virtio_device/queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Virtqueue management wrappers.
//!
//! This is a slightly opinionated wrapper that presents the underlying [`Device`](ring::Device) and
//! [`Driver`](ring::Driver) rings as a single 'virtqueue' where descriptor chains can be retrieved,
//! walked or iterated, and then returned.
//!
//! The primary opinionated decision taken by this wrapper is that a descriptor chain is considered
//! a formal object that can automatically returns itself to the queue when dropped. This return is
//! then required to have a mechanism to potentially signal the guest driver, via the
//! [`DriverNotify`] trait.
use crate::mem::{DeviceRange, DriverRange};
use crate::ring;
use fuchsia_sync::Mutex;
use std::sync::atomic;
use thiserror::Error;
/// Informs device that driver needs a notification.
///
/// When returning descriptor chains to the queue it may be required, due to the virtio
/// specification, that the driver is supposed to be notified. As descriptor chains can be returned
/// out-of-band during a `drop`, with no opportunity to report via a return code that a notification
/// is needed, this trait exists instead. Further, since the queue has no understanding of the
/// transport protocol, or how the guest should be notified in general, it must appeal to the higher
/// level device code using the [`Queue`].
pub trait DriverNotify {
/// Driver requires a notification.
///
/// Indicates the device must notify the driver for correct continuation of the virtio protocol.
/// The notification does not need to happen synchronously during this call, it can be stored
/// and performed at some later point, but the driver may not make progress until it is
/// notified.
fn notify(&self);
}
/// Mutable state of a virtqueue.
///
/// Includes both the reference to the [`Device`](ring::Device), which is the memory shared with the
/// guest that we actually need to manipulate, as well as additional state needed for us to
/// correctly implement the virtio protocol. Captured here in a separate struct so that it can be
/// wrapped in a [`Mutex`] in the [`Queue`].
struct State<'a> {
device: ring::Device<'a>,
// Next index in avail that we expect to be come available
next: u16,
// Next index in used that we will publish at.
next_used: u16,
}
impl<'a> State<'a> {
/// Return a descriptor chain.
///
/// `written` is the number of bytes that were written by the device to the beginning of the
/// buffer.
///
/// Returns to the driver, by writing it to the device owned ring, and returns the index that
/// it was published at. This index is intended to be used when determining whether the driver
/// needs a notification.
fn return_chain(&mut self, used: ring::Used) -> u16 {
let submit = self.next_used;
self.device.insert_used(used, submit);
self.next_used = submit.wrapping_add(1);
self.device.publish_used(self.next_used);
// Return the index that we just published.
submit
}
}
/// Describes the memory ranges for a queue.
///
/// Collects the three different memory ranges that combined make up the [`Driver`](ring::Driver)
/// and [`Device`](ring::Device) portions of a queue. This exists as a way to conveniently name the
/// members for passing to [`Queue::new`]
#[derive(Debug, Clone)]
pub struct QueueMemory<'a> {
pub desc: DeviceRange<'a>,
pub avail: DeviceRange<'a>,
pub used: DeviceRange<'a>,
}
/// Representation of a virtqueue.
///
/// Aside from construction of the queue the only provided method is to retrieve the [`next_chain`]
/// (Queue::next_chain) if one has been published by the driver. The [`DescChain`], if one is
/// returned, implements a custom `drop` to return the chain to the queue, and hence to the driver.
// Currently event_idx feature is hard set to false. Support exists though for the device
// requirements of handling suppression from the driver, however no interface is yet exposed here
// for the device to tell the driver any event requirements.
pub struct Queue<'a, N> {
driver: ring::Driver<'a>,
state: Mutex<State<'a>>,
notify: N,
// Whether or not the EVENT_IDX feature was negotiated. This is stored here as we need it to
// correctly determine when we should signal a notify to the driver.
feature_event_idx: bool,
}
impl<'a, N> Queue<'a, N> {
/// Constructs a new [`Queue`] from memory descriptions.
///
/// Takes a [`QueueMemory`], which is just a list of memory regions, for which to create a
/// queue out of. This internally creates a [`Driver`](ring::Driver) and [`Device`]
/// (ring::Device) from the provided regions.
///
/// The rings are assumed to not have yet been used and so the used and avail indices will
/// start at 0. There is presently no way to construct a [`Queue`] around rings that have
/// already been in use.
pub fn new(mem: QueueMemory<'a>, notify: N) -> Option<Self> {
Self::new_from_rings(
ring::Driver::new(mem.desc, mem.avail)?,
ring::Device::new(mem.used)?,
notify,
)
}
/// Construct a new [`Queue`] from provided rings.
///
/// Consumes a [`Driver`](ring::Driver) and [`Device`](ring::Device) to create a `Queue`.
/// It is expected that [`new`](#new) will typically be more useful to automate the ring
/// construction.
///
/// Has the same initial ring state assumptions as [`new`](#new).
pub fn new_from_rings(
driver: ring::Driver<'a>,
device: ring::Device<'a>,
notify: N,
) -> Option<Self> {
if driver.queue_size() != device.queue_size() {
return None;
}
Some(Queue {
driver,
state: Mutex::new(State { device, next: 0, next_used: 0 }),
notify,
feature_event_idx: false,
})
}
fn take_avail(&self) -> Option<u16> {
let mut state = self.state.lock();
let ret = self.driver.get_avail(state.next);
if ret.is_some() {
state.next = state.next.wrapping_add(1);
}
ret
}
}
impl<'a, N: DriverNotify> Queue<'a, N> {
/// Return any available [`DescChain`].
///
/// Polls the available ring for any queued descriptor chain, and if found returns a
/// [`DescChain`] abstraction around it.
///
/// It is the responsibility of the device to know, presumably via the transport level queue
/// notifications, when a descriptor chain might be available and to call this polling function.
///
/// The [`DescChain`] is automatically returned the driver, via the used ring, when it is
/// dropped.
pub fn next_chain<'b>(&'b self) -> Option<DescChain<'a, 'b, N>> {
if let Some(desc_index) = self.take_avail() {
Some(DescChain { queue: self, first_desc: desc_index })
} else {
None
}
}
fn return_chain(&self, used: ring::Used) {
let submitted = self.state.lock().return_chain(used);
// Must ensure the read of flags or used_event occurs *after* we have returned the chain
// and published the index. We also need to ensure that in the event we do send an
// interrupt that any state and idx updates have been written. In this case acquire/release
// is not sufficient since the 'acquire' will prevent future loads re-ordering earlier, and
// the release will prevent past writes from re-ordering later, but we need a past write and
// a future load to not be re-ordered. Therefore we require sequentially consistent
// semantics.
atomic::fence(atomic::Ordering::SeqCst);
if self.driver.needs_notification(self.feature_event_idx, submitted) {
self.notify.notify();
}
}
}
/// Descriptor type
///
/// May be an indirect descriptor type ( see virtio spec 2.7.5.3 ) or a regular aka
/// direct descriptor type.
/// Regular descriptor wraps up [`ring::DescAccess`]
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DescType {
Direct(ring::DescAccess),
Indirect,
}
/// Reference to descriptor data.
///
/// Provides a higher level representation of a descriptors payload, compared to what
/// [`ring::Desc::data`] reports. The conversion of a [`ring::Desc`] into a `Desc` necessitates some
/// error checking and can fail with a [`DescError::BadRange`].
///
/// Is provided as a [`DriverRange`] as the [`DescChain`] and its [iterator](DescChainIter) have no
/// way to translate a [`DriverRange`] and this responsibility is offloaded to the caller.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Desc(pub DescType, pub DriverRange);
impl TryFrom<ring::Desc> for Desc {
type Error = DescError;
fn try_from(desc: ring::Desc) -> Result<Self, Self::Error> {
let range = desc.data();
TryInto::<DriverRange>::try_into(range)
.map_err(|()| DescError::BadRange(range.0, range.1))
.map(|range| {
if desc.is_indirect() {
Desc(DescType::Indirect, range)
} else {
Desc(DescType::Direct(desc.access_type()), range)
}
})
}
}
/// Errors that occur when walking descriptor chains via [`DescChainIter`].
#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum DescError {
#[error("Descriptor {0} is not in the range of the ring")]
InvalidIndex(u16),
#[error("Descriptor data range addr: {0} len: {1} is not a valid driver range")]
BadRange(u64, u32),
}
/// Iterates over a [`DescChain`].
///
/// The iterator provides a [`Desc`] representing each [virtio descriptor](ring::Desc) in the chain.
/// Walking this chain may generate errors due to a faulty or malicious guest providing corrupt
/// descriptors.
///
/// Only the most minimal validation is done to yield valid [`Desc`], with no virtio protocol
/// validation being performed. In particular, although the virtio specification says that all
/// readable descriptors must appear before writable ones, this is not enforced or checked for by
/// this iterator.
///
/// A lifetime is associated with the underlying [`Queue`], but not the [`DescChain`] this is
/// iterating. This makes it possible, albeit not advised, to hold an iterator after having returned
/// a chain to the guest. Doing so will almost certainly result in violating the virtio protocol and
/// will confuse the guest, but there are no safety concerns. Restricting the iterator to the
/// lifetime of the chain makes them cumbersome and you should almost always be using the
/// abstractions provided by the [`chain`](crate::chain) module instead of these iterators directly.
pub struct DescChainIter<'a, 'b, N: DriverNotify> {
queue: &'b Queue<'a, N>,
desc: Option<u16>,
}
impl<'a, 'b, N: DriverNotify> DescChainIter<'a, 'b, N> {
/// Cause the iterator to complete.
///
/// Places the iterator in a state where it will always produce None.
pub fn complete(&mut self) {
self.desc = None;
}
}
impl<'a, 'b, N: DriverNotify> Iterator for DescChainIter<'a, 'b, N> {
type Item = Result<Desc, DescError>;
fn next(&mut self) -> Option<Self::Item> {
self.desc.map(|ret| {
match self.queue.driver.get_desc(ret.into()).ok_or(DescError::InvalidIndex(ret)) {
Ok(desc) => {
// If we were able to lookup the descriptor then we can always retrieve the
// next one, even if this one reports a bad range.
self.desc = desc.next();
desc.try_into()
}
Err(e) => {
// Not able to find the next descriptor, so we must terminate the iteration
// after reporting this error.
self.desc = None;
Err(e)
}
}
})
}
}
impl<'a, 'b, N: DriverNotify> Clone for DescChainIter<'a, 'b, N> {
fn clone(&self) -> DescChainIter<'a, 'b, N> {
DescChainIter { queue: self.queue, desc: self.desc }
}
}
/// Represents a chain of descriptors in the available ring.
///
/// The `DescChain` is a thin representation over a virtio descriptor chain. It can either be walked
/// using its [iterator](#iter), yielding the readable and writable portions, or it can be returned
/// to the ring.
///
/// Although returning happens automatically when dropped, if data was written into the descriptors
/// the chain needs to be explicitly returned with [`set_written`](#set_written) to propagate the
/// portion that was written.
pub struct DescChain<'a, 'b, N: DriverNotify> {
queue: &'b Queue<'a, N>,
first_desc: u16,
}
impl<'a, 'b, N: DriverNotify> DescChain<'a, 'b, N> {
/// Iterate over the descriptor chain
///
/// See [`DescChainIter`].
pub fn iter(&self) -> DescChainIter<'a, 'b, N> {
DescChainIter { queue: self.queue, desc: Some(self.first_desc) }
}
/// Explicitly return a written to chain.
///
/// Returns the chain to the used ring, as if the chain was dropped, but also forwards how much
/// of the chain was written to. No validation or manipulation is performed on written amount
/// and it is faithfully passed through. In particular you can claim to have written more bytes
/// than were made available for writing by the chain.
pub fn return_written(self, written: u32) {
self.queue.return_chain(ring::Used::new(self.first_desc, written));
// Don't call drop so that we avoid returning the chain a second time.
std::mem::forget(self)
}
}
impl<'a, 'b, N: DriverNotify> Drop for DescChain<'a, 'b, N> {
fn drop(&mut self) {
// By default return the chain with a write of 0, since as far as we know nothing was
// written.
self.queue.return_chain(ring::Used::new(self.first_desc, 0));
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fake_queue::{Chain, ChainBuilder, IdentityDriverMem, TestQueue};
use crate::ring::DescAccess;
use crate::util::NotificationCounter;
#[test]
fn test_create() {
let driver_mem = IdentityDriverMem::new();
// Should fail for non pow-2 ring
let mem = driver_mem.alloc_queue_memory(3).unwrap();
let notify = NotificationCounter::new();
assert!(Queue::new(mem, notify.clone()).is_none());
// Also fail for not same sized rings.
let mem = driver_mem.alloc_queue_memory(4).unwrap();
let mem2 = driver_mem.alloc_queue_memory(8).unwrap();
assert!(Queue::new(
QueueMemory { desc: mem.desc, avail: mem.avail, used: mem2.used },
notify.clone(),
)
.is_none());
// Correctly sized rings should work
let mem = driver_mem.alloc_queue_memory(4).unwrap();
assert!(Queue::new(mem, notify.clone()).is_some());
}
#[test]
fn test_notify_and_return() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
// Should be nothing notified or queued yet.
assert_eq!(state.notify.get(), 0);
assert!(state.queue.next_chain().is_none());
// Publish a chain
assert!(state.fake_queue.publish(Chain::with_lengths(&[32], &[], &driver_mem)).is_some());
let chain = state.queue.next_chain().unwrap();
assert_eq!(state.notify.get(), 0);
// If we drop the chain it should get returned and trigger a notification.
std::mem::drop(chain);
assert_eq!(state.notify.get(), 1);
// And there should be something on the driver side.
assert!(state.fake_queue.next_used().is_some());
// Should also be able to explicitly return a written amount and see it in the driver.
assert!(state.fake_queue.publish(Chain::with_lengths(&[], &[32], &driver_mem)).is_some());
let chain = state.queue.next_chain().unwrap();
chain.return_written(16);
let used = state.fake_queue.next_used().unwrap();
assert_eq!(used.written(), 16);
}
#[test]
fn test_good_chain_iter() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
// Build and insert a variety of chains.
let chains: [&[(DescAccess, u64, u32)]; 4] = [
&[(DescAccess::DeviceRead, 100, 42)],
&[(DescAccess::DeviceWrite, 200, 64)],
&[(DescAccess::DeviceRead, 1000, 20), (DescAccess::DeviceRead, 300, 40)],
&[
(DescAccess::DeviceRead, 4000, 40),
(DescAccess::DeviceWrite, 400, 64),
(DescAccess::DeviceWrite, 8000, 80),
],
];
for chain in chains {
assert!(state.fake_queue.publish(Chain::with_exact_data(chain)).is_some());
}
// Now read them all out and walk the iterators to ensure a match.
for chain in chains {
assert!(state
.queue
.next_chain()
.unwrap()
.iter()
.map(|desc| match desc {
Ok(Desc(DescType::Direct(access), range)) =>
(access, range.0.start as u64, range.0.len() as u32),
Ok(Desc(DescType::Indirect, _)) => (DescAccess::DeviceRead, 0, 0),
Err(_) => (DescAccess::DeviceRead, 0, 0),
})
.eq(chain.iter().cloned()));
}
}
#[test]
fn test_bad_range_iter() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
// Build a chain with some invalid ranges, we should still be able to iterate it.
assert!(state
.fake_queue
.publish(Chain::with_exact_data(&[
(DescAccess::DeviceRead, 100, 42),
(DescAccess::DeviceRead, u64::MAX - 10, 20),
(DescAccess::DeviceRead, u64::MAX - 20, 5)
]))
.is_some());
let chain = state.queue.next_chain().unwrap();
let mut iter = chain.iter();
assert_eq!(
iter.next().unwrap(),
Ok(Desc(DescType::Direct(DescAccess::DeviceRead), (100, 42).try_into().unwrap()))
);
assert_eq!(iter.next().unwrap(), Err(DescError::BadRange(u64::MAX - 10, 20)));
assert_eq!(
iter.next().unwrap(),
Ok(Desc(
DescType::Direct(DescAccess::DeviceRead),
(u64::MAX - 20, 5).try_into().unwrap()
))
);
assert_eq!(iter.next(), None);
}
#[test]
fn test_bad_index_iter() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
// Build a chain with an invalid descriptor index in the middle.
let chain = ChainBuilder::new()
.readable_reference(100, 42)
.amend_next(33)
.readable_zeroed(30, &driver_mem)
.build();
assert!(state.fake_queue.publish(chain).is_some());
let chain = state.queue.next_chain().unwrap();
let mut iter = chain.iter();
assert_eq!(
iter.next().unwrap(),
Ok(Desc(DescType::Direct(DescAccess::DeviceRead), (100, 42).try_into().unwrap()))
);
assert_eq!(iter.next().unwrap(), Err(DescError::InvalidIndex(33)));
assert_eq!(iter.next(), None);
}
}