directed_graph/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::cmp::min;
use std::collections::{HashMap, HashSet, VecDeque};
use std::fmt::{Debug, Display};
use std::hash::Hash;
/// A directed graph, whose nodes contain an identifier of type `T`.
pub struct DirectedGraph<T: PartialEq + Hash + Copy + Ord + Debug + Display>(
HashMap<T, DirectedNode<T>>,
);
impl<T: PartialEq + Hash + Copy + Ord + Debug + Display> DirectedGraph<T> {
/// Created a new empty `DirectedGraph`.
pub fn new() -> Self {
Self(HashMap::new())
}
/// Add an edge to the graph, adding nodes if necessary.
pub fn add_edge(&mut self, source: T, target: T) {
self.0.entry(source).or_insert_with(DirectedNode::new).add_target(target);
self.0.entry(target).or_insert_with(DirectedNode::new);
}
/// Get targets of all edges from this node.
pub fn get_targets(&self, id: T) -> Option<&HashSet<T>> {
self.0.get(&id).as_ref().map(|node| &node.0)
}
/// Returns the nodes of the graph in reverse topological order, or an error if the graph
/// contains a cycle.
///
/// TODO: //src/devices/tools/banjo/srt/ast.rs can be migrated to use this feature.
pub fn topological_sort(&self) -> Result<Vec<T>, Error<T>> {
TarjanSCC::new(self).run()
}
/// Finds the shortest path between the `from` and `to` nodes in this graph, if such a path
/// exists. Both `from` and `to` are included in the returned path.
pub fn find_shortest_path(&self, from: T, to: T) -> Option<Vec<T>> {
// Keeps track of edges in the shortest path to each node.
//
// The key in this map is a node whose shortest path to it is known. The value
// is the next-to-last node in the shortest path to the key node.
//
// For example, if the shortest path from `a` to `b` is `{a, b, c}`, this
// map will contain:
// (c, b)
// (b, a)
let mut shortest_path_edges: HashMap<T, T> = HashMap::new();
// Nodes which we have found in the graph but have not yet been visited.
let mut discovered_nodes = VecDeque::new();
discovered_nodes.push_back(from);
loop {
// Visit the first node in the list.
let Some(current_node) = discovered_nodes.pop_front() else {
// If there are no more nodes to visit, then a shortest path must not exist.
return None;
};
match self.get_targets(current_node) {
None => continue,
Some(targets) if targets.is_empty() => continue,
Some(targets) => {
for target in targets {
// If we haven't yet visited this node, add it to our set of edges and add
// it to the set of nodes we should visit.
if !shortest_path_edges.contains_key(target) {
shortest_path_edges.insert(*target, current_node);
discovered_nodes.push_back(*target);
}
// If this node is the node we're searching for a path to, then compute the
// path based on the hashmap we've built and return it.
if *target == to {
let mut result = vec![*target];
let mut path_node: T = *target;
loop {
path_node = *shortest_path_edges.get(&path_node).unwrap();
result.push(path_node);
if path_node == from {
break;
}
}
result.reverse();
return Some(result);
}
}
}
}
}
}
}
impl<T: PartialEq + Hash + Copy + Ord + Debug + Display> Default for DirectedGraph<T> {
fn default() -> Self {
Self(HashMap::new())
}
}
/// A graph node. Contents contain the nodes mapped by edges from this node.
#[derive(Eq, PartialEq)]
struct DirectedNode<T: PartialEq + Hash + Copy + Ord + Debug + Display>(HashSet<T>);
impl<T: PartialEq + Hash + Copy + Ord + Debug + Display> DirectedNode<T> {
/// Create an empty node.
pub fn new() -> Self {
Self(HashSet::new())
}
/// Add edge from this node to `target`.
pub fn add_target(&mut self, target: T) {
self.0.insert(target);
}
}
/// Errors produced by `DirectedGraph`.
#[derive(Debug)]
pub enum Error<T: PartialEq + Hash + Copy + Ord + Debug + Display> {
CyclesDetected(HashSet<Vec<T>>),
}
impl<T: PartialEq + Hash + Copy + Ord + Debug + Display> Error<T> {
pub fn format_cycle(&self) -> String {
match &self {
Error::CyclesDetected(cycles) => {
// Copy the cycles into a vector and sort them so our output is stable
let mut cycles: Vec<_> = cycles.iter().cloned().collect();
cycles.sort_unstable();
let mut output = "{".to_string();
for cycle in cycles.iter() {
output.push_str("{");
for item in cycle.iter() {
output.push_str(&format!("{} -> ", item));
}
if !cycle.is_empty() {
output.truncate(output.len() - 4);
}
output.push_str("}, ");
}
if !cycles.is_empty() {
output.truncate(output.len() - 2);
}
output.push_str("}");
output
}
}
}
}
/// Runs the tarjan strongly connected components algorithm on a graph to produce either a reverse
/// topological sort of the nodes in the graph, or a set of the cycles present in the graph.
///
/// Description of algorithm:
/// https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
struct TarjanSCC<'a, T: PartialEq + Hash + Copy + Ord + Debug + Display> {
// Each node is assigned an index in the order we find them. This tracks the next index to use.
index: u64,
// The mappings between nodes and indices
indices: HashMap<T, u64>,
// The lowest index (numerically) that's accessible from each node
low_links: HashMap<T, u64>,
// The set of nodes we're currently in the process of considering
stack: Vec<T>,
// A set containing the nodes in the stack, so we can more efficiently check if an element is
// in the stack
on_stack: HashSet<T>,
// Detected cycles
cycles: HashSet<Vec<T>>,
// Nodes sorted by reverse topological order
node_order: Vec<T>,
// The graph this run will be operating on
graph: &'a DirectedGraph<T>,
}
impl<'a, T: Hash + Copy + Ord + Debug + Display> TarjanSCC<'a, T> {
fn new(graph: &'a DirectedGraph<T>) -> Self {
TarjanSCC {
index: 0,
indices: HashMap::new(),
low_links: HashMap::new(),
stack: Vec::new(),
on_stack: HashSet::new(),
cycles: HashSet::new(),
node_order: Vec::new(),
graph,
}
}
/// Runs the tarjan scc algorithm. Must only be called once, as it will panic on subsequent
/// calls.
fn run(mut self) -> Result<Vec<T>, Error<T>> {
// Sort the nodes we visit, to make the output deterministic instead of being based on
// whichever node we find first.
let mut nodes: Vec<_> = self.graph.0.keys().cloned().collect();
nodes.sort_unstable();
for node in &nodes {
// Iterate over each node, visiting each one we haven't already visited. We determine
// if a node has been visited by if an index has been assigned to it yet.
if !self.indices.contains_key(node) {
self.visit(*node);
}
}
if self.cycles.is_empty() {
Ok(self.node_order.drain(..).collect())
} else {
Err(Error::CyclesDetected(self.cycles.drain().collect()))
}
}
fn visit(&mut self, current_node: T) {
// assign a new index for this node, and push it on to the stack
self.indices.insert(current_node, self.index);
self.low_links.insert(current_node, self.index);
self.index += 1;
self.stack.push(current_node);
self.on_stack.insert(current_node);
let mut targets: Vec<_> = self.graph.0[¤t_node].0.iter().cloned().collect();
targets.sort_unstable();
for target in &targets {
if !self.indices.contains_key(target) {
// Target has not yet been visited; recurse on it
self.visit(*target);
// Set our lowlink to the min of our lowlink and the target's new lowlink
let current_node_low_link = *self.low_links.get(¤t_node).unwrap();
let target_low_link = *self.low_links.get(&target).unwrap();
self.low_links.insert(current_node, min(current_node_low_link, target_low_link));
} else if self.on_stack.contains(target) {
let current_node_low_link = *self.low_links.get(¤t_node).unwrap();
let target_index = *self.indices.get(&target).unwrap();
self.low_links.insert(current_node, min(current_node_low_link, target_index));
}
}
// If current_node is a root node, pop the stack and generate an SCC
if self.low_links.get(¤t_node) == self.indices.get(¤t_node) {
let mut strongly_connected_nodes = HashSet::new();
let mut stack_node;
loop {
stack_node = self.stack.pop().unwrap();
self.on_stack.remove(&stack_node);
strongly_connected_nodes.insert(stack_node);
if stack_node == current_node {
break;
}
}
self.insert_cycles_from_scc(
&strongly_connected_nodes,
stack_node,
HashSet::new(),
vec![],
);
}
self.node_order.push(current_node);
}
/// Given a set of strongly connected components, computes the cycles present in the set and
/// adds those cycles to self.cycles.
fn insert_cycles_from_scc(
&mut self,
scc_nodes: &HashSet<T>,
current_node: T,
mut visited_nodes: HashSet<T>,
mut path: Vec<T>,
) {
if visited_nodes.contains(¤t_node) {
// We've already visited this node, we've got a cycle. Grab all the elements in the
// path starting at the first time we visited this node.
let (current_node_path_index, _) =
path.iter().enumerate().find(|(_, val)| val == &¤t_node).unwrap();
let mut cycle = path[current_node_path_index..].to_vec();
// Rotate the cycle such that the lowest value comes first, so that the cycles we
// report are consistent.
Self::rotate_cycle(&mut cycle);
// Push a copy of the first node on to the end, so it's clear that this path ends where
// it starts
cycle.push(*cycle.first().unwrap());
self.cycles.insert(cycle);
return;
}
visited_nodes.insert(current_node);
path.push(current_node);
let targets_in_scc: Vec<_> =
self.graph.0[¤t_node].0.iter().filter(|n| scc_nodes.contains(n)).collect();
for target in targets_in_scc {
self.insert_cycles_from_scc(scc_nodes, *target, visited_nodes.clone(), path.clone());
}
}
/// Rotates the cycle such that ordering is maintained and the lowest element comes first. This
/// is so that the reported cycles are consistent, as opposed to varying based on which node we
/// happened to find first.
fn rotate_cycle(cycle: &mut Vec<T>) {
let mut lowest_index = 0;
let mut lowest_value = cycle.first().unwrap();
for (index, node) in cycle.iter().enumerate() {
if node < lowest_value {
lowest_index = index;
lowest_value = node;
}
}
cycle.rotate_left(lowest_index);
}
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! test_topological_sort {
(
$(
$test_name:ident => {
edges = $edges:expr,
order = $order:expr,
},
)+
) => {
$(
#[test]
fn $test_name() {
topological_sort_test(&$edges, &$order);
}
)+
}
}
macro_rules! test_cycles {
(
$(
$test_name:ident => {
edges = $edges:expr,
cycles = $cycles:expr,
},
)+
) => {
$(
#[test]
fn $test_name() {
cycles_test(&$edges, &$cycles);
}
)+
}
}
macro_rules! test_shortest_path {
(
$(
$test_name:ident => {
edges = $edges:expr,
from = $from:expr,
to = $to:expr,
shortest_path = $shortest_path:expr,
},
)+
) => {
$(
#[test]
fn $test_name() {
shortest_path_test($edges, $from, $to, $shortest_path);
}
)+
}
}
fn topological_sort_test(edges: &[(&'static str, &'static str)], order: &[&'static str]) {
let mut graph = DirectedGraph::new();
edges.iter().for_each(|e| graph.add_edge(e.0, e.1));
let actual_order = graph.topological_sort().expect("found a cycle");
let expected_order: Vec<_> = order.iter().cloned().collect();
assert_eq!(expected_order, actual_order);
}
fn cycles_test(edges: &[(&'static str, &'static str)], cycles: &[&[&'static str]]) {
let mut graph = DirectedGraph::new();
edges.iter().for_each(|e| graph.add_edge(e.0, e.1));
let Error::CyclesDetected(reported_cycles) = graph
.topological_sort()
.expect_err("topological sort succeeded on a dataset with a cycle");
let expected_cycles: HashSet<Vec<_>> =
cycles.iter().cloned().map(|c| c.iter().cloned().collect()).collect();
assert_eq!(reported_cycles, expected_cycles);
}
fn shortest_path_test(
edges: &[(&'static str, &'static str)],
from: &'static str,
to: &'static str,
expected_shortest_path: Option<&[&'static str]>,
) {
let mut graph = DirectedGraph::new();
edges.iter().for_each(|e| graph.add_edge(e.0, e.1));
let actual_shortest_path = graph.find_shortest_path(from, to);
let expected_shortest_path =
expected_shortest_path.map(|path| path.iter().cloned().collect::<Vec<_>>());
assert_eq!(actual_shortest_path, expected_shortest_path);
}
// Tests with no cycles
test_topological_sort! {
test_empty => {
edges = [],
order = [],
},
test_fan_out => {
edges = [
("a", "b"),
("b", "c"),
("b", "d"),
("d", "e"),
],
order = ["c", "e", "d", "b", "a"],
},
test_fan_in => {
edges = [
("a", "b"),
("b", "d"),
("c", "d"),
("d", "e"),
],
order = ["e", "d", "b", "a", "c"],
},
test_forest => {
edges = [
("a", "b"),
("b", "c"),
("d", "e"),
],
order = ["c", "b", "a", "e", "d"],
},
test_diamond => {
edges = [
("a", "b"),
("a", "c"),
("b", "d"),
("c", "d"),
],
order = ["d", "b", "c", "a"],
},
test_lattice => {
edges = [
("a", "b"),
("a", "c"),
("b", "d"),
("b", "e"),
("c", "d"),
("e", "f"),
("d", "f"),
],
order = ["f", "d", "e", "b", "c", "a"],
},
test_deduped_edge => {
edges = [
("a", "b"),
("a", "b"),
("b", "c"),
],
order = ["c", "b", "a"],
},
}
test_cycles! {
// Tests where only 1 SCC contains cycles
test_cycle_self_referential => {
edges = [
("a", "a"),
],
cycles = [
&["a", "a"],
],
},
test_cycle_two_nodes => {
edges = [
("a", "b"),
("b", "a"),
],
cycles = [
&["a", "b", "a"],
],
},
test_cycle_two_nodes_with_path_in => {
edges = [
("a", "b"),
("b", "c"),
("c", "d"),
("d", "c"),
],
cycles = [
&["c", "d", "c"],
],
},
test_cycle_two_nodes_with_path_out => {
edges = [
("a", "b"),
("b", "a"),
("b", "c"),
("c", "d"),
],
cycles = [
&["a", "b", "a"],
],
},
test_cycle_three_nodes => {
edges = [
("a", "b"),
("b", "c"),
("c", "a"),
],
cycles = [
&["a", "b", "c", "a"],
],
},
test_cycle_three_nodes_with_inner_cycle => {
edges = [
("a", "b"),
("b", "c"),
("c", "b"),
("c", "a"),
],
cycles = [
&["a", "b", "c", "a"],
&["b", "c", "b"],
],
},
test_cycle_three_nodes_doubly_linked => {
edges = [
("a", "b"),
("b", "a"),
("b", "c"),
("c", "b"),
("c", "a"),
("a", "c"),
],
cycles = [
&["a", "b", "a"],
&["b", "c", "b"],
&["a", "c", "a"],
&["a", "b", "c", "a"],
&["a", "c", "b", "a"],
],
},
test_cycle_with_inner_cycle => {
edges = [
("a", "b"),
("b", "c"),
("c", "a"),
("b", "d"),
("d", "e"),
("e", "c"),
],
cycles = [
&["a", "b", "c", "a"],
&["a", "b", "d", "e", "c", "a"],
],
},
test_two_join_cycles => {
edges = [
("a", "b"),
("b", "c"),
("c", "a"),
("b", "d"),
("d", "a"),
],
cycles = [
&["a", "b", "c", "a"],
&["a", "b", "d", "a"],
],
},
test_cycle_four_nodes_doubly_linked => {
edges = [
("a", "b"),
("b", "a"),
("b", "c"),
("c", "b"),
("c", "d"),
("d", "c"),
("d", "a"),
("a", "d"),
],
cycles = [
&["a", "b", "c", "d", "a"],
&["a", "b", "a"],
&["a", "d", "c", "b", "a"],
&["a", "d", "a"],
&["b", "c", "b"],
&["c", "d", "c"],
],
},
// Tests with multiple SCCs that contain cycles
test_cycle_self_referential_islands => {
edges = [
("a", "a"),
("b", "b"),
("c", "c"),
("d", "e"),
],
cycles = [
&["a", "a"],
&["b", "b"],
&["c", "c"],
],
},
test_cycle_two_sets_of_two_nodes => {
edges = [
("a", "b"),
("b", "a"),
("c", "d"),
("d", "c"),
],
cycles = [
&["a", "b", "a"],
&["c", "d", "c"],
],
},
test_cycle_two_sets_of_two_nodes_connected => {
edges = [
("a", "b"),
("b", "a"),
("c", "d"),
("d", "c"),
("a", "c"),
],
cycles = [
&["a", "b", "a"],
&["c", "d", "c"],
],
},
}
test_shortest_path! {
test_empty_graph => {
edges = &[],
from = "a",
to = "b",
shortest_path = None,
},
test_two_nodes => {
edges = &[
("a", "b"),
],
from = "a",
to = "b",
shortest_path = Some(&["a", "b"]),
},
test_path_to_self => {
edges = &[
("a", "a"),
],
from = "a",
to = "a",
shortest_path = Some(&["a", "a"]),
},
test_path_to_self_no_edge => {
edges = &[
("a", "b"),
],
from = "a",
to = "a",
shortest_path = None,
},
test_path_three_nodes => {
edges = &[
("a", "b"),
("b", "c"),
],
from = "a",
to = "c",
shortest_path = Some(&["a", "b", "c"]),
},
test_path_multiple_options => {
edges = &[
("a", "b"),
("b", "c"),
("a", "c"),
],
from = "a",
to = "c",
shortest_path = Some(&["a", "c"]),
},
test_path_two_islands => {
edges = &[
("a", "b"),
("c", "d"),
],
from = "a",
to = "d",
shortest_path = None,
},
test_path_with_cycle => {
edges = &[
("a", "b"),
("b", "a"),
],
from = "a",
to = "b",
shortest_path = Some(&["a", "b"]),
},
test_path_with_cycle_2 => {
edges = &[
("a", "b"),
("b", "c"),
("c", "b"),
],
from = "a",
to = "b",
shortest_path = Some(&["a", "b"]),
},
test_path_with_cycle_3 => {
edges = &[
("a", "b"),
("b", "c"),
("c", "b"),
("b", "d"),
("d", "e"),
],
from = "a",
to = "e",
shortest_path = Some(&["a", "b", "d", "e"]),
},
}
}