fuchsia_inspect_derive/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! This crate provides types, traits and macros for ergonomic
//! interactions with `fuchsia_inspect`. Proc macros are originally defined
//! in a separate crate, but re-exported here. Users should depend directly
//! on this crate.
mod inspect;
use core::fmt;
use core::ops::{Deref, DerefMut};
use fuchsia_inspect::{
BoolProperty, BytesProperty, DoubleProperty, IntProperty, Node, Property, StringProperty,
UintProperty,
};
pub use inspect::{AttachError, Inspect, WithInspect};
use std::marker::PhantomData;
/// Re-export Node, used by the procedural macros in order to get a canonical,
/// stable import path. User code does not need `fuchsia_inspect` in their
/// namespace.
#[doc(hidden)]
pub use fuchsia_inspect::Node as InspectNode;
/// The `Unit` derive macro can be applied to named structs in order to generate an
/// implementation of the `Unit` trait. The name of the field corresponds to the
/// inspect node or property name, and the type of the field must also implement `Unit`.
/// Implementations of `Unit` are supplied for most primitives and `String`.
///
/// Example:
///
/// #[derive(Unit)]
/// struct Point {
/// x: f32,
/// y: f32,
/// }
pub use fuchsia_inspect_derive_macro::{Inspect, Unit};
/// Provides a custom inspect `fuchsia_inspect` subtree for a type which is
/// created, updated and removed in a single step. (It does NOT support per-field updates.)
pub trait Unit {
/// This associated type owns a subtree (either a property or a node) of a parent inspect node.
/// May be nested. When dropped, the subtree is detached from the parent.
/// Default is required such that a detached state can be constructed. The base inspect node
/// and property types implement default.
type Data: Default;
/// Insert an inspect subtree at `parent[name]` with values from `self` and return
/// the inspect data.
fn inspect_create(&self, parent: &Node, name: impl AsRef<str>) -> Self::Data;
/// Update the inspect subtree owned by the inspect data with values from self.
fn inspect_update(&self, data: &mut Self::Data);
}
impl Unit for String {
type Data = StringProperty;
fn inspect_create(&self, parent: &Node, name: impl AsRef<str>) -> Self::Data {
parent.create_string(name.as_ref(), self)
}
fn inspect_update(&self, data: &mut Self::Data) {
data.set(self);
}
}
impl Unit for Vec<u8> {
type Data = BytesProperty;
fn inspect_create(&self, parent: &Node, name: impl AsRef<str>) -> Self::Data {
parent.create_bytes(name.as_ref(), self)
}
fn inspect_update(&self, data: &mut Self::Data) {
data.set(self);
}
}
/// Implement `Unit` for a primitive type. Some implementations result in a
/// non-lossy upcast in order to conform to the supported types in the inspect API.
/// `impl_t`: The primitive types to be implemented, e.g. `{ u8, u16 }`
/// `inspect_t`: The type the inspect API expects, e.g. `u64`
/// `prop_name`: The name the inspect API uses for functions, e.g. `uint`
/// `prop_name_cap`: The name the inspect API uses for types, e.g. `Uint`
macro_rules! impl_unit_primitive {
({ $($impl_t:ty), *}, $inspect_t:ty, $prop_name:ident, $prop_name_cap:ident) => {
$(
paste::paste! {
impl Unit for $impl_t {
type Data = [<$prop_name_cap Property>];
fn inspect_create(&self, parent: &Node, name: impl AsRef<str>) -> Self::Data {
parent.[<create_ $prop_name>](name.as_ref(), *self as $inspect_t)
}
fn inspect_update(&self, data: &mut Self::Data) {
data.set(*self as $inspect_t);
}
}
}
)*
};
}
// Implement `Unit` for the supported primitive types.
impl_unit_primitive!({ u8, u16, u32, u64, usize }, u64, uint, Uint);
impl_unit_primitive!({ i8, i16, i32, i64, isize }, i64, int, Int);
impl_unit_primitive!({ f32, f64 }, f64, double, Double);
impl_unit_primitive!({ bool }, bool, bool, Bool);
/// The inspect data of an Option<T> gets the same inspect representation as T,
/// but can also be absent.
pub struct OptionData<T: Unit> {
// Keep a copy of the owned name, so that the inner node or property can be
// reinitialized after initial attachment.
name: String,
// Keep a reference to the parent, so that the inner node or property can be
// reinitialized after initial attachment.
inspect_parent: Node,
// Inner inspect data.
inspect_data: Option<T::Data>,
}
impl<T: Unit> Default for OptionData<T> {
fn default() -> Self {
Self { name: String::default(), inspect_parent: Node::default(), inspect_data: None }
}
}
impl<T: Unit> Unit for Option<T> {
type Data = OptionData<T>;
fn inspect_create(&self, parent: &Node, name: impl AsRef<str>) -> Self::Data {
Self::Data {
name: String::from(name.as_ref()),
inspect_parent: parent.clone_weak(),
inspect_data: self.as_ref().map(|inner| inner.inspect_create(parent, name.as_ref())),
}
}
fn inspect_update(&self, data: &mut Self::Data) {
match (self.as_ref(), &mut data.inspect_data) {
// None, always unset inspect data
(None, ref mut inspect_data) => **inspect_data = None,
// Missing inspect data, initialize it
(Some(inner), None) => {
data.inspect_data = Some(inner.inspect_create(&data.inspect_parent, &data.name));
}
// Update existing inspect data, for performance
(Some(inner), Some(ref mut inner_inspect_data)) => {
inner.inspect_update(inner_inspect_data);
}
}
}
}
/// Renders inspect state. This trait should be implemented with
/// a relevant constraint on the base type.
pub trait Render {
/// The base type, provided by the user.
type Base;
/// Inspect data, provided by implementors of this trait.
type Data: Default;
/// Initializes the inspect data from the current state of base.
fn create(base: &Self::Base, parent: &Node, name: impl AsRef<str>) -> Self::Data;
/// Updates the inspect data from the current state of base.
fn update(base: &Self::Base, data: &mut Self::Data);
}
/// Generic smart pointer which owns an inspect subtree (either a Node or a
/// Property) for the duration of its lifetime. It dereferences to the
/// user-provided base type (similar to Arc and other smart pointers).
/// This type should rarely be used declared explictly. Rather, a specific smart
/// pointer (such as IValue) should be used.
pub struct IOwned<R: Render> {
_base: R::Base,
_inspect_data: R::Data,
}
impl<R: Render> IOwned<R> {
/// Construct the smart pointer but don't populate any inspect state.
pub fn new(value: R::Base) -> Self {
let _inspect_data = R::Data::default();
Self { _base: value, _inspect_data }
}
/// Construct the smart pointer and populate the inspect state under parent[name].
pub fn attached(value: R::Base, parent: &Node, name: impl AsRef<str>) -> Self {
let _inspect_data = R::create(&value, parent, name.as_ref());
Self { _base: value, _inspect_data }
}
/// Returns a RAII guard which can be used for mutations. When the guard
/// goes out of scope, the new inspect state is published.
pub fn as_mut(&mut self) -> IOwnedMutGuard<'_, R> {
IOwnedMutGuard(self)
}
/// Set the value, then update inspect state.
pub fn iset(&mut self, value: R::Base) {
self._base = value;
R::update(&self._base, &mut self._inspect_data);
}
pub fn into_inner(self) -> R::Base {
self._base
}
}
impl<R: Render> Inspect for &mut IOwned<R> {
fn iattach(self, parent: &Node, name: impl AsRef<str>) -> Result<(), AttachError> {
self._inspect_data = R::create(&self._base, parent, name.as_ref());
Ok(())
}
}
impl<R, B> fmt::Debug for IOwned<R>
where
R: Render<Base = B>,
B: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self._base, f)
}
}
impl<R, B> fmt::Display for IOwned<R>
where
R: Render<Base = B>,
B: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self._base, f)
}
}
impl<R, B> Default for IOwned<R>
where
R: Render<Base = B>,
B: Default,
{
fn default() -> Self {
let _inspect_data = R::Data::default();
let _base = B::default();
Self { _base, _inspect_data }
}
}
impl<R: Render> Deref for IOwned<R> {
type Target = R::Base;
fn deref(&self) -> &Self::Target {
&self._base
}
}
/// A RAII implementation of a scoped guard of an IOwned smart pointer. When
/// this structure is dropped (falls out of scope), the new inspect state will
/// be published.
pub struct IOwnedMutGuard<'a, R: Render>(&'a mut IOwned<R>);
impl<R: Render> Deref for IOwnedMutGuard<'_, R> {
type Target = R::Base;
fn deref(&self) -> &R::Base {
&self.0._base
}
}
impl<R: Render> DerefMut for IOwnedMutGuard<'_, R> {
fn deref_mut(&mut self) -> &mut R::Base {
&mut self.0._base
}
}
impl<R: Render> Drop for IOwnedMutGuard<'_, R> {
fn drop(&mut self) {
R::update(&self.0._base, &mut self.0._inspect_data);
}
}
#[doc(hidden)]
pub struct ValueMarker<B: Unit>(PhantomData<B>);
impl<B: Unit> Render for ValueMarker<B> {
type Base = B;
type Data = B::Data;
fn create(base: &Self::Base, parent: &Node, name: impl AsRef<str>) -> Self::Data {
base.inspect_create(parent, name.as_ref())
}
fn update(base: &Self::Base, data: &mut Self::Data) {
base.inspect_update(data);
}
}
/// An `Inspect` smart pointer for a type `B`, which renders an
/// inspect subtree as defined by `B: Unit`.
pub type IValue<B> = IOwned<ValueMarker<B>>;
impl<B: Unit> From<B> for IValue<B> {
fn from(value: B) -> Self {
Self::new(value)
}
}
#[doc(hidden)]
pub struct DebugMarker<B: fmt::Debug>(PhantomData<B>);
impl<B: fmt::Debug> Render for DebugMarker<B> {
type Base = B;
type Data = StringProperty;
fn create(base: &Self::Base, parent: &Node, name: impl AsRef<str>) -> Self::Data {
parent.create_string(name.as_ref(), format!("{:?}", base))
}
fn update(base: &Self::Base, data: &mut Self::Data) {
data.set(&format!("{:?}", base));
}
}
/// An `Inspect` smart pointer for a type `B`, which renders the debug
/// output of `B` as a string property.
pub type IDebug<B> = IOwned<DebugMarker<B>>;
impl<B: fmt::Debug> From<B> for IDebug<B> {
fn from(value: B) -> Self {
Self::new(value)
}
}