test_runners_lib/
logs.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Helpers for capturing logs from Fuchsia processes.

use fuchsia_async as fasync;
use futures::{future, AsyncReadExt as _, AsyncWriteExt as _, FutureExt as _};
use std::num::NonZeroUsize;
use thiserror::Error;
use zx::HandleBased as _;

/// Buffer size for socket read calls to `LoggerStream::buffer_and_drain`.
const SOCKET_BUFFER_SIZE: usize = 2048;
const NEWLINE: u8 = b'\n';

/// Error returned by this library.
#[derive(Debug, PartialEq, Eq, Error, Clone)]
pub enum LoggerError {
    #[error("cannot create socket: {:?}", _0)]
    CreateSocket(zx::Status),

    #[error("cannot duplicate socket: {:?}", _0)]
    DuplicateSocket(zx::Status),

    #[error("invalid socket: {:?}", _0)]
    InvalidSocket(zx::Status),
}

/// Error returned from draining LoggerStream or writing to LogWriter.
#[derive(Debug, Error)]
pub enum LogError {
    /// Error encountered when draining LoggerStream.
    #[error("can't get logs: {:?}", _0)]
    Read(std::io::Error),

    /// Error encountered when writing to LogWriter.
    #[error("can't write logs: {:?}", _0)]
    Write(std::io::Error),
}

/// Creates a combined socket handle for stdout and stderr and hooks them to same socket.
/// It also wraps the socket into stream and returns it back.
pub fn create_std_combined_log_stream(
) -> Result<(LoggerStream, zx::Handle, zx::Handle), LoggerError> {
    let (client, log) = zx::Socket::create_stream();

    let stream = LoggerStream::new(client).map_err(LoggerError::InvalidSocket)?;
    let clone =
        log.duplicate_handle(zx::Rights::SAME_RIGHTS).map_err(LoggerError::DuplicateSocket)?;

    Ok((stream, log.into_handle(), clone.into_handle()))
}

/// Creates a socket handle for stdout/stderr and hooks it to a file handle.
/// It also wraps the socket into stream and returns it back.
pub fn create_log_stream() -> Result<(LoggerStream, zx::Handle), LoggerError> {
    let (client, log) = zx::Socket::create_stream();

    let stream = LoggerStream::new(client).map_err(LoggerError::InvalidSocket)?;

    Ok((stream, log.into_handle()))
}
/// Collects logs in background and gives a way to collect those logs.
pub struct LogStreamReader {
    fut: future::RemoteHandle<Result<Vec<u8>, LogError>>,
}

impl LogStreamReader {
    pub fn new(logger: LoggerStream) -> Self {
        let (logger_handle, logger_fut) = logger.read_to_end().remote_handle();
        fasync::Task::spawn(logger_handle).detach();
        Self { fut: logger_fut }
    }

    /// Retrieve all logs.
    pub async fn get_logs(self) -> Result<Vec<u8>, LogError> {
        self.fut.await
    }
}

/// A stream bound to a socket where a source stream is captured.
/// For example, stdout and stderr streams can be redirected to the contained
/// socket and captured.
pub struct LoggerStream {
    socket: fasync::Socket,
}

impl Unpin for LoggerStream {}

impl LoggerStream {
    /// Create a LoggerStream from the provided zx::Socket. The `socket` object
    /// should be bound to its intented source stream (e.g. "stdout").
    pub fn new(socket: zx::Socket) -> Result<LoggerStream, zx::Status> {
        let l = LoggerStream { socket: fasync::Socket::from_socket(socket) };
        Ok(l)
    }

    /// Reads all bytes from socket.
    pub async fn read_to_end(mut self) -> Result<Vec<u8>, LogError> {
        let mut buffer: Vec<u8> = Vec::new();
        let _bytes_read = self.socket.read_to_end(&mut buffer).await.map_err(LogError::Read)?;
        Ok(buffer)
    }

    /// Drain the `stream` and write all of its contents to `writer`. Bytes are
    /// delimited by newline and each line will be passed to `writer.write`.
    pub async fn buffer_and_drain(mut self, writer: &mut SocketLogWriter) -> Result<(), LogError> {
        let mut message_buffer: Vec<u8> = Vec::new();
        let mut socket_buffer: Vec<u8> = vec![0; SOCKET_BUFFER_SIZE];

        while let Some(bytes_read) = NonZeroUsize::new(
            self.socket.read(&mut socket_buffer[..]).await.map_err(LogError::Read)?,
        ) {
            let bytes_read = bytes_read.get();
            message_buffer.extend(&socket_buffer[..bytes_read]);

            if let Some(last_newline_pos) = message_buffer.iter().rposition(|&x| x == NEWLINE) {
                let () = writer.write(message_buffer.drain(..=last_newline_pos).as_slice()).await?;
            }

            while message_buffer.len() >= SOCKET_BUFFER_SIZE {
                let () = writer.write(message_buffer.drain(..).as_slice()).await?;
            }
        }

        if !message_buffer.is_empty() {
            let () = writer.write(&message_buffer[..]).await?;
        }

        Ok(())
    }

    /// Take the underlying socket of this object.
    pub fn take_socket(self) -> fasync::Socket {
        self.socket
    }
}

/// Utility struct to write to socket asynchrously.
pub struct SocketLogWriter {
    logger: fasync::Socket,
}

impl SocketLogWriter {
    pub fn new(logger: fasync::Socket) -> Self {
        Self { logger }
    }

    pub async fn write_str(&mut self, s: &str) -> Result<(), LogError> {
        self.write(s.as_bytes()).await
    }

    pub async fn write(&mut self, bytes: &[u8]) -> Result<(), LogError> {
        self.logger.write_all(bytes).await.map_err(LogError::Write)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use anyhow::{format_err, Context as _, Error};
    use assert_matches::assert_matches;
    use futures::{try_join, TryStreamExt as _};
    use rand::distributions::{Alphanumeric, DistString as _};
    use rand::thread_rng;
    use test_case::test_case;

    #[fuchsia_async::run_singlethreaded(test)]
    async fn log_writer_reader_work() {
        let (sock1, sock2) = zx::Socket::create_stream();
        let mut log_writer = SocketLogWriter::new(fasync::Socket::from_socket(sock1));

        let reader = LoggerStream::new(sock2).unwrap();
        let reader = LogStreamReader::new(reader);

        log_writer.write_str("this is string one.").await.unwrap();
        log_writer.write_str("this is string two.").await.unwrap();
        drop(log_writer);

        let actual = reader.get_logs().await.unwrap();
        let actual = std::str::from_utf8(&actual).unwrap();
        assert_eq!(actual, "this is string one.this is string two.".to_owned());
    }

    #[test_case(String::from("Hello World!") ; "consumes_simple_msg")]
    #[test_case(get_random_string(10000) ; "consumes_large_msg")]
    #[fasync::run_singlethreaded(test)]
    async fn logger_stream_read_to_end(msg: String) -> Result<(), Error> {
        let (stream, tx) = create_logger_stream()?;

        let () = take_and_write_to_socket(tx, &msg)?;
        let result = stream.read_to_end().await.context("Failed to read from socket")?;
        let actual = std::str::from_utf8(&result).context("Failed to parse bytes")?.to_owned();

        assert_eq!(actual, msg);
        Ok(())
    }

    #[fasync::run_singlethreaded(test)]
    async fn logger_stream_read_to_end_consumes_concat_msgs() -> Result<(), Error> {
        let (stream, tx) = create_logger_stream()?;
        let msgs =
            vec!["Hello World!".to_owned(), "Hola Mundo!".to_owned(), "你好,世界!".to_owned()];

        for msg in msgs.iter() {
            let () = write_to_socket(&tx, &msg)?;
        }
        std::mem::drop(tx);
        let result = stream.read_to_end().await.context("Failed to read from socket")?;
        let actual = std::str::from_utf8(&result).context("Failed to parse bytes")?.to_owned();

        assert_eq!(actual, msgs.join(""));
        Ok(())
    }

    #[fasync::run_singlethreaded(test)]
    async fn buffer_and_drain_reads_message_until_last_newline() -> Result<(), Error> {
        let (stream, tx) = create_logger_stream()?;
        let (mut logger, rx) = create_datagram_logger()?;
        let msg = "Hello World\nHola Mundo!\n你好,世界!";

        let () = take_and_write_to_socket(tx, msg)?;
        let (actual, ()) = try_join!(read_all_messages(rx), async move {
            stream.buffer_and_drain(&mut logger).await.context("Failed to drain stream")
        },)?;

        assert_eq!(
            actual,
            vec![String::from("Hello World\nHola Mundo!\n"), String::from("你好,世界!")],
        );

        Ok(())
    }

    #[fasync::run_singlethreaded(test)]
    async fn buffer_and_drain_dumps_full_buffer_if_no_newline_seen() -> Result<(), Error> {
        let (stream, tx) = create_logger_stream()?;
        let (mut logger, rx) = create_datagram_logger()?;

        let ((), ()) = try_join!(
            async move {
                let msg = get_random_string(SOCKET_BUFFER_SIZE);
                // First write up to (SOCKET_BUFFER_SIZE - 1) so that we can
                // assert that buffer isn't drained prematurely.
                let () = write_to_socket(&tx, &msg[..SOCKET_BUFFER_SIZE - 1])?;

                // Temporarily convert fasync::Socket back to zx::Socket so that
                // we can use non-blocking `read` call.
                let rx = rx.into_zx_socket();
                let mut buffer = vec![0u8; SOCKET_BUFFER_SIZE];
                let maybe_bytes_read = rx.read(&mut buffer);
                assert_eq!(maybe_bytes_read, Err(zx::Status::SHOULD_WAIT));

                // Write last byte and convert zx::Socket back to fasync::Socket.
                let () = write_to_socket(&tx, &msg[SOCKET_BUFFER_SIZE - 1..SOCKET_BUFFER_SIZE])?;
                let mut rx = fasync::Socket::from_socket(rx);
                let bytes_read =
                    rx.read(&mut buffer).await.context("Failed to read from socket")?;
                let msg_written = std::str::from_utf8(&buffer).context("Failed to parse bytes")?;

                assert_eq!(bytes_read, SOCKET_BUFFER_SIZE);
                assert_eq!(msg_written, msg);

                Ok(())
            },
            async move { stream.buffer_and_drain(&mut logger).await.context("Failed to drain stream") },
        )?;

        Ok(())
    }

    #[fasync::run_singlethreaded(test)]
    async fn buffer_and_drain_return_error_if_stream_polls_err() -> Result<(), Error> {
        let (tx, rx) = zx::Socket::create_stream();
        // A closed socket should yield an error when stream is polled.
        let () = rx.half_close()?;
        let () = tx.half_close()?;
        let stream = LoggerStream::new(rx).context("Failed to create LoggerStream")?;
        let (mut logger, _rx) = create_datagram_logger()?;

        let result = stream.buffer_and_drain(&mut logger).await;

        assert_matches!(result, Err(LogError::Read(_)));
        Ok(())
    }

    async fn read_all_messages(socket: fasync::Socket) -> Result<Vec<String>, Error> {
        let mut results = Vec::new();
        let mut stream = socket.into_datagram_stream();
        while let Some(bytes) = stream.try_next().await.context("Failed to read socket stream")? {
            results.push(
                std::str::from_utf8(&bytes).context("Failed to parse bytes into utf8")?.to_owned(),
            );
        }

        Ok(results)
    }

    fn take_and_write_to_socket(socket: zx::Socket, message: &str) -> Result<(), Error> {
        write_to_socket(&socket, &message)
    }

    fn write_to_socket(socket: &zx::Socket, message: &str) -> Result<(), Error> {
        let bytes_written =
            socket.write(message.as_bytes()).context("Failed to write to socket")?;
        match bytes_written == message.len() {
            true => Ok(()),
            false => Err(format_err!("Bytes written to socket doesn't match len of message. Message len = {}. Bytes written = {}", message.len(), bytes_written)),
        }
    }

    fn create_datagram_logger() -> Result<(SocketLogWriter, fasync::Socket), Error> {
        let (tx, rx) = zx::Socket::create_datagram();
        let logger = SocketLogWriter::new(fasync::Socket::from_socket(tx));
        let rx = fasync::Socket::from_socket(rx);
        Ok((logger, rx))
    }

    fn create_logger_stream() -> Result<(LoggerStream, zx::Socket), Error> {
        let (tx, rx) = zx::Socket::create_stream();
        let stream = LoggerStream::new(rx).context("Failed to create LoggerStream")?;
        Ok((stream, tx))
    }

    fn get_random_string(size: usize) -> String {
        Alphanumeric.sample_string(&mut thread_rng(), size)
    }
}