072                    len.increment_len(1);
2073                } else {
2074                    return;
2075                }
2076            }
2077        }
2078
2079        for elem in iter {
2080            self.push(elem);
2081        }
2082    }
2083}
2084
2085impl<A: Array> fmt::Debug for SmallVec<A>
2086where
2087    A::Item: fmt::Debug,
2088{
2089    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2090        f.debug_list().entries(self.iter()).finish()
2091    }
2092}
2093
2094impl<A: Array> Default for SmallVec<A> {
2095    #[inline]
2096    fn default() -> SmallVec<A> {
2097        SmallVec::new()
2098    }
2099}
2100
2101#[cfg(feature = "may_dangle")]
2102unsafe impl<#[may_dangle] A: Array> Drop for SmallVec<A> {
2103    fn drop(&mut self) {
2104        unsafe {
2105            if self.spilled() {
2106                let (ptr, &mut len) = self.data.heap_mut();
2107                Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity);
2108            } else {
2109                ptr::drop_in_place(&mut self[..]);
2110            }
2111        }
2112    }
2113}
2114
2115#[cfg(not(feature = "may_dangle"))]
2116impl<A: Array> Drop for SmallVec<A> {
2117    fn drop(&mut self) {
2118        unsafe {
2119            if self.spilled() {
2120                let (ptr, &mut len) = self.data.heap_mut();
2121                drop(Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity));
2122            } else {
2123                ptr::drop_in_place(&mut self[..]);
2124            }
2125        }
2126    }
2127}
2128
2129impl<A: Array> Clone for SmallVec<A>
2130where
2131    A::Item: Clone,
2132{
2133    #[inline]
2134    fn clone(&self) -> SmallVec<A> {
2135        SmallVec::from(self.as_slice())
2136    }
2137
2138    fn clone_from(&mut self, source: &Self) {
2139        // Inspired from `impl Clone for Vec`.
2140
2141        // drop anything that will not be overwritten
2142        self.truncate(source.len());
2143
2144        // self.len <= other.len due to the truncate above, so the
2145        // slices here are always in-bounds.
2146        let (init, tail) = source.split_at(self.len());
2147
2148        // reuse the contained values' allocations/resources.
2149        self.clone_from_slice(init);
2150        self.extend(tail.iter().cloned());
2151    }
2152}
2153
2154impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A>
2155where
2156    A::Item: PartialEq<B::Item>,
2157{
2158    #[inline]
2159    fn eq(&self, other: &SmallVec<B>) -> bool {
2160        self[..] == other[..]
2161    }
2162}
2163
2164impl<A: Array> Eq for SmallVec<A> where A::Item: Eq {}
2165
2166impl<A: Array> PartialOrd for SmallVec<A>
2167where
2168    A::Item: PartialOrd,
2169{
2170    #[inline]
2171    fn partial_cmp(&self, other: &SmallVec<A>) -> Option<cmp::Ordering> {
2172        PartialOrd::partial_cmp(&**self, &**other)
2173    }
2174}
2175
2176impl<A: Array> Ord for SmallVec<A>
2177where
2178    A::Item: Ord,
2179{
2180    #[inline]
2181    fn cmp(&self, other: &SmallVec<A>) -> cmp::Ordering {
2182        Ord::cmp(&**self, &**other)
2183    }
2184}
2185
2186impl<A: Array> Hash for SmallVec<A>
2187where
2188    A::Item: Hash,
2189{
2190    fn hash<H: Hasher>(&self, state: &mut H) {
2191        (**self).hash(state)
2192    }
2193}
2194
2195unsafe impl<A: Array> Send for SmallVec<A> where A::Item: Send {}
2196
2197/// An iterator that consumes a `SmallVec` and yields its items by value.
2198///
2199/// Returned from [`SmallVec::into_iter`][1].
2200///
2201/// [1]: struct.SmallVec.html#method.into_iter
2202pub struct IntoIter<A: Array> {
2203    data: SmallVec<A>,
2204    current: usize,
2205    end: usize,
2206}
2207
2208impl<A: Array> fmt::Debug for IntoIter<A>
2209where
2210    A::Item: fmt::Debug,
2211{
2212    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2213        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
2214    }
2215}
2216
2217impl<A: Array + Clone> Clone for IntoIter<A>
2218where
2219    A::Item: Clone,
2220{
2221    fn clone(&self) -> IntoIter<A> {
2222        SmallVec::from(self.as_slice()).into_iter()
2223    }
2224}
2225
2226impl<A: Array> Drop for IntoIter<A> {
2227    fn drop(&mut self) {
2228        for _ in self {}
2229    }
2230}
2231
2232impl<A: Array> Iterator for IntoIter<A> {
2233    type Item = A::Item;
2234
2235    #[inline]
2236    fn next(&mut self) -> Option<A::Item> {
2237        if self.current == self.end {
2238            None
2239        } else {
2240            unsafe {
2241                let current = self.current;
2242                self.current += 1;
2243                Some(ptr::read(self.data.as_ptr().add(current)))
2244            }
2245        }
2246    }
2247
2248    #[inline]
2249    fn size_hint(&self) -> (usize, Option<usize>) {
2250        let size = self.end - self.current;
2251        (size, Some(size))
2252    }
2253}
2254
2255impl<A: Array> DoubleEndedIterator for IntoIter<A> {
2256    #[inline]
2257    fn next_back(&mut self) -> Option<A::Item> {
2258        if self.current == self.end {
2259            None
2260        } else {
2261            unsafe {
2262                self.end -= 1;
2263                Some(ptr::read(self.data.as_ptr().add(self.end)))
2264            }
2265        }
2266    }
2267}
2268
2269impl<A: Array> ExactSizeIterator for IntoIter<A> {}
2270impl<A: Array> FusedIterator for IntoIter<A> {}
2271
2272impl<A: Array> IntoIter<A> {
2273    /// Returns the remaining items of this iterator as a slice.
2274    pub fn as_slice(&self) -> &[A::Item] {
2275        let len = self.end - self.current;
2276        unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) }
2277    }
2278
2279    /// Returns the remaining items of this iterator as a mutable slice.
2280    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
2281        let len = self.end - self.current;
2282        unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) }
2283    }
2284}
2285
2286impl<A: Array> IntoIterator for SmallVec<A> {
2287    type IntoIter = IntoIter<A>;
2288    type Item = A::Item;
2289    fn into_iter(mut self) -> Self::IntoIter {
2290        unsafe {
2291            // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements
2292            let len = self.len();
2293            self.set_len(0);
2294            IntoIter {
2295                data: self,
2296                current: 0,
2297                end: len,
2298            }
2299        }
2300    }
2301}
2302
2303impl<'a, A: Array> IntoIterator for &'a SmallVec<A> {
2304    type IntoIter = slice::Iter<'a, A::Item>;
2305    type Item = &'a A::Item;
2306    fn into_iter(self) -> Self::IntoIter {
2307        self.iter()
2308    }
2309}
2310
2311impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A> {
2312    type IntoIter = slice::IterMut<'a, A::Item>;
2313    type Item = &'a mut A::Item;
2314    fn into_iter(self) -> Self::IntoIter {
2315        self.iter_mut()
2316    }
2317}
2318
2319/// Types that can be used as the backing store for a [`SmallVec`].
2320pub unsafe trait Array {
2321    /// The type of the array's elements.
2322    type Item;
2323    /// Returns the number of items the array can hold.
2324    fn size() -> usize;
2325}
2326
2327/// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
2328///
2329/// Copied from <https://github.com/rust-lang/rust/pull/36355>
2330struct SetLenOnDrop<'a> {
2331    len: &'a mut usize,
2332    local_len: usize,
2333}
2334
2335impl<'a> SetLenOnDrop<'a> {
2336    #[inline]
2337    fn new(len: &'a mut usize) -> Self {
2338        SetLenOnDrop {
2339            local_len: *len,
2340            len,
2341        }
2342    }
2343
2344    #[inline]
2345    fn get(&self) -> usize {
2346        self.local_len
2347    }
2348
2349    #[inline]
2350    fn increment_len(&mut self, increment: usize) {
2351        self.local_len += increment;
2352    }
2353}
2354
2355impl<'a> Drop for SetLenOnDrop<'a> {
2356    #[inline]
2357    fn drop(&mut self) {
2358        *self.len = self.local_len;
2359    }
2360}
2361
2362#[cfg(feature = "const_new")]
2363impl<T, const N: usize> SmallVec<[T; N]> {
2364    /// Construct an empty vector.
2365    ///
2366    /// This is a `const` version of [`SmallVec::new`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
2367    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
2368    #[inline]
2369    pub const fn new_const() -> Self {
2370        SmallVec {
2371            capacity: 0,
2372            data: SmallVecData::from_const(MaybeUninit::uninit()),
2373        }
2374    }
2375
2376    /// The array passed as an argument is moved to be an inline version of `SmallVec`.
2377    ///
2378    /// This is a `const` version of [`SmallVec::from_buf`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
2379    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
2380    #[inline]
2381    pub const fn from_const(items: [T; N]) -> Self {
2382        SmallVec {
2383            capacity: N,
2384            data: SmallVecData::from_const(MaybeUninit::new(items)),
2385        }
2386    }
2387
2388    /// Constructs a new `SmallVec` on the stack from an array without
2389    /// copying elements. Also sets the length. The user is responsible
2390    /// for ensuring that `len <= N`.
2391    /// 
2392    /// This is a `const` version of [`SmallVec::from_buf_and_len_unchecked`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays.
2393    #[cfg_attr(docsrs, doc(cfg(feature = "const_new")))]
2394    #[inline]
2395    pub const unsafe fn from_const_with_len_unchecked(items: [T; N], len: usize) -> Self {
2396        SmallVec {
2397            capacity: len,
2398            data: SmallVecData::from_const(MaybeUninit::new(items)),
2399        }
2400    }
2401}
2402
2403#[cfg(feature = "const_generics")]
2404#[cfg_attr(docsrs, doc(cfg(feature = "const_generics")))]
2405unsafe impl<T, const N: usize> Array for [T; N] {
2406    type Item = T;
2407    #[inline]
2408    fn size() -> usize {
2409        N
2410    }
2411}
2412
2413#[cfg(not(feature = "const_generics"))]
2414macro_rules! impl_array(
2415    ($($size:expr),+) => {
2416        $(
2417            unsafe impl<T> Array for [T; $size] {
2418                type Item = T;
2419                #[inline]
2420                fn size() -> usize { $size }
2421            }
2422        )+
2423    }
2424);
2425
2426#[cfg(not(feature = "const_generics"))]
2427impl_array!(
2428    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
2429    26, 27, 28, 29, 30, 31, 32, 36, 0x40, 0x60, 0x80, 0x100, 0x200, 0x400, 0x600, 0x800, 0x1000,
2430    0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000, 0x40000, 0x60000, 0x80000, 0x10_0000
2431);
2432
2433/// Convenience trait for constructing a `SmallVec`
2434pub trait ToSmallVec<A: Array> {
2435    /// Construct a new `SmallVec` from a slice.
2436    fn to_smallvec(&self) -> SmallVec<A>;
2437}
2438
2439impl<A: Array> ToSmallVec<A> for [A::Item]
2440where
2441    A::Item: Copy,
2442{
2443    #[inline]
2444    fn to_smallvec(&self) -> SmallVec<A> {
2445        SmallVec::from_slice(self)
2446    }
2447}
2448
2449// Immutable counterpart for `NonNull<T>`.
2450#[repr(transparent)]
2451struct ConstNonNull<T>(NonNull<T>);
2452
2453impl<T> ConstNonNull<T> {
2454    #[inline]
2455    fn new(ptr: *const T) -> Option<Self> {
2456        NonNull::new(ptr as *mut T).map(Self)
2457    }
2458    #[inline]
2459    fn as_ptr(self) -> *const T {
2460        self.0.as_ptr()
2461    }
2462}
2463
2464impl<T> Clone for ConstNonNull<T> {
2465    #[inline]
2466    fn clone(&self) -> Self {
2467        *self
2468    }
2469}
2470
2471impl<T> Copy for ConstNonNull<T> {}