netdevice_client/session/buffer/
pool.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Fuchsia netdevice buffer pool.

use fuchsia_sync::Mutex;
use futures::task::AtomicWaker;
use std::borrow::Borrow;
use std::collections::VecDeque;
use std::convert::TryInto as _;
use std::fmt::Debug;
use std::io::{Read, Seek, SeekFrom, Write};
use std::mem::{ManuallyDrop, MaybeUninit};
use std::num::TryFromIntError;
use std::ops::{Deref, DerefMut};
use std::ptr::NonNull;
use std::sync::atomic::{self, AtomicBool, AtomicU64};
use std::sync::Arc;
use std::task::Poll;

use explicit::ResultExt as _;
use fidl_fuchsia_hardware_network as netdev;
use fuchsia_runtime::vmar_root_self;
use futures::channel::oneshot::{channel, Receiver, Sender};

use super::{ChainLength, DescId, DescRef, DescRefMut, Descriptors};
use crate::error::{Error, Result};
use crate::session::{BufferLayout, Config, Pending, Port};

/// Responsible for managing [`Buffer`]s for a [`Session`](crate::session::Session).
pub(in crate::session) struct Pool {
    /// Base address of the pool.
    // Note: This field requires us to manually implement `Sync` and `Send`.
    base: NonNull<u8>,
    /// The length of the pool in bytes.
    bytes: usize,
    /// The descriptors allocated for the pool.
    descriptors: Descriptors,
    /// Shared state for allocation.
    tx_alloc_state: Mutex<TxAllocState>,
    /// The free rx descriptors pending to be sent to driver.
    pub(in crate::session) rx_pending: Pending<Rx>,
    /// The buffer layout.
    buffer_layout: BufferLayout,
    /// State-keeping allowing sessions to handle rx leases.
    rx_leases: RxLeaseHandlingState,
}

// `Pool` is `Send` and `Sync`, and this allows the compiler to deduce `Buffer`
// to be `Send`. These impls are safe because we can safely share `Pool` and
// `&Pool`: the implementation would never allocate the same buffer to two
// callers at the same time.
unsafe impl Send for Pool {}
unsafe impl Sync for Pool {}

/// The shared state which keeps track of available buffers and tx buffers.
struct TxAllocState {
    /// All pending tx allocation requests.
    requests: VecDeque<TxAllocReq>,
    free_list: TxFreeList,
}

/// We use a linked list to maintain the tx free descriptors - they are linked
/// through their `nxt` fields, note this differs from the chaining expected
/// by the network device protocol:
/// - You can chain more than [`netdev::MAX_DESCRIPTOR_CHAIN`] descriptors
///   together.
/// - the free-list ends when the `nxt` field is 0xff, while the normal chain
///   ends when `chain_length` becomes 0.
struct TxFreeList {
    /// The head of a linked list of available descriptors that can be allocated
    /// for tx.
    head: Option<DescId<Tx>>,
    /// How many free descriptors are there in the pool.
    len: u16,
}

impl Pool {
    /// Creates a new [`Pool`] and its backing [`zx::Vmo`]s.
    ///
    /// Returns [`Pool`] and the [`zx::Vmo`]s for descriptors and data, in that
    /// order.
    pub(in crate::session) fn new(config: Config) -> Result<(Arc<Self>, zx::Vmo, zx::Vmo)> {
        let Config { buffer_stride, num_rx_buffers, num_tx_buffers, options, buffer_layout } =
            config;
        let num_buffers = num_rx_buffers.get() + num_tx_buffers.get();
        let (descriptors, descriptors_vmo, tx_free, mut rx_free) =
            Descriptors::new(num_tx_buffers, num_rx_buffers, buffer_stride)?;

        // Construct the free list.
        let free_head = tx_free.into_iter().rev().fold(None, |head, mut curr| {
            descriptors.borrow_mut(&mut curr).set_nxt(head);
            Some(curr)
        });

        for rx_desc in rx_free.iter_mut() {
            descriptors.borrow_mut(rx_desc).initialize(
                ChainLength::ZERO,
                0,
                buffer_layout.length.try_into().unwrap(),
                0,
            );
        }

        let tx_alloc_state = TxAllocState {
            free_list: TxFreeList { head: free_head, len: num_tx_buffers.get() },
            requests: VecDeque::new(),
        };

        let size = buffer_stride.get() * u64::from(num_buffers);
        let data_vmo = zx::Vmo::create(size).map_err(|status| Error::Vmo("data", status))?;
        // `as` is OK because `size` is positive and smaller than isize::MAX.
        // This is following the practice of rust stdlib to ensure allocation
        // size never reaches isize::MAX.
        // https://doc.rust-lang.org/std/primitive.pointer.html#method.add-1.
        let len = isize::try_from(size).expect("VMO size larger than isize::MAX") as usize;
        // The returned address of zx_vmar_map on success must be non-zero:
        // https://fuchsia.dev/fuchsia-src/reference/syscalls/vmar_map
        let base = NonNull::new(
            vmar_root_self()
                .map(0, &data_vmo, 0, len, zx::VmarFlags::PERM_READ | zx::VmarFlags::PERM_WRITE)
                .map_err(|status| Error::Map("data", status))? as *mut u8,
        )
        .unwrap();

        Ok((
            Arc::new(Pool {
                base,
                bytes: len,
                descriptors,
                tx_alloc_state: Mutex::new(tx_alloc_state),
                rx_pending: Pending::new(rx_free),
                buffer_layout,
                rx_leases: RxLeaseHandlingState::new_with_flags(options),
            }),
            descriptors_vmo,
            data_vmo,
        ))
    }

    /// Allocates `num_parts` tx descriptors.
    ///
    /// It will block if there are not enough descriptors. Note that the
    /// descriptors are not initialized, you need to call [`AllocGuard::init()`]
    /// on the returned [`AllocGuard`] if you want to send it to the driver
    /// later. See [`AllocGuard<Rx>::into_tx()`] for an example where
    /// [`AllocGuard::init()`] is not needed because the tx allocation will be
    /// returned to the pool immediately and won't be sent to the driver.
    pub(in crate::session) async fn alloc_tx(
        self: &Arc<Self>,
        num_parts: ChainLength,
    ) -> AllocGuard<Tx> {
        let receiver = {
            let mut state = self.tx_alloc_state.lock();
            match state.free_list.try_alloc(num_parts, &self.descriptors) {
                Some(allocated) => {
                    return AllocGuard::new(allocated, self.clone());
                }
                None => {
                    let (request, receiver) = TxAllocReq::new(num_parts);
                    state.requests.push_back(request);
                    receiver
                }
            }
        };
        // The sender must not be dropped.
        receiver.await.unwrap()
    }

    /// Allocates a tx [`Buffer`].
    ///
    /// The returned buffer will have `num_bytes` as its capacity, the method
    /// will block if there are not enough buffers. An error will be returned if
    /// the requested size cannot meet the device requirement, for example, if
    /// the size of the head or tail region will become unrepresentable in u16.
    pub(in crate::session) async fn alloc_tx_buffer(
        self: &Arc<Self>,
        num_bytes: usize,
    ) -> Result<Buffer<Tx>> {
        self.alloc_tx_buffers(num_bytes).await?.next().unwrap()
    }

    /// Waits for at least one TX buffer to be available and returns an iterator
    /// of buffers with `num_bytes` as capacity.
    ///
    /// The returned iterator is guaranteed to yield at least one item (though
    /// it might be an error if the requested size cannot meet the device
    /// requirement).
    ///
    /// # Note
    ///
    /// Given a `Buffer<Tx>` is returned to the pool when it's dropped, the
    /// returned iterator will seemingly yield infinite items if the yielded
    /// `Buffer`s are dropped while iterating.
    pub(in crate::session) async fn alloc_tx_buffers<'a>(
        self: &'a Arc<Self>,
        num_bytes: usize,
    ) -> Result<impl Iterator<Item = Result<Buffer<Tx>>> + 'a> {
        let BufferLayout { min_tx_data, min_tx_head, min_tx_tail, length: buffer_length } =
            self.buffer_layout;
        let tx_head = usize::from(min_tx_head);
        let tx_tail = usize::from(min_tx_tail);
        let total_bytes = num_bytes.max(min_tx_data) + tx_head + tx_tail;
        let num_parts = (total_bytes + buffer_length - 1) / buffer_length;
        let chain_length = ChainLength::try_from(num_parts)?;
        let first = self.alloc_tx(chain_length).await;
        let iter = std::iter::once(first)
            .chain(std::iter::from_fn(move || {
                let mut state = self.tx_alloc_state.lock();
                state
                    .free_list
                    .try_alloc(chain_length, &self.descriptors)
                    .map(|allocated| AllocGuard::new(allocated, self.clone()))
            }))
            // Fuse afterwards so we're guaranteeing we can't see a new entry
            // after having yielded `None` once.
            .fuse()
            .map(move |mut alloc| {
                alloc.init(num_bytes)?;
                Ok(alloc.into())
            });
        Ok(iter)
    }

    /// Frees rx descriptors.
    pub(in crate::session) fn free_rx(&self, descs: impl IntoIterator<Item = DescId<Rx>>) {
        self.rx_pending.extend(descs.into_iter().map(|mut desc| {
            self.descriptors.borrow_mut(&mut desc).initialize(
                ChainLength::ZERO,
                0,
                self.buffer_layout.length.try_into().unwrap(),
                0,
            );
            desc
        }));
    }

    /// Frees tx descriptors.
    ///
    /// # Panics
    ///
    /// Panics if given an empty chain.
    fn free_tx(self: &Arc<Self>, chain: Chained<DescId<Tx>>) {
        let free_impl = |free_list: &mut TxFreeList, chain: Chained<DescId<Tx>>| {
            let mut descs = chain.into_iter();
            // The following can't overflow because we can have at most u16::MAX
            // descriptors: free_len + #(to_free) + #(descs in use) <= u16::MAX,
            // Thus free_len + #(to_free) <= u16::MAX.
            free_list.len += u16::try_from(descs.len()).unwrap();
            let head = descs.next();
            let old_head = std::mem::replace(&mut free_list.head, head);
            let mut tail = descs.last();
            let mut tail_ref = self
                .descriptors
                .borrow_mut(tail.as_mut().unwrap_or_else(|| free_list.head.as_mut().unwrap()));
            tail_ref.set_nxt(old_head);
        };

        let mut state = self.tx_alloc_state.lock();
        let TxAllocState { requests, free_list } = &mut *state;
        let () = free_impl(free_list, chain);

        // After putting the chain back into the free list, we try to fulfill
        // any pending tx allocation requests.
        while let Some(req) = requests.front() {
            match free_list.try_alloc(req.size, &self.descriptors) {
                Some(descs) => {
                    // The unwrap is safe because we know requests is not empty.
                    match requests
                        .pop_front()
                        .unwrap()
                        .sender
                        .send(AllocGuard::new(descs, self.clone()))
                        .map_err(ManuallyDrop::new)
                    {
                        Ok(()) => {}
                        Err(mut alloc) => {
                            let AllocGuard { descs, pool } = alloc.deref_mut();
                            // We can't run the Drop code for AllocGuard here to
                            // return the descriptors though, because we are holding
                            // the lock on the alloc state and the lock is not
                            // reentrant, so we manually free the descriptors.
                            let () =
                                free_impl(free_list, std::mem::replace(descs, Chained::empty()));
                            // Safety: alloc is wrapped in ManuallyDrop, so alloc.pool
                            // will not be dropped twice.
                            let () = unsafe {
                                std::ptr::drop_in_place(pool);
                            };
                        }
                    }
                }
                None => {
                    if req.sender.is_canceled() {
                        let _cancelled: Option<TxAllocReq> = requests.pop_front();
                        continue;
                    } else {
                        break;
                    }
                }
            }
        }
    }

    /// Frees the completed tx descriptors chained by head to the pool.
    ///
    /// Call this function when the driver hands back a completed tx descriptor.
    pub(in crate::session) fn tx_completed(self: &Arc<Self>, head: DescId<Tx>) -> Result<()> {
        let chain = self.descriptors.chain(head).collect::<Result<Chained<_>>>()?;
        Ok(self.free_tx(chain))
    }

    /// Creates a [`Buffer<Rx>`] corresponding to the completed rx descriptors.
    ///
    /// Whenever the driver hands back a completed rx descriptor, this function
    /// can be used to create the buffer that is represented by those chained
    /// descriptors.
    pub(in crate::session) fn rx_completed(
        self: &Arc<Self>,
        head: DescId<Rx>,
    ) -> Result<Buffer<Rx>> {
        let descs = self.descriptors.chain(head).collect::<Result<Chained<_>>>()?;
        let alloc = AllocGuard::new(descs, self.clone());
        Ok(alloc.into())
    }
}

impl Drop for Pool {
    fn drop(&mut self) {
        unsafe {
            vmar_root_self()
                .unmap(self.base.as_ptr() as usize, self.bytes)
                .expect("failed to unmap VMO for Pool")
        }
    }
}

impl TxFreeList {
    /// Tries to allocate tx descriptors.
    ///
    /// Returns [`None`] if there are not enough descriptors.
    fn try_alloc(
        &mut self,
        num_parts: ChainLength,
        descriptors: &Descriptors,
    ) -> Option<Chained<DescId<Tx>>> {
        if u16::from(num_parts.get()) > self.len {
            return None;
        }

        let free_list = std::iter::from_fn(|| -> Option<DescId<Tx>> {
            let new_head = self.head.as_ref().and_then(|head| {
                let nxt = descriptors.borrow(head).nxt();
                nxt.map(|id| unsafe {
                    // Safety: This is the nxt field of head of the free list,
                    // it must be a tx descriptor id.
                    DescId::from_raw(id)
                })
            });
            std::mem::replace(&mut self.head, new_head)
        });
        let allocated = free_list.take(num_parts.get().into()).collect::<Chained<_>>();
        assert_eq!(allocated.len(), num_parts.into());
        self.len -= u16::from(num_parts.get());
        Some(allocated)
    }
}

/// The buffer that can be used by the [`Session`](crate::session::Session).
///
/// All [`Buffer`]s implement [`std::io::Read`] and [`Buffer<Tx>`]s implement
/// [`std::io::Write`].
pub struct Buffer<K: AllocKind> {
    /// The descriptors allocation.
    alloc: AllocGuard<K>,
    /// Underlying memory regions.
    parts: Chained<BufferPart>,
    /// The current absolute position to read/write within the [`Buffer`].
    pos: usize,
}

impl<K: AllocKind> Debug for Buffer<K> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let Self { alloc, parts, pos } = self;
        f.debug_struct("Buffer")
            .field("cap", &self.cap())
            .field("alloc", alloc)
            .field("parts", parts)
            .field("pos", pos)
            .finish()
    }
}

impl<K: AllocKind> Buffer<K> {
    /// Gets the capacity of the buffer in bytes as requested for allocation.
    pub fn cap(&self) -> usize {
        self.parts.iter().fold(0, |acc, part| acc + part.cap)
    }

    /// Gets the length of the buffer which is actually used.
    pub fn len(&self) -> usize {
        self.parts.iter().fold(0, |acc, part| acc + part.len)
    }

    /// Writes bytes to the buffer.
    ///
    /// Writes up to `src.len()` bytes into the buffer beginning at `offset`,
    /// returning how many bytes were written successfully. Partial write is
    /// not considered as an error.
    pub fn write_at(&mut self, offset: usize, src: &[u8]) -> Result<()> {
        if self.cap() < offset + src.len() {
            return Err(Error::TooSmall { size: self.cap(), offset, length: src.len() });
        }
        let mut part_start = 0;
        let mut total = 0;
        for part in self.parts.iter_mut() {
            if offset + total < part_start + part.cap {
                let written = part.write_at(offset + total - part_start, &src[total..])?;
                total += written;
                if total == src.len() {
                    break;
                }
            } else {
                part.len = part.cap;
            }
            part_start += part.cap;
        }
        assert_eq!(total, src.len());
        Ok(())
    }

    /// Reads bytes from the buffer.
    ///
    /// Reads up to `dst.len()` bytes from the buffer beginning at `offset`,
    /// returning how many bytes were read successfully. Partial read is
    /// considered as an error.
    pub fn read_at(&self, offset: usize, dst: &mut [u8]) -> Result<()> {
        if self.len() < offset + dst.len() {
            return Err(Error::TooSmall { size: self.len(), offset, length: dst.len() });
        }
        let mut part_start = 0;
        let mut total = 0;
        for part in self.parts.iter() {
            if offset + total < part_start + part.cap {
                let read = part.read_at(offset + total - part_start, &mut dst[total..])?;
                total += read;
                if total == dst.len() {
                    break;
                }
            }
            part_start += part.cap;
        }
        assert_eq!(total, dst.len());
        Ok(())
    }

    /// Pads the [`Buffer`] to minimum tx buffer length requirements.
    pub(in crate::session) fn pad(&mut self) -> Result<()> {
        let num_parts = self.parts.len();
        let BufferLayout { min_tx_tail, min_tx_data, min_tx_head: _, length: _ } =
            self.alloc.pool.buffer_layout;
        let mut target = min_tx_data;
        for (i, part) in self.parts.iter_mut().enumerate() {
            let grow_cap = if i == num_parts - 1 {
                let descriptor =
                    self.alloc.descriptors().last().expect("descriptor must not be empty");
                let data_length = descriptor.data_length();
                let tail_length = descriptor.tail_length();
                // data_length + tail_length <= buffer_length <= usize::MAX.
                let rest = usize::try_from(data_length).unwrap() + usize::from(tail_length);
                match rest.checked_sub(usize::from(min_tx_tail)) {
                    Some(grow_cap) => Some(grow_cap),
                    None => break,
                }
            } else {
                None
            };
            target -= part.pad(target, grow_cap)?;
        }
        if target != 0 {
            return Err(Error::Pad(min_tx_data, self.cap()));
        }
        Ok(())
    }

    /// Leaks the underlying buffer descriptors to the driver.
    ///
    /// Returns the head of the leaked allocation.
    pub(in crate::session) fn leak(mut self) -> DescId<K> {
        let descs = std::mem::replace(&mut self.alloc.descs, Chained::empty());
        descs.into_iter().next().unwrap()
    }

    /// Retrieves the frame type of the buffer.
    pub fn frame_type(&self) -> Result<netdev::FrameType> {
        self.alloc.descriptor().frame_type()
    }

    /// Retrieves the buffer's source port.
    pub fn port(&self) -> Port {
        self.alloc.descriptor().port()
    }
}

impl Buffer<Tx> {
    /// Commits the metadata for the buffer to descriptors.
    pub(in crate::session) fn commit(&mut self) {
        for (part, mut descriptor) in self.parts.iter_mut().zip(self.alloc.descriptors_mut()) {
            // The following unwrap is safe because part.len must be smaller than
            // buffer_length, which is a u32.
            descriptor.commit(u32::try_from(part.len).unwrap())
        }
    }

    /// Sets the buffer's destination port.
    pub fn set_port(&mut self, port: Port) {
        self.alloc.descriptor_mut().set_port(port)
    }

    /// Sets the frame type of the buffer.
    pub fn set_frame_type(&mut self, frame_type: netdev::FrameType) {
        self.alloc.descriptor_mut().set_frame_type(frame_type)
    }

    /// Sets TxFlags of a Tx buffer.
    pub fn set_tx_flags(&mut self, flags: netdev::TxFlags) {
        self.alloc.descriptor_mut().set_tx_flags(flags)
    }
}

impl Buffer<Rx> {
    /// Turns an rx buffer into a tx one.
    pub async fn into_tx(self) -> Buffer<Tx> {
        let Buffer { alloc, parts, pos } = self;
        Buffer { alloc: alloc.into_tx().await, parts, pos }
    }

    /// Retrieves RxFlags of an Rx Buffer.
    pub fn rx_flags(&self) -> Result<netdev::RxFlags> {
        self.alloc.descriptor().rx_flags()
    }
}

impl AllocGuard<Rx> {
    /// Turns a tx allocation into an rx one.
    ///
    /// To achieve this we have to convert the same amount of descriptors from
    /// the tx pool to the rx pool to compensate for us being converted to tx
    /// descriptors from rx ones.
    async fn into_tx(mut self) -> AllocGuard<Tx> {
        let mut tx = self.pool.alloc_tx(self.descs.len).await;
        // [MaybeUninit<DescId<Tx>; 4] and [MaybeUninit<DescId<Rx>; 4] have the
        // same memory layout because DescId is repr(transparent). So it is safe
        // to transmute and swap the values between the storages. After the swap
        // the drop implementation of self will return the descriptors back to
        // rx pool.
        std::mem::swap(&mut self.descs.storage, unsafe {
            std::mem::transmute(&mut tx.descs.storage)
        });
        tx
    }
}

/// A non-empty container that has at most [`netdev::MAX_DESCRIPTOR_CHAIN`] elements.
struct Chained<T> {
    storage: [MaybeUninit<T>; netdev::MAX_DESCRIPTOR_CHAIN as usize],
    len: ChainLength,
}

impl<T> Deref for Chained<T> {
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        // Safety: `self.storage[..self.len]` is already initialized.
        unsafe { std::mem::transmute(&self.storage[..self.len.into()]) }
    }
}

impl<T> DerefMut for Chained<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // Safety: `self.storage[..self.len]` is already initialized.
        unsafe { std::mem::transmute(&mut self.storage[..self.len.into()]) }
    }
}

impl<T> Drop for Chained<T> {
    fn drop(&mut self) {
        // Safety: `self.deref_mut()` is a slice of all initialized elements.
        unsafe {
            std::ptr::drop_in_place(self.deref_mut());
        }
    }
}

impl<T: Debug> Debug for Chained<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<T> Chained<T> {
    #[allow(clippy::uninit_assumed_init)]
    fn empty() -> Self {
        // Create an uninitialized array of `MaybeUninit`. The `assume_init` is
        // safe because the type we are claiming to have initialized here is a
        // bunch of `MaybeUninit`s, which do not require initialization.
        // TODO(https://fxbug.dev/42160423): use MaybeUninit::uninit_array once it
        // is stablized.
        // https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.uninit_array
        Self { storage: unsafe { MaybeUninit::uninit().assume_init() }, len: ChainLength::ZERO }
    }
}

impl<T> FromIterator<T> for Chained<T> {
    /// # Panics
    ///
    /// if the iterator is empty or the iterator can yield more than
    ///  MAX_DESCRIPTOR_CHAIN elements.
    fn from_iter<I: IntoIterator<Item = T>>(elements: I) -> Self {
        let mut result = Self::empty();
        let mut len = 0u8;
        for (idx, e) in elements.into_iter().enumerate() {
            result.storage[idx] = MaybeUninit::new(e);
            len += 1;
        }
        assert!(len > 0);
        // `len` can not be larger than `MAX_DESCRIPTOR_CHAIN`, otherwise we can't
        // get here due to the bound checks on `result.storage`.
        result.len = ChainLength::try_from(len).unwrap();
        result
    }
}

impl<T> IntoIterator for Chained<T> {
    type Item = T;
    type IntoIter = ChainedIter<T>;

    fn into_iter(mut self) -> Self::IntoIter {
        let len = self.len;
        self.len = ChainLength::ZERO;
        // Safety: we have reset the length to zero, it is now safe to move out
        // the values and set them to be uninitialized. The `assume_init` is
        // safe because the type we are claiming to have initialized here is a
        // bunch of `MaybeUninit`s, which do not require initialization.
        // TODO(https://fxbug.dev/42160423): use MaybeUninit::uninit_array once it
        // is stablized.
        #[allow(clippy::uninit_assumed_init)]
        let storage =
            std::mem::replace(&mut self.storage, unsafe { MaybeUninit::uninit().assume_init() });
        ChainedIter { storage, len, consumed: 0 }
    }
}

struct ChainedIter<T> {
    storage: [MaybeUninit<T>; netdev::MAX_DESCRIPTOR_CHAIN as usize],
    len: ChainLength,
    consumed: u8,
}

impl<T> Iterator for ChainedIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        if self.consumed < self.len.get() {
            // Safety: it is safe now to replace that slot with an uninitialized
            // value because we will advance consumed by 1.
            let value = unsafe {
                std::mem::replace(
                    &mut self.storage[usize::from(self.consumed)],
                    MaybeUninit::uninit(),
                )
                .assume_init()
            };
            self.consumed += 1;
            Some(value)
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = usize::from(self.len.get() - self.consumed);
        (len, Some(len))
    }
}

impl<T> ExactSizeIterator for ChainedIter<T> {}

impl<T> Drop for ChainedIter<T> {
    fn drop(&mut self) {
        // Safety: `self.storage[self.consumed..self.len]` is initialized.
        unsafe {
            std::ptr::drop_in_place(std::mem::transmute::<_, &mut [T]>(
                &mut self.storage[self.consumed.into()..self.len.into()],
            ));
        }
    }
}

/// Guards the allocated descriptors; they will be freed when dropped.
pub(in crate::session) struct AllocGuard<K: AllocKind> {
    descs: Chained<DescId<K>>,
    pool: Arc<Pool>,
}

impl<K: AllocKind> Debug for AllocGuard<K> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let Self { descs, pool: _ } = self;
        f.debug_struct("AllocGuard").field("descs", descs).finish()
    }
}

impl<K: AllocKind> AllocGuard<K> {
    fn new(descs: Chained<DescId<K>>, pool: Arc<Pool>) -> Self {
        Self { descs, pool }
    }

    /// Iterates over references to the descriptors.
    fn descriptors(&self) -> impl Iterator<Item = DescRef<'_, K>> + '_ {
        self.descs.iter().map(move |desc| self.pool.descriptors.borrow(desc))
    }

    /// Iterates over mutable references to the descriptors.
    fn descriptors_mut(&mut self) -> impl Iterator<Item = DescRefMut<'_, K>> + '_ {
        let descriptors = &self.pool.descriptors;
        self.descs.iter_mut().map(move |desc| descriptors.borrow_mut(desc))
    }

    /// Gets a reference to the head descriptor.
    fn descriptor(&self) -> DescRef<'_, K> {
        self.descriptors().next().expect("descriptors must not be empty")
    }

    /// Gets a mutable reference to the head descriptor.
    fn descriptor_mut(&mut self) -> DescRefMut<'_, K> {
        self.descriptors_mut().next().expect("descriptors must not be empty")
    }
}

impl AllocGuard<Tx> {
    /// Initializes descriptors of a tx allocation.
    fn init(&mut self, mut requested_bytes: usize) -> Result<()> {
        let len = self.len();
        let BufferLayout { min_tx_head, min_tx_tail, length: buffer_length, min_tx_data: _ } =
            self.pool.buffer_layout;
        for (mut descriptor, clen) in self.descriptors_mut().zip((0..len).rev()) {
            let chain_length = ChainLength::try_from(clen).unwrap();
            let head_length = if clen + 1 == len { min_tx_head } else { 0 };
            let mut tail_length = if clen == 0 { min_tx_tail } else { 0 };

            // head_length and tail_length. The check was done when the config
            // for pool was created, so the subtraction won't overflow.
            let available_bytes =
                u32::try_from(buffer_length - usize::from(head_length) - usize::from(tail_length))
                    .unwrap();

            let data_length = match u32::try_from(requested_bytes) {
                Ok(requested) => {
                    if requested < available_bytes {
                        // The requested bytes are less than what is available,
                        // we need to put the excess in the tail so that the
                        // user cannot write more than they requested.
                        tail_length = u16::try_from(available_bytes - requested)
                            .ok_checked::<TryFromIntError>()
                            .and_then(|tail_adjustment| tail_length.checked_add(tail_adjustment))
                            .ok_or(Error::TxLength)?;
                    }
                    requested.min(available_bytes)
                }
                Err(TryFromIntError { .. }) => available_bytes,
            };

            requested_bytes -=
                usize::try_from(data_length).unwrap_or_else(|TryFromIntError { .. }| {
                    panic!(
                        "data_length: {} must be smaller than requested_bytes: {}, which is a usize",
                        data_length, requested_bytes
                    )
                });
            descriptor.initialize(chain_length, head_length, data_length, tail_length);
        }
        assert_eq!(requested_bytes, 0);
        Ok(())
    }
}

impl<K: AllocKind> Drop for AllocGuard<K> {
    fn drop(&mut self) {
        if self.is_empty() {
            return;
        }
        K::free(private::Allocation(self));
    }
}

impl<K: AllocKind> Deref for AllocGuard<K> {
    type Target = [DescId<K>];

    fn deref(&self) -> &Self::Target {
        self.descs.deref()
    }
}

/// A contiguous region of the buffer; corresponding to one descriptor.
///
/// [`BufferPart`] owns the memory range [ptr, ptr+cap).
struct BufferPart {
    /// The data region starts at `ptr`.
    ptr: *mut u8,
    /// The capacity for the region is `cap`.
    cap: usize,
    /// Used to indicate how many bytes are actually in the buffer, it
    /// starts as 0 for a tx buffer and as `cap` for a rx buffer. It will
    /// be used later as `data_length` in the descriptor.
    len: usize,
}

impl BufferPart {
    /// Creates a new [`BufferPart`] that owns the memory region.
    ///
    /// # Safety
    ///
    /// The caller must make sure the memory pointed by `ptr` lives longer than
    /// `BufferPart` being constructed. Once a BufferPart is constructed, it is
    /// assumed that the memory `[ptr..ptr+cap)` is always valid to read and
    /// write.
    unsafe fn new(ptr: *mut u8, cap: usize, len: usize) -> Self {
        Self { ptr, cap, len }
    }

    /// Reads bytes from this buffer part.
    ///
    /// Reads up to `dst.len()` bytes from the region beginning at `offset`,
    /// returning how many bytes were read successfully. Partial read is
    /// not considered as an error.
    fn read_at(&self, offset: usize, dst: &mut [u8]) -> Result<usize> {
        let available = self.len.checked_sub(offset).ok_or(Error::Index(offset, self.len))?;
        let to_copy = std::cmp::min(available, dst.len());
        // Safety: both source memory region is valid for read the destination
        // memory region is valid for write.
        unsafe { std::ptr::copy_nonoverlapping(self.ptr.add(offset), dst.as_mut_ptr(), to_copy) }
        Ok(to_copy)
    }

    /// Writes bytes to this buffer part.
    ///
    /// Writes up to `src.len()` bytes into the region beginning at `offset`,
    /// returning how many bytes were written successfully. Partial write is
    /// not considered as an error.
    fn write_at(&mut self, offset: usize, src: &[u8]) -> Result<usize> {
        let available = self.cap.checked_sub(offset).ok_or(Error::Index(offset, self.cap))?;
        let to_copy = std::cmp::min(src.len(), available);
        // Safety: both source memory region is valid for read the destination
        // memory region is valid for write.
        unsafe { std::ptr::copy_nonoverlapping(src.as_ptr(), self.ptr.add(offset), to_copy) }
        self.len = std::cmp::max(self.len, offset + to_copy);
        Ok(to_copy)
    }

    /// Pads this part of buffer to have length `target`.
    ///
    /// `limit` describes the limit for this region to grow beyond capacity.
    /// `None` means the part is not allowed to grow and padding must be done
    /// within the existing capacity, `Some(limit)` means this part is allowed
    /// to extend its capacity up to the limit.
    fn pad(&mut self, target: usize, limit: Option<usize>) -> Result<usize> {
        if target <= self.len {
            return Ok(target);
        }
        if let Some(limit) = limit {
            if target > limit {
                return Err(Error::Pad(target, self.cap));
            }
            if self.cap < target {
                self.cap = target
            }
        }
        let new_len = std::cmp::min(target, self.cap);
        // Safety: This is safe because the destination memory region is valid
        // for write.
        unsafe {
            std::ptr::write_bytes(self.ptr.add(self.len), 0, new_len - self.len);
        }
        self.len = new_len;
        Ok(new_len)
    }
}

// `Buffer` needs to be `Send` in order to be useful in async code. Instead
// of marking `Buffer` as `Send` directly, `BufferPart` is `Send` already
// and we can let the compiler do the deduction.
unsafe impl Send for BufferPart {}

impl Debug for BufferPart {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let BufferPart { len, cap, ptr } = &self;
        f.debug_struct("BufferPart").field("ptr", ptr).field("len", len).field("cap", cap).finish()
    }
}

impl<K: AllocKind> From<AllocGuard<K>> for Buffer<K> {
    fn from(alloc: AllocGuard<K>) -> Self {
        let AllocGuard { pool, descs: _ } = &alloc;
        let parts: Chained<BufferPart> = alloc
            .descriptors()
            .map(|descriptor| {
                // The following unwraps are safe because they are already
                // checked in `DeviceInfo::config`.
                let offset = usize::try_from(descriptor.offset()).unwrap();
                let head_length = usize::from(descriptor.head_length());
                let data_length = usize::try_from(descriptor.data_length()).unwrap();
                let len = match K::REFL {
                    AllocKindRefl::Tx => 0,
                    AllocKindRefl::Rx => data_length,
                };
                // Sanity check: make sure the layout is valid.
                assert!(
                    offset + head_length <= pool.bytes,
                    "buffer part starts beyond the end of pool"
                );
                assert!(
                    offset + head_length + data_length <= pool.bytes,
                    "buffer part ends beyond the end of pool"
                );
                // This is safe because the `AllocGuard` makes sure the
                // underlying memory is valid for the entire time when
                // `BufferPart` is alive; `add` is safe because
                // `offset + head_length is within the allocation and
                // smaller than isize::MAX.
                unsafe {
                    BufferPart::new(pool.base.as_ptr().add(offset + head_length), data_length, len)
                }
            })
            .collect();
        Self { alloc, parts, pos: 0 }
    }
}

impl<K: AllocKind> Read for Buffer<K> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        self.read_at(self.pos, buf)
            .map_err(|error| std::io::Error::new(std::io::ErrorKind::InvalidInput, error))?;
        self.pos += buf.len();
        Ok(buf.len())
    }
}

impl Write for Buffer<Tx> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        self.write_at(self.pos, buf)
            .map_err(|error| std::io::Error::new(std::io::ErrorKind::InvalidInput, error))?;
        self.pos += buf.len();
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

impl<K: AllocKind> Seek for Buffer<K> {
    fn seek(&mut self, pos: SeekFrom) -> std::io::Result<u64> {
        let pos = match pos {
            SeekFrom::Start(pos) => pos,
            SeekFrom::End(offset) => {
                let end = i64::try_from(self.cap())
                    .map_err(|TryFromIntError { .. }| zx::Status::OUT_OF_RANGE)?;
                u64::try_from(end.wrapping_add(offset)).unwrap()
            }
            SeekFrom::Current(offset) => {
                let current = i64::try_from(self.pos)
                    .map_err(|TryFromIntError { .. }| zx::Status::OUT_OF_RANGE)?;
                u64::try_from(current.wrapping_add(offset)).unwrap()
            }
        };
        self.pos =
            usize::try_from(pos).map_err(|TryFromIntError { .. }| zx::Status::OUT_OF_RANGE)?;
        Ok(pos)
    }
}

/// A pending tx allocation request.
struct TxAllocReq {
    sender: Sender<AllocGuard<Tx>>,
    size: ChainLength,
}

impl TxAllocReq {
    fn new(size: ChainLength) -> (Self, Receiver<AllocGuard<Tx>>) {
        let (sender, receiver) = channel();
        (TxAllocReq { sender, size }, receiver)
    }
}

/// A module for sealed traits so that the user of this crate can not implement
/// [`AllocKind`] for anything than [`Rx`] and [`Tx`].
mod private {
    use super::{AllocKind, Rx, Tx};
    pub trait Sealed: 'static + Sized {}
    impl Sealed for Rx {}
    impl Sealed for Tx {}

    // We can't leak a private type in a public trait, create an opaque private
    // new type for &mut super::AllocGuard so that we can mention it in the
    // AllocKind trait.
    pub struct Allocation<'a, K: AllocKind>(pub(super) &'a mut super::AllocGuard<K>);
}

/// An allocation can have two kinds, this trait provides a way to project a
/// type ([`Rx`] or [`Tx`]) into a value.
pub trait AllocKind: private::Sealed {
    /// The reflected value of Self.
    const REFL: AllocKindRefl;

    /// frees an allocation of the given kind.
    fn free(alloc: private::Allocation<'_, Self>);
}

/// A tag to related types for Tx allocations.
pub enum Tx {}
/// A tag to related types for Rx allocations.
pub enum Rx {}

/// The reflected value that allows inspection on an [`AllocKind`] type.
pub enum AllocKindRefl {
    Tx,
    Rx,
}

impl AllocKindRefl {
    pub(in crate::session) fn as_str(&self) -> &'static str {
        match self {
            AllocKindRefl::Tx => "Tx",
            AllocKindRefl::Rx => "Rx",
        }
    }
}

impl AllocKind for Tx {
    const REFL: AllocKindRefl = AllocKindRefl::Tx;

    fn free(alloc: private::Allocation<'_, Self>) {
        let private::Allocation(AllocGuard { pool, descs }) = alloc;
        pool.free_tx(std::mem::replace(descs, Chained::empty()));
    }
}

impl AllocKind for Rx {
    const REFL: AllocKindRefl = AllocKindRefl::Rx;

    fn free(alloc: private::Allocation<'_, Self>) {
        let private::Allocation(AllocGuard { pool, descs }) = alloc;
        pool.free_rx(std::mem::replace(descs, Chained::empty()));
        pool.rx_leases.rx_complete();
    }
}

/// An extracted struct containing state pertaining to watching rx leases.
pub(in crate::session) struct RxLeaseHandlingState {
    can_watch_rx_leases: AtomicBool,
    /// Keeps a rolling counter of received rx frames MINUS the target frame
    /// number of the current outstanding lease.
    ///
    /// When no leases are pending (via [`RxLeaseWatcher::wait_until`]),
    /// then this matches exactly the number of received frames.
    ///
    /// Otherwise, the lease is currently waiting for remaining `u64::MAX -
    /// rx_Frame_counter` frames. The logic depends on `AtomicU64` wrapping
    /// around as part of completing rx buffers.
    rx_frame_counter: AtomicU64,
    rx_lease_waker: AtomicWaker,
}

impl RxLeaseHandlingState {
    fn new_with_flags(flags: netdev::SessionFlags) -> Self {
        Self::new_with_enabled(flags.contains(netdev::SessionFlags::RECEIVE_RX_POWER_LEASES))
    }

    fn new_with_enabled(enabled: bool) -> Self {
        Self {
            can_watch_rx_leases: AtomicBool::new(enabled),
            rx_frame_counter: AtomicU64::new(0),
            rx_lease_waker: AtomicWaker::new(),
        }
    }

    /// Increments the total receive frame counter and possibly wakes up a
    /// waiting lease yielder.
    fn rx_complete(&self) {
        let Self { can_watch_rx_leases: _, rx_frame_counter, rx_lease_waker } = self;
        let prev = rx_frame_counter.fetch_add(1, atomic::Ordering::SeqCst);

        // See wait_until for details. We need to hit a waker whenever our add
        // wrapped the u64 back around to 0.
        if prev == u64::MAX {
            rx_lease_waker.wake();
        }
    }
}

/// A trait allowing [`RxLeaseWatcher`] to be agnostic over how to get an
/// [`RxLeaseHandlingState`].
pub(in crate::session) trait RxLeaseHandlingStateContainer {
    fn lease_handling_state(&self) -> &RxLeaseHandlingState;
}

impl<T: Borrow<RxLeaseHandlingState>> RxLeaseHandlingStateContainer for T {
    fn lease_handling_state(&self) -> &RxLeaseHandlingState {
        self.borrow()
    }
}

impl RxLeaseHandlingStateContainer for Arc<Pool> {
    fn lease_handling_state(&self) -> &RxLeaseHandlingState {
        &self.rx_leases
    }
}

/// A type safe-wrapper around a single lease watcher per `Pool`.
pub(in crate::session) struct RxLeaseWatcher<T> {
    state: T,
}

impl<T: RxLeaseHandlingStateContainer> RxLeaseWatcher<T> {
    /// Creates a new lease watcher.
    ///
    /// # Panics
    ///
    /// Panics if an [`RxLeaseWatcher`] has already been created for the given
    /// pool or the pool was not configured for it.
    pub(in crate::session) fn new(state: T) -> Self {
        assert!(
            state.lease_handling_state().can_watch_rx_leases.swap(false, atomic::Ordering::SeqCst),
            "can't watch rx leases"
        );
        Self { state }
    }

    /// Called by sessions to wait until `hold_until_frame` is fulfilled to
    /// yield leases out.
    ///
    /// Blocks until `hold_until_frame`-th rx buffer has been released.
    ///
    /// Note that this method takes `&mut self` because only one
    /// [`RxLeaseWatcher`] may be created by lease handling state, and exclusive
    /// access to it is required to watch lease completion.
    pub(in crate::session) async fn wait_until(&mut self, hold_until_frame: u64) {
        // A note about wrap-arounds.
        //
        // We're assuming the frame counter will never wrap around for
        // correctness here. This should be fine, even assuming a packet
        // rate of 1 million pps it'd take almost 600k years for this counter
        // to wrap around:
        // - 2^64 / 1e6 / 60 / 60 / 24 / 365 ~ 584e3.

        let RxLeaseHandlingState { can_watch_rx_leases: _, rx_frame_counter, rx_lease_waker } =
            self.state.lease_handling_state();

        let prev = rx_frame_counter.fetch_sub(hold_until_frame, atomic::Ordering::SeqCst);
        // After having subtracted the waiting value we *must always restore the
        // value* on return, even if the future is not polled to completion.
        let _guard = scopeguard::guard((), |()| {
            let _: u64 = rx_frame_counter.fetch_add(hold_until_frame, atomic::Ordering::SeqCst);
        });

        // Lease is ready to be fulfilled.
        if prev >= hold_until_frame {
            return;
        }
        // Threshold is a wrapped around subtraction. So now we must wait
        // until the read value from the atomic is LESS THAN the threshold.
        let threshold = prev.wrapping_sub(hold_until_frame);
        futures::future::poll_fn(|cx| {
            let v = rx_frame_counter.load(atomic::Ordering::SeqCst);
            if v < threshold {
                return Poll::Ready(());
            }
            rx_lease_waker.register(cx.waker());
            let v = rx_frame_counter.load(atomic::Ordering::SeqCst);
            if v < threshold {
                return Poll::Ready(());
            }
            Poll::Pending
        })
        .await;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use assert_matches::assert_matches;
    use fuchsia_async as fasync;
    use futures::future::FutureExt;
    use test_case::test_case;

    use std::collections::HashSet;
    use std::num::{NonZeroU16, NonZeroU64, NonZeroUsize};
    use std::pin::pin;
    use std::task::{Poll, Waker};

    const DEFAULT_MIN_TX_BUFFER_HEAD: u16 = 4;
    const DEFAULT_MIN_TX_BUFFER_TAIL: u16 = 8;
    // Safety: These are safe because none of the values are zero.
    const DEFAULT_BUFFER_LENGTH: NonZeroUsize = NonZeroUsize::new(64).unwrap();
    const DEFAULT_TX_BUFFERS: NonZeroU16 = NonZeroU16::new(8).unwrap();
    const DEFAULT_RX_BUFFERS: NonZeroU16 = NonZeroU16::new(8).unwrap();
    const MAX_BUFFER_BYTES: usize = DEFAULT_BUFFER_LENGTH.get()
        * netdev::MAX_DESCRIPTOR_CHAIN as usize
        - DEFAULT_MIN_TX_BUFFER_HEAD as usize
        - DEFAULT_MIN_TX_BUFFER_TAIL as usize;

    const SENTINEL_BYTE: u8 = 0xab;
    const WRITE_BYTE: u8 = 1;
    const PAD_BYTE: u8 = 0;

    const DEFAULT_CONFIG: Config = Config {
        buffer_stride: NonZeroU64::new(DEFAULT_BUFFER_LENGTH.get() as u64).unwrap(),
        num_rx_buffers: DEFAULT_RX_BUFFERS,
        num_tx_buffers: DEFAULT_TX_BUFFERS,
        options: netdev::SessionFlags::empty(),
        buffer_layout: BufferLayout {
            length: DEFAULT_BUFFER_LENGTH.get(),
            min_tx_head: DEFAULT_MIN_TX_BUFFER_HEAD,
            min_tx_tail: DEFAULT_MIN_TX_BUFFER_TAIL,
            min_tx_data: 0,
        },
    };

    impl Pool {
        fn new_test_default() -> Arc<Self> {
            let (pool, _descriptors, _data) =
                Pool::new(DEFAULT_CONFIG).expect("failed to create default pool");
            pool
        }

        async fn alloc_tx_checked(self: &Arc<Self>, n: u8) -> AllocGuard<Tx> {
            self.alloc_tx(ChainLength::try_from(n).expect("failed to convert to chain length"))
                .await
        }

        fn alloc_tx_now_or_never(self: &Arc<Self>, n: u8) -> Option<AllocGuard<Tx>> {
            self.alloc_tx_checked(n).now_or_never()
        }

        fn alloc_tx_all(self: &Arc<Self>, n: u8) -> Vec<AllocGuard<Tx>> {
            std::iter::from_fn(|| self.alloc_tx_now_or_never(n)).collect()
        }

        fn alloc_tx_buffer_now_or_never(self: &Arc<Self>, num_bytes: usize) -> Option<Buffer<Tx>> {
            self.alloc_tx_buffer(num_bytes)
                .now_or_never()
                .transpose()
                .expect("invalid arguments for alloc_tx_buffer")
        }

        fn set_min_tx_buffer_length(self: &mut Arc<Self>, length: usize) {
            Arc::get_mut(self).unwrap().buffer_layout.min_tx_data = length;
        }

        fn fill_sentinel_bytes(&mut self) {
            // Safety: We have mut reference to Pool, so we get to modify the
            // VMO pointed by self.base.
            unsafe { std::ptr::write_bytes(self.base.as_ptr(), SENTINEL_BYTE, self.bytes) };
        }
    }

    impl Buffer<Tx> {
        // Write a byte at offset, the result buffer should be pad_size long, with
        // 0..offset being the SENTINEL_BYTE, offset being the WRITE_BYTE and the
        // rest being PAD_BYTE.
        fn check_write_and_pad(&mut self, offset: usize, pad_size: usize) {
            self.write_at(offset, &[WRITE_BYTE][..]).expect("failed to write to self");
            self.pad().expect("failed to pad");
            assert_eq!(self.len(), pad_size);
            // An arbitrary value that is not SENTINAL/WRITE/PAD_BYTE so that
            // we can make sure the write really happened.
            const INIT_BYTE: u8 = 42;
            let mut read_buf = vec![INIT_BYTE; pad_size];
            self.read_at(0, &mut read_buf[..]).expect("failed to read from self");
            for (idx, byte) in read_buf.iter().enumerate() {
                if idx < offset {
                    assert_eq!(*byte, SENTINEL_BYTE);
                } else if idx == offset {
                    assert_eq!(*byte, WRITE_BYTE);
                } else {
                    assert_eq!(*byte, PAD_BYTE);
                }
            }
        }
    }

    impl<K, I, T> PartialEq<T> for Chained<DescId<K>>
    where
        K: AllocKind,
        I: ExactSizeIterator<Item = u16>,
        T: Copy + IntoIterator<IntoIter = I>,
    {
        fn eq(&self, other: &T) -> bool {
            let iter = other.into_iter();
            if usize::from(self.len) != iter.len() {
                return false;
            }
            self.iter().zip(iter).all(|(l, r)| l.get() == r)
        }
    }

    impl Debug for TxAllocReq {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            let TxAllocReq { sender: _, size } = self;
            f.debug_struct("TxAllocReq").field("size", &size).finish_non_exhaustive()
        }
    }

    #[test]
    fn alloc_tx_distinct() {
        let pool = Pool::new_test_default();
        let allocated = pool.alloc_tx_all(1);
        assert_eq!(allocated.len(), DEFAULT_TX_BUFFERS.get().into());
        let distinct = allocated
            .iter()
            .map(|alloc| {
                assert_eq!(alloc.descs.len(), 1);
                alloc.descs[0].get()
            })
            .collect::<HashSet<u16>>();
        assert_eq!(allocated.len(), distinct.len());
    }

    #[test]
    fn alloc_tx_free_len() {
        let pool = Pool::new_test_default();
        {
            let allocated = pool.alloc_tx_all(2);
            assert_eq!(
                allocated.iter().fold(0, |acc, a| { acc + a.descs.len() }),
                DEFAULT_TX_BUFFERS.get().into()
            );
            assert_eq!(pool.tx_alloc_state.lock().free_list.len, 0);
        }
        assert_eq!(pool.tx_alloc_state.lock().free_list.len, DEFAULT_TX_BUFFERS.get());
    }

    #[test]
    fn alloc_tx_chain() {
        let pool = Pool::new_test_default();
        let allocated = pool.alloc_tx_all(3);
        assert_eq!(allocated.len(), usize::from(DEFAULT_TX_BUFFERS.get()) / 3);
        assert_matches!(pool.alloc_tx_now_or_never(3), None);
        assert_matches!(pool.alloc_tx_now_or_never(2), Some(a) if a.descs.len() == 2);
    }

    #[test]
    fn alloc_tx_many() {
        let pool = Pool::new_test_default();
        let data_len = u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
            - u32::from(DEFAULT_MIN_TX_BUFFER_HEAD)
            - u32::from(DEFAULT_MIN_TX_BUFFER_TAIL);
        let data_len = usize::try_from(data_len).unwrap();
        let mut buffers = pool
            .alloc_tx_buffers(data_len)
            .now_or_never()
            .expect("failed to alloc")
            .unwrap()
            // Collect into a vec so we keep the buffers alive, otherwise they
            // are immediately returned to the pool.
            .collect::<Result<Vec<_>>>()
            .expect("buffer error");
        assert_eq!(buffers.len(), DEFAULT_TX_BUFFERS.get().into());

        // We have all the buffers, which means allocating more should not
        // resolve.
        assert!(pool.alloc_tx_buffers(data_len).now_or_never().is_none());

        // If we release a single buffer we should be able to retrieve it again.
        assert_matches!(buffers.pop(), Some(_));
        let mut more_buffers =
            pool.alloc_tx_buffers(data_len).now_or_never().expect("failed to alloc").unwrap();
        let buffer = assert_matches!(more_buffers.next(), Some(Ok(b)) => b);
        assert_matches!(more_buffers.next(), None);
        // The iterator is fused, so None is yielded even after dropping the
        // buffer.
        drop(buffer);
        assert_matches!(more_buffers.next(), None);
    }

    #[test]
    fn alloc_tx_after_free() {
        let pool = Pool::new_test_default();
        let mut allocated = pool.alloc_tx_all(1);
        assert_matches!(pool.alloc_tx_now_or_never(2), None);
        {
            let _drained = allocated.drain(..2);
        }
        assert_matches!(pool.alloc_tx_now_or_never(2), Some(a) if a.descs.len() == 2);
    }

    #[test]
    fn blocking_alloc_tx() {
        let mut executor = fasync::TestExecutor::new();
        let pool = Pool::new_test_default();
        let mut allocated = pool.alloc_tx_all(1);
        let alloc_fut = pool.alloc_tx_checked(1);
        let mut alloc_fut = pin!(alloc_fut);
        // The allocation should block.
        assert_matches!(executor.run_until_stalled(&mut alloc_fut), Poll::Pending);
        // And the allocation request should be queued.
        assert!(!pool.tx_alloc_state.lock().requests.is_empty());
        let freed = allocated
            .pop()
            .expect("no fulfulled allocations")
            .iter()
            .map(|x| x.get())
            .collect::<Chained<_>>();
        let same_as_freed =
            |descs: &Chained<DescId<Tx>>| descs.iter().map(|x| x.get()).eq(freed.iter().copied());
        // Now the task should be able to continue.
        assert_matches!(
            &executor.run_until_stalled(&mut alloc_fut),
            Poll::Ready(AllocGuard{ descs, pool: _ }) if same_as_freed(descs)
        );
        // And the queued request should now be removed.
        assert!(pool.tx_alloc_state.lock().requests.is_empty());
    }

    #[test]
    fn blocking_alloc_tx_cancel_before_free() {
        let mut executor = fasync::TestExecutor::new();
        let pool = Pool::new_test_default();
        let mut allocated = pool.alloc_tx_all(1);
        {
            let alloc_fut = pool.alloc_tx_checked(1);
            let mut alloc_fut = pin!(alloc_fut);
            assert_matches!(executor.run_until_stalled(&mut alloc_fut), Poll::Pending);
            assert_matches!(
                pool.tx_alloc_state.lock().requests.as_slices(),
                (&[ref req1, ref req2], &[]) if req1.size.get() == 1 && req2.size.get() == 1
            );
        }
        assert_matches!(
            allocated.pop(),
            Some(AllocGuard { ref descs, pool: ref p })
                if descs == &[DEFAULT_TX_BUFFERS.get() - 1] && Arc::ptr_eq(p, &pool)
        );
        let state = pool.tx_alloc_state.lock();
        assert_eq!(state.free_list.len, 1);
        assert!(state.requests.is_empty());
    }

    #[test]
    fn blocking_alloc_tx_cancel_after_free() {
        let mut executor = fasync::TestExecutor::new();
        let pool = Pool::new_test_default();
        let mut allocated = pool.alloc_tx_all(1);
        {
            let alloc_fut = pool.alloc_tx_checked(1);
            let mut alloc_fut = pin!(alloc_fut);
            assert_matches!(executor.run_until_stalled(&mut alloc_fut), Poll::Pending);
            assert_matches!(
                pool.tx_alloc_state.lock().requests.as_slices(),
                (&[ref req1, ref req2], &[]) if req1.size.get() == 1 && req2.size.get() == 1
            );
            assert_matches!(
                allocated.pop(),
                Some(AllocGuard { ref descs, pool: ref p })
                    if descs == &[DEFAULT_TX_BUFFERS.get() - 1] && Arc::ptr_eq(p, &pool)
            );
        }
        let state = pool.tx_alloc_state.lock();
        assert_eq!(state.free_list.len, 1);
        assert!(state.requests.is_empty());
    }

    #[test]
    fn multiple_blocking_alloc_tx_fulfill_order() {
        const TASKS_TOTAL: usize = 3;
        let mut executor = fasync::TestExecutor::new();
        let pool = Pool::new_test_default();
        let mut allocated = pool.alloc_tx_all(1);
        let mut alloc_futs = (1..=TASKS_TOTAL)
            .rev()
            .map(|x| {
                let pool = pool.clone();
                (x, Box::pin(async move { pool.alloc_tx_checked(x.try_into().unwrap()).await }))
            })
            .collect::<Vec<_>>();

        for (idx, (req_size, task)) in alloc_futs.iter_mut().enumerate() {
            assert_matches!(executor.run_until_stalled(task), Poll::Pending);
            // assert that the tasks are sorted decreasing on the requested size.
            assert_eq!(idx + *req_size, TASKS_TOTAL);
        }
        {
            let state = pool.tx_alloc_state.lock();
            // The first pending request was introduced by `alloc_tx_all`.
            assert_eq!(state.requests.len(), TASKS_TOTAL + 1);
            let mut requests = state.requests.iter();
            // It should already be cancelled because the requesting future is
            // already dropped.
            assert!(requests.next().unwrap().sender.is_canceled());
            // The rest of the requests must not be cancelled.
            assert!(requests.all(|req| !req.sender.is_canceled()))
        }

        let mut to_free = Vec::new();
        let mut freed = 0;
        for free_size in (1..=TASKS_TOTAL).rev() {
            let (_req_size, mut task) = alloc_futs.remove(0);
            for _ in 1..free_size {
                freed += 1;
                assert_matches!(
                    allocated.pop(),
                    Some(AllocGuard { ref descs, pool: ref p })
                        if descs == &[DEFAULT_TX_BUFFERS.get() - freed] && Arc::ptr_eq(p, &pool)
                );
                assert_matches!(executor.run_until_stalled(&mut task), Poll::Pending);
            }
            freed += 1;
            assert_matches!(
                allocated.pop(),
                Some(AllocGuard { ref descs, pool: ref p })
                    if descs == &[DEFAULT_TX_BUFFERS.get() - freed] && Arc::ptr_eq(p, &pool)
            );
            match executor.run_until_stalled(&mut task) {
                Poll::Ready(alloc) => {
                    assert_eq!(alloc.len(), free_size);
                    // Don't return the allocation to the pool now.
                    to_free.push(alloc);
                }
                Poll::Pending => panic!("The request should be fulfilled"),
            }
            // The rest of requests can not be fulfilled.
            for (_req_size, task) in alloc_futs.iter_mut() {
                assert_matches!(executor.run_until_stalled(task), Poll::Pending);
            }
        }
        assert!(pool.tx_alloc_state.lock().requests.is_empty());
    }

    #[test]
    fn singleton_tx_layout() {
        let pool = Pool::new_test_default();
        let buffers = std::iter::from_fn(|| {
            let data_len = u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
                - u32::from(DEFAULT_MIN_TX_BUFFER_HEAD)
                - u32::from(DEFAULT_MIN_TX_BUFFER_TAIL);
            pool.alloc_tx_buffer_now_or_never(usize::try_from(data_len).unwrap()).map(|buffer| {
                assert_eq!(buffer.alloc.descriptors().count(), 1);
                let offset = u64::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
                    * u64::from(buffer.alloc[0].get());
                {
                    let descriptor = buffer.alloc.descriptor();
                    assert_matches!(descriptor.chain_length(), Ok(ChainLength::ZERO));
                    assert_eq!(descriptor.head_length(), DEFAULT_MIN_TX_BUFFER_HEAD);
                    assert_eq!(descriptor.tail_length(), DEFAULT_MIN_TX_BUFFER_TAIL);
                    assert_eq!(descriptor.data_length(), data_len);
                    assert_eq!(descriptor.offset(), offset);
                }

                assert_eq!(buffer.parts.len(), 1);
                let BufferPart { ptr, len, cap } = buffer.parts[0];
                assert_eq!(len, 0);
                assert_eq!(
                    // Using wrapping_add because we will never dereference the
                    // resulting pointer and it saves us an unsafe block.
                    pool.base.as_ptr().wrapping_add(
                        usize::try_from(offset).unwrap() + usize::from(DEFAULT_MIN_TX_BUFFER_HEAD),
                    ),
                    ptr
                );
                assert_eq!(data_len, u32::try_from(cap).unwrap());
                buffer
            })
        })
        .collect::<Vec<_>>();
        assert_eq!(buffers.len(), usize::from(DEFAULT_TX_BUFFERS.get()));
    }

    #[test]
    fn chained_tx_layout() {
        let pool = Pool::new_test_default();
        let alloc_len = 4 * DEFAULT_BUFFER_LENGTH.get()
            - usize::from(DEFAULT_MIN_TX_BUFFER_HEAD)
            - usize::from(DEFAULT_MIN_TX_BUFFER_TAIL);
        let buffers = std::iter::from_fn(|| {
            pool.alloc_tx_buffer_now_or_never(alloc_len).map(|buffer| {
                assert_eq!(buffer.parts.len(), 4);
                for (idx, descriptor) in buffer.alloc.descriptors().enumerate() {
                    let chain_length = ChainLength::try_from(buffer.alloc.len() - idx - 1).unwrap();
                    let head_length = if idx == 0 { DEFAULT_MIN_TX_BUFFER_HEAD } else { 0 };
                    let tail_length = if chain_length == ChainLength::ZERO {
                        DEFAULT_MIN_TX_BUFFER_TAIL
                    } else {
                        0
                    };
                    let data_len = u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
                        - u32::from(head_length)
                        - u32::from(tail_length);
                    let offset = u64::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
                        * u64::from(buffer.alloc[idx].get());
                    assert_eq!(descriptor.chain_length().unwrap(), chain_length);
                    assert_eq!(descriptor.head_length(), head_length);
                    assert_eq!(descriptor.tail_length(), tail_length);
                    assert_eq!(descriptor.offset(), offset);
                    assert_eq!(descriptor.data_length(), data_len);
                    if chain_length != ChainLength::ZERO {
                        assert_eq!(descriptor.nxt(), Some(buffer.alloc[idx + 1].get()));
                    }

                    let BufferPart { ptr, cap, len } = buffer.parts[idx];
                    assert_eq!(len, 0);
                    assert_eq!(
                        // Using wrapping_add because we will never dereference
                        // the resulting ptr and it saves us an unsafe block.
                        pool.base.as_ptr().wrapping_add(
                            usize::try_from(offset).unwrap() + usize::from(head_length),
                        ),
                        ptr
                    );
                    assert_eq!(data_len, u32::try_from(cap).unwrap());
                }
                buffer
            })
        })
        .collect::<Vec<_>>();
        assert_eq!(buffers.len(), usize::from(DEFAULT_TX_BUFFERS.get()) / 4);
    }

    #[test]
    fn rx_distinct() {
        let pool = Pool::new_test_default();
        let mut guard = pool.rx_pending.inner.lock();
        let (descs, _): &mut (Vec<_>, Option<Waker>) = &mut *guard;
        assert_eq!(descs.len(), usize::from(DEFAULT_RX_BUFFERS.get()));
        let distinct = descs.iter().map(|desc| desc.get()).collect::<HashSet<u16>>();
        assert_eq!(descs.len(), distinct.len());
    }

    #[test]
    fn alloc_rx_layout() {
        let pool = Pool::new_test_default();
        let mut guard = pool.rx_pending.inner.lock();
        let (descs, _): &mut (Vec<_>, Option<Waker>) = &mut *guard;
        assert_eq!(descs.len(), usize::from(DEFAULT_RX_BUFFERS.get()));
        for desc in descs.iter() {
            let descriptor = pool.descriptors.borrow(desc);
            let offset =
                u64::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap() * u64::from(desc.get());
            assert_matches!(descriptor.chain_length(), Ok(ChainLength::ZERO));
            assert_eq!(descriptor.head_length(), 0);
            assert_eq!(descriptor.tail_length(), 0);
            assert_eq!(descriptor.offset(), offset);
            assert_eq!(
                descriptor.data_length(),
                u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
            );
        }
    }

    #[test]
    fn buffer_read_at_write_at() {
        let pool = Pool::new_test_default();
        let alloc_bytes = DEFAULT_BUFFER_LENGTH.get();
        let mut buffer =
            pool.alloc_tx_buffer_now_or_never(alloc_bytes).expect("failed to allocate");
        // Because we have to accommodate the space for head and tail, there
        // would be 2 parts instead of 1.
        assert_eq!(buffer.parts.len(), 2);
        assert_eq!(buffer.cap(), alloc_bytes);
        let write_buf = (0..u8::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()).collect::<Vec<_>>();
        buffer.write_at(0, &write_buf[..]).expect("failed to write into buffer");
        let mut read_buf = [0xff; DEFAULT_BUFFER_LENGTH.get()];
        buffer.read_at(0, &mut read_buf[..]).expect("failed to read from buffer");
        for (idx, byte) in read_buf.iter().enumerate() {
            assert_eq!(*byte, write_buf[idx]);
        }
    }

    #[test]
    fn buffer_read_write_seek() {
        let pool = Pool::new_test_default();
        let alloc_bytes = DEFAULT_BUFFER_LENGTH.get();
        let mut buffer =
            pool.alloc_tx_buffer_now_or_never(alloc_bytes).expect("failed to allocate");
        // Because we have to accommodate the space for head and tail, there
        // would be 2 parts instead of 1.
        assert_eq!(buffer.parts.len(), 2);
        assert_eq!(buffer.cap(), alloc_bytes);
        let write_buf = (0..u8::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()).collect::<Vec<_>>();
        assert_eq!(
            buffer.write(&write_buf[..]).expect("failed to write into buffer"),
            write_buf.len()
        );
        const SEEK_FROM_END: usize = 64;
        const READ_LEN: usize = 12;
        assert_eq!(
            buffer.seek(SeekFrom::End(-i64::try_from(SEEK_FROM_END).unwrap())).unwrap(),
            u64::try_from(buffer.cap() - SEEK_FROM_END).unwrap()
        );
        let mut read_buf = [0xff; READ_LEN];
        assert_eq!(
            buffer.read(&mut read_buf[..]).expect("failed to read from buffer"),
            read_buf.len()
        );
        assert_eq!(&write_buf[..READ_LEN], &read_buf[..]);
    }

    #[test_case(32; "single buffer part")]
    #[test_case(MAX_BUFFER_BYTES; "multiple buffer parts")]
    fn buffer_pad(pad_size: usize) {
        let mut pool = Pool::new_test_default();
        pool.set_min_tx_buffer_length(pad_size);
        for offset in 0..pad_size {
            Arc::get_mut(&mut pool)
                .expect("there are multiple owners of the underlying VMO")
                .fill_sentinel_bytes();
            let mut buffer =
                pool.alloc_tx_buffer_now_or_never(pad_size).expect("failed to allocate buffer");
            buffer.check_write_and_pad(offset, pad_size);
        }
    }

    #[test]
    fn buffer_pad_grow() {
        const BUFFER_PARTS: u8 = 3;
        let mut pool = Pool::new_test_default();
        let pad_size = u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap()
            * u32::from(BUFFER_PARTS)
            - u32::from(DEFAULT_MIN_TX_BUFFER_HEAD)
            - u32::from(DEFAULT_MIN_TX_BUFFER_TAIL);
        pool.set_min_tx_buffer_length(pad_size.try_into().unwrap());
        for offset in 0..pad_size - u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap() {
            Arc::get_mut(&mut pool)
                .expect("there are multiple owners of the underlying VMO")
                .fill_sentinel_bytes();
            let mut alloc =
                pool.alloc_tx_now_or_never(BUFFER_PARTS).expect("failed to alloc descriptors");
            alloc
                .init(
                    DEFAULT_BUFFER_LENGTH.get() * usize::from(BUFFER_PARTS)
                        - usize::from(DEFAULT_MIN_TX_BUFFER_HEAD)
                        - usize::from(DEFAULT_MIN_TX_BUFFER_TAIL),
                )
                .expect("head/body/tail sizes are representable with u16/u32/u16");
            let mut buffer = Buffer::try_from(alloc).unwrap();
            buffer.check_write_and_pad(offset.try_into().unwrap(), pad_size.try_into().unwrap());
        }
    }

    #[test_case(  0; "writes at the beginning")]
    #[test_case( 15; "writes in the first part")]
    #[test_case( 75; "writes in the second part")]
    #[test_case(135; "writes in the third part")]
    #[test_case(195; "writes in the last part")]
    fn buffer_used(write_offset: usize) {
        let pool = Pool::new_test_default();
        let mut buffer =
            pool.alloc_tx_buffer_now_or_never(MAX_BUFFER_BYTES).expect("failed to allocate buffer");
        let expected_caps = (0..netdev::MAX_DESCRIPTOR_CHAIN).map(|i| {
            if i == 0 {
                DEFAULT_BUFFER_LENGTH.get() - usize::from(DEFAULT_MIN_TX_BUFFER_HEAD)
            } else if i < netdev::MAX_DESCRIPTOR_CHAIN - 1 {
                DEFAULT_BUFFER_LENGTH.get()
            } else {
                DEFAULT_BUFFER_LENGTH.get() - usize::from(DEFAULT_MIN_TX_BUFFER_TAIL)
            }
        });
        assert_eq!(buffer.alloc.len(), netdev::MAX_DESCRIPTOR_CHAIN.into());
        buffer.write_at(write_offset, &[WRITE_BYTE][..]).expect("failed to write to buffer");
        // The accumulator is Some if we haven't found the part where the byte
        // was written, None if we've already found it.
        assert_eq!(
            buffer.parts.iter().zip(expected_caps).fold(
                Some(write_offset),
                |offset, (part, expected_cap)| {
                    // The cap must match the expectation.
                    assert_eq!(part.cap, expected_cap);

                    match offset {
                        Some(offset) => {
                            if offset >= expected_cap {
                                // The part should have used all the capacity.
                                assert_eq!(part.len, part.cap);
                                Some(offset - part.len)
                            } else {
                                // The part should end right after our byte.
                                assert_eq!(part.len, offset + 1);
                                let mut buf = [0];
                                // Verify that the byte is indeed written.
                                assert_matches!(part.read_at(offset, &mut buf), Ok(1));
                                assert_eq!(buf[0], WRITE_BYTE);
                                None
                            }
                        }
                        None => {
                            // We should have never written in this part.
                            assert_eq!(part.len, 0);
                            None
                        }
                    }
                }
            ),
            None
        )
    }

    #[test]
    fn buffer_commit() {
        let pool = Pool::new_test_default();
        for offset in 0..MAX_BUFFER_BYTES {
            let mut buffer = pool
                .alloc_tx_buffer_now_or_never(MAX_BUFFER_BYTES)
                .expect("failed to allocate buffer");
            buffer.write_at(offset, &[1][..]).expect("failed to write to buffer");
            buffer.commit();
            for (part, descriptor) in buffer.parts.iter().zip(buffer.alloc.descriptors()) {
                let head_length = descriptor.head_length();
                let tail_length = descriptor.tail_length();
                let data_length = descriptor.data_length();
                assert_eq!(u32::try_from(part.len).unwrap(), data_length);
                assert_eq!(
                    u32::from(head_length + tail_length) + data_length,
                    u32::try_from(DEFAULT_BUFFER_LENGTH.get()).unwrap(),
                );
            }
        }
    }

    #[test]
    fn allocate_under_device_minimum() {
        const MIN_TX_DATA: usize = 32;
        const ALLOC_SIZE: usize = 16;
        const WRITE_BYTE: u8 = 0xff;
        const WRITE_SENTINAL_BYTE: u8 = 0xee;
        const READ_SENTINAL_BYTE: u8 = 0xdd;
        let mut config = DEFAULT_CONFIG;
        config.buffer_layout.min_tx_data = MIN_TX_DATA;
        let (pool, _descriptors, _vmo) = Pool::new(config).expect("failed to create a new pool");
        for mut buffer in Vec::from_iter(std::iter::from_fn({
            let pool = pool.clone();
            move || pool.alloc_tx_buffer_now_or_never(MIN_TX_DATA)
        })) {
            buffer.write_at(0, &[WRITE_SENTINAL_BYTE; MIN_TX_DATA]).expect("failed to write");
        }
        let mut allocated =
            pool.alloc_tx_buffer_now_or_never(16).expect("failed to allocate buffer");
        assert_eq!(allocated.cap(), ALLOC_SIZE);
        const WRITE_BUF_SIZE: usize = ALLOC_SIZE + 1;
        assert_matches!(
            allocated.write_at(0, &[WRITE_BYTE; WRITE_BUF_SIZE]),
            Err(Error::TooSmall { size: ALLOC_SIZE, offset: 0, length: WRITE_BUF_SIZE })
        );
        allocated.write_at(0, &[WRITE_BYTE; ALLOC_SIZE]).expect("failed to write to buffer");
        assert_matches!(allocated.pad(), Ok(()));
        assert_eq!(allocated.cap(), MIN_TX_DATA);
        assert_eq!(allocated.len(), MIN_TX_DATA);
        const READ_BUF_SIZE: usize = MIN_TX_DATA + 1;
        let mut read_buf = [READ_SENTINAL_BYTE; READ_BUF_SIZE];
        assert_matches!(
            allocated.read_at(0, &mut read_buf[..]),
            Err(Error::TooSmall { size: MIN_TX_DATA, offset: 0, length: READ_BUF_SIZE })
        );
        allocated.read_at(0, &mut read_buf[..MIN_TX_DATA]).expect("failed to read from buffer");
        assert_eq!(&read_buf[..ALLOC_SIZE], &[WRITE_BYTE; ALLOC_SIZE][..]);
        assert_eq!(&read_buf[ALLOC_SIZE..MIN_TX_DATA], &[0x0; ALLOC_SIZE][..]);
        assert_eq!(&read_buf[MIN_TX_DATA..], &[READ_SENTINAL_BYTE; 1][..]);
    }

    #[test]
    fn invalid_tx_length() {
        let mut config = DEFAULT_CONFIG;
        config.buffer_layout.length = usize::from(u16::MAX) + 2;
        config.buffer_layout.min_tx_head = 0;
        let (pool, _descriptors, _vmo) = Pool::new(config).expect("failed to create pool");
        assert_matches!(pool.alloc_tx_buffer(1).now_or_never(), Some(Err(Error::TxLength)));
    }

    #[test]
    fn rx_leases() {
        let mut executor = fuchsia_async::TestExecutor::new();
        let state = RxLeaseHandlingState::new_with_enabled(true);
        let mut watcher = RxLeaseWatcher { state: &state };

        {
            let mut fut = pin!(watcher.wait_until(0));
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Ready(()));
        }
        {
            state.rx_complete();
            let mut fut = pin!(watcher.wait_until(1));
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Ready(()));
        }
        {
            let mut fut = pin!(watcher.wait_until(0));
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Ready(()));
        }
        {
            let mut fut = pin!(watcher.wait_until(3));
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Pending);
            state.rx_complete();
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Pending);
            state.rx_complete();
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Ready(()));
        }
        // Dropping the wait future without seeing it complete restores the
        // value.
        let counter_before = state.rx_frame_counter.load(atomic::Ordering::SeqCst);
        {
            let mut fut = pin!(watcher.wait_until(10000));
            assert_eq!(executor.run_until_stalled(&mut fut), Poll::Pending);
        }
        let counter_after = state.rx_frame_counter.load(atomic::Ordering::SeqCst);
        assert_eq!(counter_before, counter_after);
    }
}